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A discussion is presented on the use of statistical thermodynamics to describe the long-time
behavior of a many-body Hamiltonian that also depends periodically on time. Floquet s theorem is
applied to the dynamics of the system in order to exploit the time symmetry. This approach pro-
duces an effective Hamiltonian that propagates the system over one time cycle. This is taken as the
fundamental constant of the motion for the system and forms the basis for the thermodynamic
description. Under suitable conditions, the resulting formulas for the equilibrium values of observ-
ables have a strong analogy to the usual thermodynamic expressions for time independent systems.
These ideas are applied to describe the equilibrium magnetization for multiply pulsed spin systems,
in particular to the Ostroff-Waugh and Waugh-Huber-Haeberlen pulse sequences. For these sys-
tems a quasistationary state develops after a few times T2. This is followed by a slow decay to an
equilibrium state. The dynamics of the decay is discussed in terms of an. applicatiori of the Provo-
torov theory of saturation to the effective Hamiltonian.

I. INTRODUCTION

When posed with the problem of understanding the
equilibrium properties of a many-body system, the
methods of statistical mechanics provide a powerful set of
tools with which to study the system. If time-varying
external forces also act on the system, then these methods
no longer apply for they depend on the Hamiltonian being
conservative. On the other hand, the direct solution of
the dynamics of the system is hampered by the multitude
of internal interactions between particles. This raises the
following question: It is possible to adapt the laws of sta-
tistical thermodynamics to a physical system when the
Hamiltonian depends explicitly on time? The purpose of
this paper is to address this question in the particular case
in which the time dependence is periodic. The discussion
is focused on a class of problems of interest in pulsed
magnetic resonance. However, the ideas developed here
are applicable to a wider class of physical systems that
consist of many interacting particles subject to periodic
time-varying forces.

Pulsed magnetic resonance is a technique that has been
developed in an effort to obtain high-resolution NMR
spectra of solid samples. ' An appropriate choice of
pulse sequence enables the experimenter to selectively
suppress one, or more, internal spin interactions, thereby
eliminating the contribution of that interaction to the
magnetic resonance spectrum. Because interactions, such
as the dipolar coupling, significantly broaden spectral
features, and thereby obliterate desired information, their
suppression provides a significant advantage.

The theory developed to explain the time evolution of a
spin system that is driven by multiple-pulse irradiation
and to interpret the resultant spectra is the average Harn-
iltonian theory (AHT). ' ' Although it has been widely
successful for describing the response of the spins at short
times, questions have been raised about the validity of the

AHT for describing the long-time behavior of the spin
system and the equilibrium magnetization. These ques-
tions arise from studies on the relaxation of the transverse
magnetization in samples of CaFz that are subject to the
generalized Ostroff-Waugh pulse sequence, 7's

90'y r jb„2v-P„-2w---
which is a pulsed analog of spin locking. The results of
experiments performed by Erofeev et al. " and by
Rhim et al. ,' and the calculations of Provotorov and co-
workers, ' ' find the relaxation time and equilibrium
magnetization of the ' F nuclei to vary with P„and the
detuning b in a way that apparently contradicts the pre-
dictions of the AHT. The endeavor to reconcile the ap-
parent failure of the AHT in the long-time regime with its
success for short-time predictions brings us to the ques-
tion of applying thermodynamics to periodic, time-
dependent systems. The starting point that I take to ad-
dress this question is Floquet's theorem, ' and the general-
ized version of the AHT derived from it. '

A critical point in analyzing the evolution of the spin
system subject to a pulse sequence is to correctly combine
the AHT with the methods of spin thermodynamics. ' To
elucidate the nature of this problem, let us first examine
the basis of thermodynamic description of the spins. Be-
cause of the strong dipolar coupling, the spins in a solid
can be considered to be an ensemble of interacting parti-
cles, and therefore be described by a temperature. The hy-
pothesis is made that the equilibrium density matrix can
be written, in the high-temperature approximation, as

p~ ——1 —P~A
where p,q

——1 lktt T is the inverse temperature of the spins
at equilibrium. Let us assume that the magnetization is
initially prepared parallel to the x axis, so that
pt= 1—p;tool„. In the case that the Hamiltonian is time
independent, the conservation of energy requires that
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P~ TrI„Xt
(1.2)

whence the equilibrium magnetization is determined from

M,q (TrI„A )
(1.3)

Tr@ 2Tri„
The foregoing idea has been applied successfully to a

wide variety of magnetic resonance phenomena. ' How-
ever, in its present form it is not appropriate for use with
the multiple-pulse experiments. The reason is that the
Hamiltonian in this case is nonconservative and therefore
the calculation of P,q by Eq. (1.2) is not valid. The way to
overcome this limitation was first proposed by Redfield'
in connection with the analysis of cw spin locking. He
considered the problem in the rotating frame, in which
the time-dependent Hamiltonian could be approximated
by a conservative one, and the spin thermodynamics ap-
plied to the latter. Couched in terms of the average Ham-
iltonian theory, the original time-dependent Hamiltonian
is transformed into an appropriate interaction frame.
This frame is one in which the dominant portion of the
Hamiltonian does not appear explicitly, so that the AHT
can be applied and convergent results obtained. The re-
sult is that the evolution of the spin system is given by

e sHnr~(0)e —&Hnr (1.4)

with the observation times limited to multiples of the cy-
cle time, n~. The interesting point to note is that upon
stroboscopic observation, the spin system appears to
evolve under a tiine-independent effective Hamiltonian H.

This raises some intriguing questions. How is it that
one can effectively convert a time-dependent, nonconser-
vative system into a conservative one? Is the spin system
under multiple-pulse irradiation really identical to a
time-independent system described by the effective Ham-
iltonian? These questions are considered in some detail in
Sec. II, where it is demonstrated that H is not unique.
This lea'ds to the proposition that the evolution of the spin
system in the intervals between cycle times serves to dis-
tinguish the time-dependent system from a truly time-
independent one evolving under H. The Floquet theory is
applied to the solution of the Schrodinger equation and a
correction to M,q, as given by Eq. (1.3), is found in Sec.
II. The results are applied to. the Qstroff-Waugh and the
Waugh-Huber-Haeberlen (WHH) pulse sequences in Sec.
III.

Although the thermodynamic approach is extremely
useful for the calculation of the equilibrium properties of
a system, it is incapable of providing any information
about the rate of approach to the equilibrium state. How-
ever, this dynamical information can also be obtained
from the Floquet solution for the evolution operator.

In the following I consider the stroboscopic evolution
of the spins according to Eq. (1.4). It is often the case
that the first-order term in H, the average Hamiltonian, is
the sum of two commuting observables. Each of these is
a quasi-invariant of the motion. In thermodynamic
terms, these form independent heat baths, each with a
separate temperature. ' As an example, the Zeeman bath
and the dipolar bath evolve quasi-independently in the

pulsed spin-locking experiment.
In such a situation, a spin system that is initially polar-

ized transverse to the Zeeman field arrives after a time of
approximately T2 at a quasistationary state characterized
by two spin temperatures. The term quasistationary state
is used here because the corrections to the average Hamil-
tonian that complete H do not commute with the quasi-
invariant observables; instead, the only constant of the
motion is H itself. Therefore, there will ensue, on a
longer-time scale, the mixing of the two heat baths to an
equilibrium state described by a single temperature.

The calculation of the relaxation rate to the final equi-
librium state is accomplished by applying a version of the
Provotorov saturation theory ' to the effective Hamiltoni-
an calculated by the AHT. The method is described in
Sec. IV and applied to the Gstroff-Waugh pulse sequence.

II. THEORETICAL DESCRIPTION
OF THE EQUILIBRIUM MAGNETIZATION

H„,: U(t)~U(t+n~) . (2.1)

The P'„'obey the group properties, and H, is termed the
cycle propagator.

This transformation preserves the norm of the state
vectors, so that the cycle propagator must be unitary.
Therefore, we write

U(t+~)= U(t)e (2.2)

where H is a time-independent Hermitian operator, the ef-
fective Hamiltonian. As a result of this property, the evo-
lution operator can be written in the form

U(t)=P(t)e (2.3)

where P(t) is a periodic operator with the initial condition
that P(0)=U(0)=1. In the limit that the system is ob-
served stroboscopically, P(nr)=1, and the evolution of
the spins is described by Eq. (1.4), i.e., the average Hamil-
tonian result is obtained.

Perturbation solutions for P(t) and H are obtained by
invoking the expansions

P(t) = g A,"P„(t) (2.4)

(2.5)

substituting these into Eq. (2.3), and substituting the re-
sult into the time-dependent Schrodinger equation. Using

A. Floquet theory

In order to elucidate the derivation of the equilibrium
magnetization in a pulsed-magnetic-resonance experiment,
I first present a brief review of the Floquet solution for
the evolution operator. ' A collection of 'spins, driven by
a multiple-pulse sequence, is one example of a system
characterized by a Hamiltonian periodic in time. Such a
system has the property that the evolution operator at
time t+nv. is related to the evolution operator at time t
by a linear transformation,
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the factor A, to keep track of the various orders of terms in
the expansion, the following recursion relation are ob-
tained:

n —I—g P (t')H'" "'—H'"' dt'
k=1

(2.6)

(2.7)

Because Po(t)=1, the lowest-order term in the series for
H, i.e., n = 1, is the average of A (t) over one period; thus,H'" is termed the average Hamiltonian. " The higher-
order terms in Eq. (2.7) are equal to those obtained via the
usual derivation' of the AHT by use of the Magnus ex-
pansion.

These series can be shown to converge in the mathemat-
ical sense. However, an important practical question is at
which term can they be truncated? There is no definitive
answer. An example, given in Ref. 17, would indicate
that

~

A,; —AJ ~
& 2n. /~, for all eigenvalues A,; and AJ of H,

is a sufficient condition in order to truncate the series for
H after the first few terms This .is not strictly possible in
the case of the dipole Hamiltonian, but it is certainly
desirable to make ~ sufficiently small to ensure that this
inequality is met everywhere except at the wings of the di-
pole line shape.

ai If'(«))+az 142(n

=e '
[a& ~P&(0))+a2e ~yg(0))], (2.8)

where co~ and m2 are the energies of the eigenstates
~ P&)

and
~ P2), respectively. If co2 co& k2m/r for—som——e in-.

teger k, the linear combination appears to evolve with the
same property that ordinarily is reserved for eigenstates;
yet the linear combination is not an eigenstate of H. The
consequence of this is that the eigenvalues of H are only
determined modulo 2n/r, that is, if an operator N com-
mutes with H and has eigenvalues that are integer multi-
ples of 2m. /~, then H+N is equivalent to H, because both
satisfy Eq. (2.2).

S. Nonuniqueness of H

One important property of a conservative system is the
following: A state of the system is an eigenstate of the
Hamiltonian if and only if it does not change as a func-
tion of time, except to be multiplied by a complex scalar
of magnitude unity. The same statement is not true for
the stroboscopic evolution of a system under the effective
Hamiltonian. To understand the reason for this, consider
the evolution of a linear combination of two eigenstates of
H,

There are two implications to be drawn from the degen-
eracy modulo 2~/r of the eigenvalues of H. The first is
that in the perturbation series H =H'"+H' '+, we
can consider'the terms of second and higher order to mix,
not only those eigenstates of H"' that have the same en-

ergy, but also those that differ by k2m/w, for integer k.
The latter non-energy-conserving transitions result from
the fact that the system is really time dependent. The in-
fluence of these transitions in the decay of the equilibrium
magnetization is further discussed below. Note that the
range of eigenvalues of H and the existence of eigenvalues
that differ by k 2m/r a. re intimately related to the conver-
gence of the series expansion for H'.

The second implication is that the evolution of the spin
system between stroboscopic observation points should be
accounted for in calculating quantities such as M,q.
%Nile H may not be unique, it does dictate the operator
P(t) required to complete the propagator of Eq. (2.3).
The choice of a particular combination rests with the
question of the rapid convergence of the series expansions.

p(0) =1 P;Q— (2.10)

in the high-temperature approximation. Here, Q is a

C. Equilibrium properties from time averages

The purpose of this section is to derive the expression
for the equilibrium magnetization of a system of spins
subject to periodic', time-dependent external forces. The
explicit time dependence of the Hamiltonian precludes the
direct application of the ensemble average to calculate
equilibrium properties. One approach to surmount this
problem is to approximate the time-dependent system by a
system that evolves under the time-independent effective
Hamiltonian. The disadvantage of this pro'cedure is that
one is then confronted by the question of the uniqueness
of H, as described above. In order to arrive at an equi-
librium value that is independent of the choice for H, the
alternative tack is taken to calculate the equilibrium mag-
netization from the time average of M(t). This is based
on the following idea.

A macroscopic collection of spins in a solid sample
obeys the mixing property; that is, if a nonequilibrium
population of spin states is introduced locally, so that only
a small portion of the sample is affected, spin diffusion
assures that, after a time, the nonequilibrium state will
spread uniformly throughout the sample. A dynamical
system that obeys the mixing property is ergodic. In the
case of a conservative Harniltonian governing the spin
system, this guarantees the equality between the time
average of the magnetization (taken alorig the x axis),

M~ ——lim (1/T) f TrI„p(t)dt, (2.9)+~ OO
0

and the ensemble average given by Eq. (1.3).
Let us explore the extension of the time-average ap-

proach for calculating equilibrium properties to a period-
ic, time-dependent Hamiltonian. For the sake of clarity, I
concentrate on the x magnetization, although a different
observable could easily be substituted. The initial density
matrix is assumed to have the form



130 M. MATTI MARICQ 31

traceless Hermitian operator and P; is the initial inverse
temperature of the spins. Calculation of the x magnetiza-
tion using the Floquet form for the evolution operator
leads to an equilibrium value of

By interchanging the order of P (t) and the remainder of
the expression in the trace, we can consider the magneti-
zation to arise from the product of two terms: the quanti-
ty g(t)=e ' 'p(0)e' ', in which the spin system appears
to evolve under a conservative Hamiltonian H, and the
time-dependent observable P (t)I„P(t).

The limit, as T~oo, of the integral in Eq. (2.11), is
nonzero only if the integrand has a constant component.
This, in turn, depends on the Fourier spectra of the opera-
tors P (t)I„P(t)and g(t). Because P(t) has a periodicity
of r, we can write

Pt(t)I P(t) g g elk21TflT

k
(2.12)

whereby the spectrum is discrete. In order that a particu-
lar frequency component, 8~, contribute to the time aver-
age, the operator g(k) must include a component that os-
cillates with frequency —k2m/r The. ap. plication of the
spectral theorem to H provides the expansion

gt)= f f d~d~e —I'-'~~~~&&~~p(0) ~~ &&~ ~,
(2.13)

from which it is apparent that the range of frequencies is
dictated by the differences between the eigenvalues of H,
and the line shape is determined by the matrix elements of
p(0) (equivalently, Q) in the basis of the eigenstates of H.
Combining the term in Eq. (2.12) proportional to e'"2 '~

with the counter-rotating component in Eq. (2.13) yields
the equilibrium magnetization,

M,",= g' f d~&~ k2n/r I+a —I~&&A,
~
p(0)

~

~—k2m/~&.
k

(2.14)

The prime indicates that the sum over A: includes only
those terms for which 1, k2m le is an e—igenvalue of H.
Those terms with k&0 represent the contribution from
transitions between states with different energies.

The use of this formula requires knowledge of the
eigenstates of H. This is readily obtained for systems in
which a small groups of spins interact strongly among
themselves but weakly with the rest of the sample. In that
case the matrix operators that describe the interactions
within the group are of a manageable size and can be di-
agonalized. However, in more general circumstances,
where strong interactions between many spins are in-
volved, the above expression is not very convenient.

Expression (2.14) for the equilibrium magnetization can
be transformed into a more appealing form. under the as-
sumption that only the k =0 term contributes significant-
ly to the sum, i.e., only the constant components of
P (t)I„P(t)and g'(t) are important. This assumption is

M",q= lim (1/T) f Tr[I„P(t)e ' 'p(0)e '~'P"(t) jdt .
T~ oo 0

(2.11)

diag[p(0)] =p,„=f(H) = gf(A)
~

A, & &A,
~

. (2.16)

If there were a second constant of the motion, p,q should
be expanded in a basis of simultaneous eigenfunctions of
the two constants of the motion, and therefore would be a
function of both operators.

The second property enables us to use the laws of sta-
tistical mechanics to determine the function f (A, ). This is
accomplished by maximizing the entropy of the system,

S= —k~ Tr[p,qln(p, q) j,
subject to the constraints that the density matrix is nor-
malized, i.e., f dA, f(A, )=1, and subject to the energy
constraint &E; &

=TrHp, q. The result is

(2.17)
TrH

where Z is the partition function, the high-temperature
approximation is invoked to expand the exponential, and
the equilibrium temperature is written in terms of the ini-
tial temperature from energy conservation. Equation
(2.17) is substituted into Eq. (2.16) to find p,q, which, in
turn, is used to replace the diagonal part of p(0) in Eq.
(2.15) to give

This is easily rearranged into the desired form,

(TrHQ )(Tr[P "I~P],„H)

'XrH
(2.18)

and in many of the applications made below, it is normal-
ized by dividing by M, = —P;TrI Q, when the latter is
not equal to zero.

It is pertinent, at this point, to indicate some interesting

valid under the following circumstance:
~

A,;—AJ ~
(2m/r

for all eigenvalue pairs of H. If this is the case, then the
spectrum of g(t) lies entirely between the frequencies

n—/r and n /r, whereby 1, k—2n /r is an eigenvalue of H
only for k =0. Equation (2.14) reduces, under these con-
ditions, to

M.",= f d~&Z [ [P'I.P].„~X&&X
~
p(0)

~
X&, (2.15)

where Bo has been replaced by the average over one cycle
of P(t)tI„P. Each of the operators [PtI~P],„andp(0)
can be written as the sum of the two terms: one operator
that commutes with H and is diagonal in the

~

A, & basis,
and a second that is completely off diagonal. Clearly, the
diagonal part of p(0) is the equilibrium density matrix.

Consider for a moment a conservative system, i.e., one
with P(t)=1. If the energy is the only constant of the
motion, two important properties hold true: First, any
operator that commutes with the Hamiltonian must be ex-
pressible as a function of it, and second, the system is er-
godic. In the case of a time-dependent, periodic Hamil-
tonian, H plays the role of the constant of the motion, al-
though it does so only at intervals of r. Nevertheless, we
use the first property to write the diagonal portion of the
initial density matrix as
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features concerning the above derivation. The result is
quite similar to the ensemble average of Eq. (1.3); simply
the operator I„is replaced by [P I„P],„,the average taken
over one cycle, in the numerator. This similarity under-
lines the importance of the effective Hamiltonian, which
is responsible for the evolution of the system by one cycle
time, in determining the equilibrium properties of the spin
system. On the other hand, the appearance of the opera-
tor P (t) signifies that the behavior of the spins during the
entire cycle must be accounted for in order to correctly
predict Meq.

The solution for M~ given by Eq. (2.18) is valid only
I

under the condition that the spectrum of H lies in the fre-
quency interval ( —mls, m/r). Recall (Sec. IIA) that the
same condition applies to the truncation of the series ex-
pansion for H. Therefore, in the case in which we wish to
use the perturbation solutions for the Floquet form of the
propagator, the condition that allows the series to be trun-
cated also allows us to use the result of Eq. (2.18) to cal-
culate the equilibrium magnetization. Of course, for the
dipolar interaction the wings of the line shape extend
beyond +rr/~, so that (2.18) is approximate.

Upon substitution of the series expansions for H and
P (t} into Eq. (2.18), the expression

Trg(H'"+ . . )ITrI„(H"'+ )+Tr[I,Pi](H"'+ . )+ jM~ ———Pt Tr(H'"+ . )' (2.19)

is obtained. The first term in the curly brackets is the re-
sult obtained by Redfield, ' who applied spin thermo-
dynamics to the truncated Hamiltonian in the rotating
frame. The second term represents a correction that
arises from considering the entire dynamical history of
the spins and not merely the stroboscopic observation
points. In other words, the oscillating behavior of the
magnetization vector about iis average trajectory con-
tributes to the equilibrium value.

III. APPLICATION TO PULSED NMR

The preceding ideas are applied, in this section, to
evaluating the equilibrium magnetization for the spin-
locking experiment and the WHH pulse sequence. The
choice of interaction frame used in the analysis depends
on the size of the pulse flip angle; hence the discussion is
divided accordingly.

A. Pulsed spin locking for small 8

The Hamiltonian for the pulsed spin-locking experi-
ment, in the rotating frame, is

'A (t)= a)(t)I„+M,—+H2o, (3.1)

where b, is the detuning from the Larmor frequency, H2o
is the secular part of the dipole interaction (the m =0
spherical tensor component}, and

recursion relation (2.7), is that

H '"=Mg (8/2r)I—»+H2o,
a ~') =0, (3.3)

and (3.4)

P,(t)= f X(t')[co(t') 8/2~]dt'I'—

+ f X(t')ct'[I, H2o+M, ),
in addition to the leading term Po(t)=1. The expansion
is carried out to second order because the first-order
correction in Eq. (2.19) is Tr[I„,Pi]H =0. The second-
order contribution to the terms in curly brackets of Eq.
(2.19) (not shown explicitly) is

Tr(P zI„+I P2+ [PiI„P,],„)H"'= (8~/12)(h +3Ht. ),
(3.5)

H' '= —(8«12)([[I» Hzo]~Hzol —2ih[Iy, H20]+b, I„)
—(8 /1 2) ([[ H2o, I ],I„]+M,)

are the three lowest-order terms for H. These terms pro-
gress as powers of 8 and (Hzo+h)~, so that both should
be less than 1 in order to truncate the series and retain an
accurate result.

The expansion for P(t) has terms

Pi(t) = i f —[8/2w to(t')]d—t'I»—:—iX(t)I„

co(t)=8 g 5(t —(2k —1)~)
k=1

(3.2) where the local field is defined by

represents the pulse sequence. The pulses are polarized in
the x direction with a flip angle of 8 and a period of 2r.

For the choice of 8 (1 the rotating frame is appropriate
for applying the perturbation solution for H and P(t).
The conclusion of a straightforward calculation, using the

I

HL, = [Tr(H~zo)'/TrI ]'~»' . (3.6)

This correction term is combined with the leading term,
the equilibrium magnetization obtained for a system
evolving under the time-independent Hamiltonian H, to
give

'2 2

1+ Hl +—2 2 2

2 6
g2

24 2 6
1+ HL + dP (22+ 3HL, )

g2 g2
1 — HL+ 1—

12

(3.7)
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FIG. 1. Quasistationary magnetization vs pulse angle 8 for
various r (in psec). The solid curve is from Eq. (3.7). The
dashed curve shows this result minus the contribution due to
P(t). The dotted curve is obtained using Eq. (37) of Ref. 14 and
the data points are from Ref. 9. The value of M~ ——22000
rad/sec is the same as used in Ref. 9.

0 0
0 O, Z

I I I I I I I I I I I I l I I I I
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FIG. 2. Quasistationary magnetization vs detuning 5 for
various values of 8 (in rad). The solid line is from Eq. (3.7).
The dashed curve is the same result minus the contribution due
to P(t). The dotted curve is obtained from- Eq. (10) of Ref. 10,
as are the data. ~=10psec and Hl. ——25 000 rad/sec, as in Ref.
10.

The values predicted for M",q/M,
" as a function of 8,

with b, =O, are compared to the data of Erofeev et al. ,
and the calculation of Ivanov et al. ' in Fig. 1. The
dashed curve indicates the results obtained in the present
framework when only the stroboscopic evolution under H
is considered, while the solid curve includes the correction
term of Eq. (3.5). Figure 2 shows the analogous compar-
ison for M",q/MP versus the detuning from line center.

+ g ( 1)mRd e imratT— (3.8)
m

prior to truncation. The last term is the full dipole Ham-
I

B. car spin locking

It is instructive to compare the above results to the
better known example of cw spin locking. In this case,
spins that are initially polarized along the x axis of the ro-
tating frame are irradiated by a continuous, near-resonant,
rf field. The Hamiltonian in the rotating frame is

A = M, coII„(coils—2)(e'—"'I
I
—e ' "'II)

(3.9)

in terms of the gyromagnetic ratio, the internuclear dis-
tance, and the spherical harmonics.

The first-order term in the effective Hamiltonian series
ls

H =Mz —colI„JR 2pT2p,(&) (3.10)

the usual truncated Hamiltonian. In order to complete
the analogy to the pulsed spin-locking experiment, and to
apply Eq. (2.19) for M",q, let us also consider

( 1 )Bl g(pi
Pi ———g R2, —~Tz~+ Iy .

~o nv co ' 2' (3.11)

Including both quantities in the calculation for M,q yields

iltonian, with the spherical tensor components T2m con-
taining the spin terms, and the R2 components contain-
ing the information about the internuclear vector. The
latter are typically written'

R 2~ —— (4n./5)' I' (8 p)
pg

3

M",
q

M;

coi+bcoI/2' (~3coI/co)R2o(—R2, —R2 —i )[Tr(T20)l /TrI„
Jcol JHL

(3.12)

The latter two terms in the numerator arise from Pi in
Eq. (2.19). Both of these provide a negligible contribution
to the magnetization under normal conditions because co,
the Larmor frequency, is orders of magnitude larger than
the resonance offset or the local fields (contained in the
R2 ). Thus they can be, omitted and the well-known for-
mula for the equilibrium magnetization under spin lock-
ing is obtained. '

The results for the pulsed (8& 1) and cw spin-locking
calculations are very similar if we make the identification
coi~8/2r. The major difference is the greater dependence
of M",q/M;", in Eq. (3.7), on the higher-order corrections

I

to H and P(t). In the case of pulsed spin locking this is
manifested by the terms HHI, r b, 8, etc. , the analogs
of which are omitted in Eq. (3.12). The omission is justi-
fied in one case and not the other because HL ~&&HI /co,
where these are the approximate ratios of successive terms
in the perturbation series for the pulsed and cw cases,
respectively.

C. Pulsed spin locking for large 8

If either of the conditions 8) 1 or hr ) 1 hold, then the
rapid convergence of the perturbation series for H and
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P(t) in the rotating frame cannot be guaranteed. A better
reference frame is one in which the terms M, co—(t)I„do
not explicitly appear in the Hamiltonian of Eq. (3.1).
Such a frame is suggested by considering the combined ef-
fect of the resonance offset and the pulse sequence on the
spin system over one cycle.

Ignoring for the moment the dipole interaction, the
state of the system at time t =21. is dictated by the opera-
tor

1.0

0.8

0.6

I I I I

Q~ = 7T/ST

rhI |—i&I„ihI~—
(3.13)

0.4

which represents a rotation of the state vector by b.1. about
the z axis, —8 about the x axis, and another A~ about the
z axis of rotating frame. These can be combined into a
single rotation by an effective angle co,21. about an effec-
tive axis n:

Uo(21.)=e (3.14)

co, =n1r/m1. . (3.17)

This condition states that n complete rotations are made
in m cycles of 21. each. The cycle time in the interaction
frame is therefore 11——m 21 Provotoro. v and co-
workers' ' call Eq. (3.17) the resonance condition.

Substitution of condition (3.17) into Eq. (3.15) provides
the relationship that must hold between the detuning and
the pulse angle for the interaction-frame Hamiltonian to
be periodic. This relationship is illustrated in Fig. 3.
There are two special cases. When m =1, 8 must be a
multiple of 21r, so that this case is trivial. For m =2, two
pulses are required for one complete rotation whereby ei-
ther he=~/2 and 0 can be any angle, or O=vr and hw can
be any resonance offset. The .general behavior shown in
Fig. 3 holds for m & 3. Because the difficulty in analysis
increases with an increase in m, the case m =3 is studied
in detail below.

It is a straightforward but lengthy process to find the

Here, I =(I„,lr, l, ) is the vector of spin angular momen-
tum operators. Equating the two forms for Uo(21 ) yields
the following relations:

cos(coq1 )=cos(51 )cos(8/2) (3.15)
and

—sin(8/2) cos(8/2)sin(61. )n] —, n2 —0 n3-
Sln(COq1 ) Sln(COe1 )

(3.16}

for the effective frequency and the orientation of the ef-
fective axis. This is essentially the same result as that ob-
tained by Ivanov et al. '

In the present application the objective is to transform
the Hamiltonian for the spin-locking pulse sequence into
an interaction frame that accounts for the combined ac-
tion of the resonance offset and the rf pulses as indicated
by Eq. (3.13). This transformation produces an
interaction-frame Hamiltonian that, in general, is not
periodic. There are, however, special cases for which
periodicity is retained, namely when

0.8

time-dependent interaction-frame Hamiltonian and then
to apply the recursion relations to determine the effective
Hamiltonian. Therefore it will only be outlined here. The
transformation to the interaction frame is performed
separately for the time interval (0,1.), insertion of the
pulse, the time interval (1;31.), insertion of the next pulse,
etc. In each region, the transformation operator Uo(t) is a
product of rotations by b.1. about the z axis and by —8
about the x axis of the rotating frame. The average Ham-
iltonian is obtained by piecewise integration of the
interaction-representation Hamiltonian. Finally, the in-
teraction frame is tilted by a about the y axis, with

tan(8/2)
tano. =—

sin(b, r) (3.18)

in order to align the effective axis of rotation n with the z
axis.

The result of the above calculation is an average Hamil-
tonlan,

I /2

H "'= 5I, +(cos8)H1+2cos8
3

(3.19)

that is diagonal in the tilted fralne. Tildes are used here
to distinguish operators in the tilted interaction frame
from those in the rotating frame. The factor

5=6,—hR (3.20)
is the deviation of the detuning from the resonance condi
tion dictated by Eq. (3.15) and by co, =1r/61.. In addition,
trigonolnetric functions of h1. that would ordinarily ap-
pear in Eq. (3.19) have been eliminated in favor of the
variable 8 by substitution of the resonance condition. It is
worthwhile to note that H'" can be interpreted as the
projection of the Hamiltonian of Eq. (3.1) onto the effec-
tive axis of rotation.

In order to apply the analysis of Sec. II C to the present
problem, the first-order correction to P(t) is needed.
Averaged over a cycle time of 61., the result

I I I I I I I I I I I I I I I I I I I I I

0 0.5 1 1.5 8
8 (rad}

FIG. 3. Resonance curves in which three, four, and five
periods of 2v are required to complete one rotation around the
effective axis.

PI (i 21 /3)5 si——n(8/2)I~ —(% 21 /3)sin(8/2)(1+2 cos8)' (H2I +Hz I ) —(v 21./3)sin (8/2)(Hzz —H2 2) (3.21)
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Pq = 1 I3q 5I ~qsH2p (3.22)

characterized by two temperatures, is arrived at after a
few times Tz. The initial and quasistationary Zeeman en-

ergies are equated, whereupon

Pq, ——(P;cop/5)sinu, (3.23a)

while the fact that the initial dipolar energy is gero im
plies that

uqS ——0 . (3.23b)

The quasistationary density matrix is substituted for the
diagonal part of p(0) in Eq. (2.15), which, upon evalua-
tion, reveals that

= —, sin (8/2)+ , r5 sin (8—/2)(1+2cos8)'~ (3.24)

is the ratio of the quasistationary magnetization to initial
magnetization. The first term arises from the effective
Hamiltonian, while the second term accounts for the evo-
lution of the system within each cycle. An asymmetry in
terms of the deviation of the detuning from resonance is
introduced by the latter. This disappears as 8 approaches
2m. /3, for reasonable values of 5, ensuring that the ratio
Mq, /M; does not exceed unity.

is obtained, written in terms of the pulse angle 8.
We now desire to use H '" and P& to determine the ra-

tio M,"q/M, ". using the method described in Sec. IIC.
Note, however, that in contradiction to the assumption

that H '" is the only constant of the motion, the operator

I, also commutes with H'". This implies that a quasi-
stationary state,

H '= ——,
' [Pi, 3H "' e "(5—I,+H2p)e ], (3.25)

as cast in the tilted frame. The diagonal part of p(0) is

now proportional solely to H'"+H' ', and, accordingly,
the remainder of the analysis of Sec. II C is apposite. The
value for the equilibrium magnetization, referenced to the
initial value, which emerges is written as
(I» =cosaI»+sinaI, ) is the x component of the angular
momentum operator written in the tilted frame)

M",
q TrI„H(TrI„H+Tr[I,P i ]H )

Mg". TrH TrI„
(3.26)

with

i

The qualification, quasi, is made above because the
quasistationary state does not persist; rather it decays
slowly to a new equilibrium state. The reason is simple.
H '" is not the effective Hamiltonian, only an approxima-
tion to it. The second- and higher-order corrections to
H"' preclude the existence of two separate constants of
motion. In the context at hand, although I, commutes
with H'", it is unlikely to do so with H' '. The conse-
quence is that the two heat baths, Zeeman and dipolar in

the case of H"', will be mixed under the action of the
second-order corrections, and therefore equilibrate to a
new state described by a single temperature.

The equilibrium magnetization can be calculated from

Eq. (2.19) by substituting the sum H"'+H'2' for H"' in
that formula. The apphcation of the recursion relation

(2.7) provides a simple form for H'2' in terms of Pi and
H"', namely

TrI (H ~"+H' ') = ——,
' sin(8/2)(1+2cos8)'~ 5+(2r/3)sin(8/2)cos8[5 +3(cos8)Hi ], (3.27)

and

Tr[I„,Pi ](H "'+H ' ') = sin(8/2)(1+2 cos8)[5 +3(cos8)HL, ]9
4r
9

(sin (8/2)(1+2 cos8)' [5 +3(1+2cos8)5HL, ], (3.28)

Tr(H"'+H' ') = [(1+2cos8)'~ +—', r5sin (8/2)] +—„v5 sin (8/2)(1+2cos8)
3

+[cos8+ 3 r5sin (8/2)(1+2cos8)'~ ] Hl

+ —,r5sin (8/2)cos8[(1+2cos8) ~ + —,r5sin (8/2)]HL + 9 r 5 sin (8/2)(7cos 8+8cos8+3)HL

+ —,', r HL sin (8/2)(62cos 8+42cos 8+27cos8+31) . (3.29)

The assumption of a Gaussian form for the dipole line
shape allows the substitution M4 ——27HL, to be made in
the above trace. Although the formula for the equilibri-
um magnetization is not a simple one, it is immediately
apparent that it differs considerably from the quasista-

tionary magnetization. The difference is most noticeable
for 5=0, at which

Mq, /MP= —, sin (8/2),
in contrast to M,"q/M;"=0. It is a direct consequence of
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FIG. 4. Equilibriu~ magnetization vs detuning 5 from the
resonance condition. The difference between the predictions
from the full vs stroboscopic evolution of the spin system is
shown. {Parameters: 8=1.3 rad, HL, ——25000 rad/sec, and
v= 10psec. )

FIG. 6. Equilibrium magnetization vs the detuning 5 from
the resonance-condition for various values of 8. These are deter-
mined from the Eq. (3.26). (Parameters: HL, =25 000 rad/sec
and ~=10@sec.)

\

H ' ' mixing the Zeeman and dipolar heat baths to a com-
mon temperature. Including higher-order corrections

such as H ' ', in the calculation, will change this outcome
only quantitatively and slightly, the major qualitative

change being affected by H ' '.
The results of the above calculation are perhaps best il-

lustrated pictorially. In Fig. 4, M~/M, " is plotted as a
function of 5, the deviation from resonance, in order to in-
dicate the role of the second term in the parentheses of
Eq. (3.26). Without this term the magnetization is that of
a spin system evolving under the time-independent effec-
tive Hamiltonian: the result that the average Hamiltonian
theory would predict. By incorporating this term, the en-
tire history of the spin system is considered in determin-
ing M~. The same comparison is made in Fig. 5 for
M,q/M~ versus 8 with b, fixed. This plot is actually
made by determining the value of hs that corresponds to

each value of 8 and the inserting 5=6—b,a into Eq.
(3.26).

Figure 6 shows how the shapes of the resonance curves
for M,q/M; versus 5 vary with the pulse angle. Note
that the resonance is narrowest for 8=m. l2. At this value,
the dipole interaction is absent from H '" and enters the
calculation only in second order. Similar changes in the
curves for M,q/M; versus 8 as 5 is varied are depicted in
Fig. 7.

It is of interest to compare the results obtained herein
to the experimental data of Erofeev et al. , ' and to the
quite different, theoretical approach of Provotorov and
co-workers. '3 ' In particular, this is of some importance
because of the claims made by the latter authors that the
average Hamiltonian theory is incapable of predicting the
equilibrium magnetization for the pulsed spin systems.
Contrary to this, Figs. 8 and 9 shaw very good agreement

Osn i

l

i

0.4

M~ determined by H

Including contribu

I

l

I i i

0.6
6% = 0.55

0.2

0.1
0.2

00 i l

1
tI) (rad)

1.6
0.0

-0.3 —0.1 0
8 —8, (rad)

0.1 0.2 0.3

FIG. 5. Equilibrium magnetization vs 8, as the latter is
varied in the vicinity of a resonance point. The difference be-
tween the predictions from the fu11 vs stroboscopic evolution of
the spin system is shown. {Parameters: 5~=0.9 rad,
HL, ——25 000 rad/sec, and ~=6.6 @sec.)

FIG. 7. Equihbrium magnetization vs the deviation of 8
from resonance for various values of hv. The curves are de-
duced from Eq. (3.26) by determining the 5 required to bring 8
into resonance. (Parameters: Kl. ——2S 000 rad/sec and v'=6. 6
psec.)
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FIG. &. Comparison of theory to experiment (Ref. 28) for the
equilibrium magnetization vs the detuning 5 when 0 is held con-
stant. (Parameters: 8= 1.25 rad, HL, ——25000 rad/sec, and
v =6.6 psec. )

0 0 & I

1
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1,6

FIG. 9. Comparison of theory to experiment (Ref. 28) for the
equilibrium magnetization vs 0 with A~ held constant. (Param-
eters: 6~=0.9 rad, HL, ——25 000 rad/sec, and ~=6.6 psec. )

between the predictions of the present Floquet-theory ap-
proach to spin thermodynamics and the experimental
data. As a consequence of the close relationship between
the Floquet theory and the AHT, we may conclude that
the latter is valid, not only for its short-time predictions,
but also for establishing the equilibrium properties of the
spin system. The theory is successful in this instance be-
cause of the choice of interaction frame. Clearly, the
series solution for the effective Hamiltonian does not con-
verge rapidly in the rotating frame [cf. Eq. (3.3)]. Howev-
er, by removing the pulse and detuning operators from the
Hamiltonian, the transformation to the interaction frame

improves the convergence properties of the series for H.
One final point deserves to be made. The equilibrium

state predicted above is also not expected to last indefi-
nitely, even in the absence of spin-lattice relations. It will
decay, on a time scale longer than the one for Mq„be-
cause of the coupling between levels of H that differ by
n2m. /r in frequency. This was omitted in the transition

I

from Eq. (2.14) to Eq. (2.15) and would not be present if
the spectrum of H were contained entirely in the interval
( rt/r, rrl—r). The rate is expected to be quite slow, how-
ever, for rHL, & 1 and to decrease as rHI is made similar.

D. WHH PULSE SEQUENCE

The analysis rendered for the pulsed spin-locking exper-
iment can also be applied to the %"HH pulse sequence ' '

with similar consequences. The truncated Hamiltonian in
the rotating frame is

(3.30)

where qi(t) represents the pulse sequence. In the case that
neither the pulse angle nor the detuning are small quanti-
ties, the equation of motion is preferably solved in an in-
teraction frame that evolves under their combined action.
The evolution of this frame over one cycle of 6r,

—i'm —i8I —id/ w iHI —i' 2w —iHI —t' AI r ieI —i'mU0j6~j=e 'e "e 'e "e ' e "e 'e "e (3.31)

is the product of rotations by br about the z axis, and +8 about the x and y axes, of the rotating frame. This is
equivalent to a rotation

Uo(6r) =e (3.32)

of angle t0, 6r about an effective axis, n Equatin. g the two forms of Uo(6r) leads to the following relations between tp,
and n on one hand, and 8 and b on the other:

and

cos"(8/2)cos (br)+[ ~
—cos (8/2)]cos(br) —

4 cos(3', r) =0

sin8 sin(24r)cos (8/2) sin8 sin(b r) sin(35r)cos (8/2) +sin(Ar)sin (8/2)
sin(3', r) ' sin(3', r) sin(3', r)

(3.33)

(3.34)

cpq =m rrllt 3r (3.35)

As before, the transformation to an interaction frame
under Up(t) does not necessarily produce a periodic Ham-
iltonian. The special cases for which it does are when

I

where m rotations are produced in n cycles each of dura-
tion 6r. The case of one rotation in a single cycle is trivial
because 8 must be a multiple of m.

The more fascinating cases, with periods of 12r, 18r,
and 24~, produce the intriguing resonance curves pictured



THERMODYNAMICS FOR MANY-BODY SYSTEMS EVOOI.VINO UNDER A PERIODIC. . .

in Fig. 10. These portray an equation, cubic in cos(hr)
th at makes a transition from having three real roots, for 8
smaller than a critical value, to only a single real root for
8 larger than this value. For n =3, 8, =-0.87 rad, while
or n =4, 8, =0.61 rad. It is pertinent to point out that

the resonance condition is not attained for hv—=0, thus ex-
c uding the important case of the on-resonance WHH ex-
periment with 90' pulses. The latter is a special case for
w ich Eq. (3.33) is satisfied when co, =0, i.e., no net rota-
tion is effected.

The transformation to the interaction frame and subse-
quent evolution of the effective Hamiltonian is encum-
bered by the large number of pulses per period. For-
tunately, the form of H '" can be deduced more sim 1 b
notin tha

'
g t it is of necessity mvariant to rotations about

~ ~

e simp y y

the effective axis, and therefore must be a linear combina-
tion of operators that are diagonal in the frame tilted by

Q~ = 1T/6T

~o ——~/»
= 7l'/13T

0 I I

0
I I I I i I I I i I

1 2 8
8 (rad)

FIG. 10. Resonance curues for the WHH lpu se sequence in
which two, three, and four periods of 6o ~ are required to com-
plete one rotation around the effective axis.

iaI iPIT=e ~e (3.36)

with respect to the interaction frame. The Euler angles u
and p are related to the orientation of n through
cosa =n3, sinp sina =n2, and cospsina =n i. In this

frame, H'"=a"I5I, +bH20. The proportionality factors a
and b are determined by finding the average corn onent

, a ong, and H20, over the five time intervals
mponen

(0,&), (&,2~), (2~,4~), etc. The result is

H"'= 'n 5I-H 3 B35I + 2 (3it 3
—1 )Hgo g d p(8)do (ct)cos(mba}cos(mp)Ai 0

L, m

+ g d 0( —8)d ~ (8)do (a)cos[(m+m')b~]C
L,m, m'

m m m + m 10 (3.37)

where the d are the Vhgner matrix elexnents,=a"ip = » 20 = 20 and C~ =i cos(m'P) for even m,m

and C~ i +'sin(m'P) for odd m. Here, L ranges from
1 to 2, and m and m' range from L to L. —

~ ( the dhpole and Zeeman energies are
separately conserved. After a time Tz the system will ar-
rive at a quasistationary state characterized by separate
temperatures for these baths. The quasistationary mag-
netization is the square of the component of the initial
magnetization lying along the n axis,

qs

~x =n& . (3.38)

The higher-order corrections to H'" will mix the two
reservoirs, in a time long compared to T2, to an equilibri-
um state described by a single spin temperature. An accu-
rate determination of the equilibrium state requires ex-

plicit knowledge of H' ' and Pi (cf. Sec. II C). This be-
ing an arduous task, a simpler approach is taken in which

the corrections to H'" are implicitly used to establish a
common temperature, but Eq. (2.19) is applied solely to
H'". In this way,

M a 5CQ nq

M". a 5+6 H
(3.39)

is obtained, with a and b determined from Eq. (3.37), and
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FIG. 11. Equilibrium magnetization vs the detuning 5 from

the resonance condition for various combinations of 8 and A~.
The curves are obtained from Eq. (3.39). (Parameters:
HL, ——25 000 rad/sec and ~= 10 @sec.)

l

5 the deviation from resonance.
A graphical view of the equilibrium magnetization, in

t e neighborhood of a variety of resonance oints, is
presented in Fig. 11. The symmetry of these curves, about

5=0, occurs because H ' ' and I'&, which are the sources
o the asymmetry in the analogous plots of Sec. IIIC
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have been omitted from the calculation of M,"q. The pre-
diction of a decrease of the equilibrium magnetization to
zero, at the special values of 8 and 6 that obey Eq. (3.33),
however, remains. The variation in the widths of the
curves is also interesting to note. Very narrow resonances
are found for 8=m. /4 and for 8 slightly smaller than m. /2.
In the region of large b,~, this resonance broadens consid-
erably, with a simultaneous decrease in M",q, as the detun-
ing is raised to b,~=2. 1 rad. Then M",

q increases substan-
tially for b,&=2.3 rad. In contrast, note that this large
variation is not found in Mq, .

IV. THE DYNAMICS

Density

Up to this point, the primary concern has been to
understand the quasiequilibrium and equilibrium states
that characterize a spin system driven by multiple-pulse
irradiation. An important question that deserves atten-
tion is at what rate does the quasiequilibrium state decay?
It is the purpose of this section to address this question.

A. Overview

The time development of the pulsed spins can be divid-
ed into three characteristic regions. The first is the
short-time regime, during which the spins evolve effec-
tively under the action of H"'. This time period features
a wide spectrum of oscillations of the magnetization that
occur because the precession rate of each spin is deter-
mined by the local field surrounding it, in addition to the
deviation from resonance. These oscillations arise from
the component of the magnetization vector initially per-
pendicular to the effective axis. There is, in addition, a
constant contribution to the magnetization that arises
from the parallel component of the initial magnetization.
After a time of approximately T2, the transverse com-
ponent decays to zero and a quasistationary state is
reached. The time required is determined by HL and 8.
It depends only indirectly on the interval between pulses,
in the sense that if ~ is too large, H"' does not re'present
the effective Hamiltonian even for short times.

In the second region, the Zeeman and dipolar heat
baths have separately equilibrated to distinct tempera-
tures. When viewed from the toggling frame, the magneti-
zation has a small periodic variation due to P(t), and de-
cays slowly. The transformation back to the rotating
frame accentuates the periodicity of 2n/ro, observed in
the magnetization.

The Zeeman and dipole energies are individually con-
served only to an approximation. Under the action of
H' ', the reservoirs are mixed and equilibrate to a com-
mon temperature —hence the decay of Mq, . A qualitative
explanation of this is provided with the aid of Fig. 12.
Pictured are the energy levels of H"' versus the density
of states. Without the dipole interaction, there are two
levels separated by 5. The effect of the dipolar coupling is

FIG. 12. Energy-level diagram for the average Hamiltonian
of the spin-locking pulse sequence [Eq. (3.19)]. Pictured is the
energy vs the density of states. Hd;p is the dipolar contribution
to H'".

a broadening of the levels due to the influence of the local
fields. In the region that the levels overlap, H' ~ can in-
troduce energy-conserving transitions between the Zeeman
levels. This causes a transfer of energy between the Zee-
man and dipolar reservoirs.

The influence of the various physical parameters on the
decay rate can be understood from Fig. 12. The overlap
between the broadened levels becomes larger as 5—+0,
which increases the decay rate. Similarly, the overlap
grows as HL is increased, whereupon the decay rate is
predicted to rise. The dependence on 8 is complicated by
the fact that this parameter enters into the splitting of the
Zeeman levels, the broadening caused by the di~olar in-
teraction, and the size of the coupling term, H ' . When
5=0, the overlap is independent of 8, but H' ' becomes
larger as 8 is increased, making the decay rate faster.

The equilibrium state comprises the third region of the
time development. If the interaction frame is such that
there are no eigenvalues of H satisfying

~

A,; —AJ
~

)2n. /~,
then the equilibrium is a true one and it will persist. If
there are eigenvalues separated in frequency by 2~/v, or
multiples of this value, non-energy-conserving transitions
can take place between these levels, and a new final state
will slowly evolve. The rate of this decay depends not on
the overlap of levels broadened by the dipole interaction
and separated by 5 as above, but on the overlap of levels
separated by 2m. /r. This overlap is proportional to the in-
tensity of the ordinary dipole line shape at the frequency
2m/r. Being much smaller than the intensity at 5, the de-
cay rate is much slower than for the quasistationary state.

B. Combining the Provotrov theory (Ref. 21) with the average Hamiltonian

The analysis of the decay of the quasistationary state begins by writing the cycle propagator in the form

expD (4.1)
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which is amenable to a perturbation treatment under the condition that H ' ' is smaller than K "'. The time-ordered ex-
ponential (denoted by the subscript D} is approximated by a series representation, so that

I

p(t)=e ' '
po i—f dt'[H' «(t'), po] —f dt' f dt"[H' '(t'), [H' «(t"), po]]+ . e' (4.2)

gives the time evolution of the density matrix. Note that only the propagation under the effective Hamiltonian is con-
sidered. The operat'or P(t), which completes the full evolution operator, causes a periodic modulation of the density ma-
trix; however, it does not contribute to the overall decay. The decay of the modulation envelope can be determined by
considering the stroboscopic evolution of the system under H.

The remainder of the analysis follows the exposition given by Goldman. ' The expectation value of any observable, A,
evolves according to

( A (t) ) =TrA p(i) . (4.3}

Let us consider the evolution of those operators that commute with the average Hamiltonian. Because the point is to fol-
low the evolution of the quasistationary state,

po
——1 —pq, f(8)5I,—a~, g (8)Hzo (4.4)

(4.6)

is chosen for the initial density matrix. The functions of 8 account for the dependence of the Zeeman and dipolar ener-
gies in H'" on the pulse angle. po is substituted into Eq. (4.2) and the trace with A is taken. The first-order term,

(4.5)

vanishes, because both A and po commute with H "'. The second-order term remains, and
I

TrAp(t)=TrApo —TrA f dt' f dt"[H' '(t' —i"},[I7' «,po]]

is obtained after some rearrangement of terms. A substitution of t' —t" as one of the variables of integration allows one
integral to be evaluated easily, with the result

Tr A [p(t) po] = —TrA f—dt'(t —t'}[K' I(t'), [H ' «,po] ] . (4.7)

The intent here is to understand the decay of the quasistationary magnetization. This occurs over times long com-
pared to Tz. At these long times, the off-diagonal matrix elements of H ' «(t) have decayed to nearly zero, so that little
error is introduced by extending the upper integration limit from t~ oo. Similarly, for large t, t —t =t for those t that
contribute significantly to the integral. Combining the two approximations and dividing by t yields

TrAp(r) = —f dt'Tr[A, H '. '(t')][H ' ',po] (4.8)

for the rate of change in the expectation value of A.
The rate of change in the temperatures is now deduced by specific choices for A. Substitution of A =I„andthe den-

sity matrix of Eq. (4.4) into Eq. (4.8), produces two terms: one proportional to Pq, —aq, and the other proportional to
aq, . The latter can be easily integrated, and produces a contribution of

dt'Tr[I„H' «(r')][H' «H "«]= Tr[I H' '][H' '(00) —H~ '(0)]=0f(8) 0 " ' f(8) (4.9)

to the rate of change in Pq, . The trace with H', '(00)
equals zero, because the off-diagonal elements of H ' ' de-
cay to zero for long times and the commutator is com-
pletely off diagonal. The term proportional to Pq, —aq,
provides the main result,

dh'Tr[I„H "'(t')][H "',I,] .
dt

(4.10)

A similar solution for daq, ldt can be determined by
choosing A =H20 and following the same reasoning as
used here. It is simpler, though, to recognize that the con-
servation of energy requires that

The relation is approximate because the total energy is not
solely determined by H'", but also includes a small con-
tribution from H' '.

Equations (4.10) and (4.11) are the basic relations that
govern the equilibration of the dipole and Zeeman reser-
voirs to a common temperature. The solution of Eq.
(4.10) is a decaying exponential function for Pq, that has a
rate constant of 1+f (8}5 /g (8)HI times the integral on
the right-hand side of the equation. The important con-
tribution to this rate constant is the strength of the cou-
pling produced by H' ].

C. Application to pulsed spin locking

2 z d~q~ zf (8)5 + g (8)HI, -—0 .
dt dt

(4.1 1) Let us consider the relaxation of the quasistationary
magnetization at resonance, i.e., with 5=0. Define
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i(COSH)H~ t=

(4.12}

to be the integrand in Eq. (4.10). Because the time depen-
dence arises solely from the action of the dipole interac-
tion, G(t) is a simply decaying function of time. It is as-
sumed to have a Gaussian form,

G(t)/G(0) =e (4.13)

is deduced from the expansion of G(t)/G(0) in a power
series to second order in t. The decay parameter is

o =15(cos 8)Hg (4.15)

after the traces are evaluated. The rate constant is deter-
mined by integrating G(t) from 0 to oo. From Eq. (4.13),
the result

1/2

(4.16)

is easily found.
Inserting o and the trace that defines G(0) into this ex-

pression reveals that

2 2m sin (8/2)(10cos 8—7cos 8+6) H3+
' 1/2 3 2

3 15 cosO

(4.17)

determines the rate at which the quasistationary magneti-
zation decays under the condition of resonance.

A graph of the relaxation time 1/R as a function of 8
is featured in Fig. 13 (solid curve). The relaxation time

15

Equation (4.17) of this work
With correction to cr

Equation (51) of ref. 14
Data from ref, 10

10

0
~A

0
0.75 1.851 1.5 8

e (rs,d)

FIG. 13. Relaxation time for the quasistationary magnetiza-
tion vs the pulsed angle 8. b,v is also varied to ensure that the
resonance condition is met for all 8. The left-hand scale is for
the data, whereas the right-hand scale is for the solid and dotted
curves. The dashed curve was scaled to the data in Ref. 14.
(Parameters: HI. ——2S 000 rad/sec and ~=6.6 psec. )

1,75

where the parameter

Tr[I„[(cos8)Hzo,[(cos8)H zo, H ' ']]][H ' ',I,]

[I H (2)]2

(4.14)

goes to zero at 8=~/2 because of the singularity in for-
mula (4.17) at that point. This is on account of the dipo-
lar contribution to H'" vanishing for 0=m/2. A reason-
able, albeit ad hoc, solution is to correct o. by combining
the diagonal portion of H' ' with H '" in Eqs. (4.12) and
(4.14). Thus,

o = 15[(cos 8}HI

+—„sin(8/2)(34cos 8+46 cos8+19)HL 2] (4.18)

can be substituted into Eq. (4.16). The overall effect of
this correction is rather small, as can be seen from the fig-
ure (dotted curve); however, it does remedy the problem at
8=m/2

The present results are also compared to experiment'
and to the theoretical predictions of Provotorov and co-
workers' in Fig, 13. The qualitative features are all in
agreement: the decay time is longest at small 8, it de-
creases to a minimum at 8=m./2, and then increases again
as 8~2m /3. Quantitative comparisons, however, are
more difficult to make. One reason is that the calcula-
tions of Ref. 14 are scaled to fit the data. Separate verti-
cal scales are therefore used for plotting Eq. (4.17) versus
the experimental data to achieve the same effect here.
Secondly, the rate constant is sensitive to errors in HL . In
Ref. 10 a value of 1.0 6 for HI instead of the predicted
0.86 6 was blamed on misalignment of the crystal in the
magnetic field. This translates to an uncertainty of nearly
a factor of 2 in the relaxation time.

A more important point of concern is the following:
Within the theoretical framework of the present study, the
pulse angle 8 is not a free parameter in Eq. (4.17). It must
satisfy the auxiliary constraint imposed by the resonance
condition, Eq. (3.15). In an experiment, therefore, as 8 is
varied, the detuning 6 must be simultaneously altered to
ensure compliance with this condition. This is not to say
that it is not worthwhile to study the change in decay rate
when only 8 is varied, just that in the present framework
this would imply a concurrent change in 5, the deviation
from resonance. The effect is to make the variation of
1/R with 8 steeper than predicted by Eq. (4.17), and
closer to the experimental values. These questions could
be further illuminated by additional experiments.

V. CONCLUSION

The emphasis of this paper has been the use of the Flo-
quet theory for solving the time-dependent Schrodinger
equation in the presence of periodic time-dependent in-
teractions. The advantage yielded by this approach over
other methods of perturbation theory is due to its explicit
use of the time symmetry of the Hamiltonian. As a
consequence, the effective Hamiltonian emerges as a con-
stant of the motion, where this term is applied here in a
broader sense than usual. The effective Hamiltonian, in
fact, has many of the properties ordinarily attributed to
conservative Hamiltonians. One important feature is that
it forms the basis of a thermodynamic description of the
equilibrium state for a spin system subject to periodic
external torques.

Starting with the equation of motion for the density
matrix, the assumption that the effective Hamiltonian is
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ergodic is used to deduce the statistical thermodynamic
formula for the equilibrium properties of the system, e.g.,
the magnetization. Under the condition that the eigen-
values of H lie entirely in the interval

~

1,; —AJ ~
&2mlr,

an expression for the equilibrium magnetization is ob-
tained that is similar to Redfield's' application of spin
thermodynamics in the rotating frame. The results herein
both strengthen the validity of the latter approach and
present a correction to it. Terms that account for the full
evolution of the spins, as- opposed to evolution solely
under the effective Hamiltonian, comprise the correction.
Thus a time-dependent system, with an effective Hamil-
tonian FI, is inherently different from a conservative sys-
tem with the same Hamiltonian H. As the period ap-
proaches zero, the difference disappears. When the condi-
tion

~
A.; —AJ ~

&2rrlr is not met, non-energy-conserving
transitions (between levels of H) are possible and no
analogous conservative system can be found.

The analysis of the pulsed spin-locking experiment via
the Floquet method predicts values of. the quasistationary
and equilibrium magnetizations in quite good agreement
with experiment. Two cases exist, depending on the size
of the pulse angle and the detuning. When these are
small, the rotating frame is appropriate for analysis. The
effect of the pulses on the equilibrium magnetization is

predominantly determined by the average intensity of the
rf field. The dependence on the pulse spacing becomes
more complicated when second-order corrections to H"'
are considered. These depend on Hl ~, and these are not
necessarily insignificant.

For large 8 or 6, the principle motion of the spins is a
toggling-like precession about the effective axis defined by
the pulses and, . detuning. When the problem is
transformed to that frame, an average Hamiltonian is
found that permits two constants of the motion. This
leads to a quasistationary state with distinct temperatures
for the Zeeman and dipolar baths. Under the influence of
the second-order correction to H '", the reservoirs mix to
a common temperature.

The rate for equilibration of the temperatures depends
on the size of the Zeeman and dipolar terms in H"' and
on the strength of the coupling introduced by H' '. An
adaptation of the Provotorov theory ' to the average
Hamiltonian provides a route by which to calculate the
rate constant.

These results establish the average Hamiltonian theory,
and the more general version based on the Floquet theory,
as appropriate for long-time predictions of the behavior of
a spin system, in addition to their short-time applications
in NMR spectroscopy.

Detailed reviews are given in U. Haeberlen, High Resolution
NMR in Solids (Academic, New York, 1976); M. Mehring,
High Resolution NMR Spectroscopy in Solids (Springer, Ber-
lin, 1983).
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