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Unitary-group approach to the theory of nuclear magnetic resonance of higher-spin nuclei. III
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The unitary-group approach to the treatment of nuclear-magnetic-resonance spectra of
A&BM systems of nuclei with higher-than- T spin is presented. The adaptation to permutation-

al and spin symmetries is discussed. Some examples are worked out. The development is made with
NMR in mind but is otherwise completely general.

I. INTRODUCTION

In two previous papers, ' hereafter referred to as pa-
pers I and II, we presented the unitary-group approach
(UGA) to pure spin species, Atv, systems with arbitrary
spin. In paper I we demonstrated the techniques for con-
structing and utilizing permutational symmetry, or S&,
adapted basis states of A~ systems. Paper II clarified
various points regarding the construction of Sz adapted
basis states using UGA versus more conventional
methods and explicitly treated the case of A3 systems.

In this, the third and concluding paper of this series, we
present the unitary-group approach to mixed-spin-species,
A~BM . systems; that is, where the nuclear spins of
species A and B (and so on) are not necessarily the same.

In Sec. II we present the general theory of A~BI. . .
systems. In Sec. III we present two methods, utilizing
spin-projection operators, by which spin-adapted basis
states can be constructed. In Sec. IV an example is given
for the case of an A2B2 system where the A and B nuclei
have spin 1. Finally, in Sec. V we give an example of the
treatment of an A4B2C2 system.

II. GENERAL THEORY

The permutational-symmetry adapted basis states of an
A& system are labeled

~

cr( ),(a)&M ), where o denotes the
nuclear spin; (a) denotes a Weyl-Young tableau with
SU(2cr+ 1)-adapted labels a; (i =1,2, . . . , X) (the a; are
related to the usual z-projection labels by a; =cr+ 1 —m;);
q (q =1,2, . . . , QM) denotes the qth unique arrangement
of labels a; at level M, the sum of m s; and [A, ] denotes
an irreducible representation, or partition, of the sym-
metric group, S&.

The arrangement of labels a; in the tableau boxes is in
increasing order down the columns. and nondecreasing or-
der across the rows. This is referred to as lexical ordering.
The complete basis is constructed by considering all possi-
ble arrangements of labels a; =1,2, . . . , 2o.+1 placed in
the tableau boxes in adherence to lexicality conditions. In
practice, the generation of the basis states proceeds from a
uniquely labeled, highest-M tableau (the set of a; having
minimum values) and subsequent states are generated

from this one using the unitary-group single-step genera-
tors, E(a;+1,ct;). The matrix elements of these genera-
tors are obtained using Harter's jawbone formula and can
be evaluated during the basis generation process. The re-
sulting QM by QM &

(M =M,„ to —M,„+1)matrices
are sparse and always contain elements expressible in the
form v'a/b (a/b rational).

Examples of tableaux for various irreps of spin-1 and
spin- —,

' bases are shown in Tables I, II, and III of paper I.
The correlations between SU(~)(2a+ I) and R(3) are also
shown in those tables. Examples of transformation coeffi-
cients are given in Eq. (3.3) and Table VI of paper I.

The case of AttB~ . systems can be treated using
direct products of Az and BM (and so on) permutational-
symmetry adapted basis states. In group theoretical
terms, we are seeking the reduction of
SU(2cr&+1)XSU(2crz+I)& into its irreps. Using
conventional approaches one would perform the evalua-
tion of multipole operators, etc., within each pure spin-
species system and then couple the results explicitly, using
a technique similar to that of Siddall, for instance. For
computer implementation, however, a different approach
is often more practical.

The basis states of an AtvBM . system are denoted as
[A,)] [A2]

~

cr~
'

crq
''

, (ct)&M )l, where the labels cr, and
[A,, ](t =1,2, . . . , T, the number of spin species) refer to
the spin and Stv partition labels, respectively, of the tth

pure spin species. As in the case of A& systems, (a)e
refers to the qth arrangement of labels a; in tableau boxes
at level M, where M is the sum of all m; in all spin
species. Assuming that M, is the sum of m; labels within
the tth pure species and there are QM subtableaux at that

t

level for that species, the label q now ranges over q =1 to
g~ +,Qst, where the sum over M, levels is restricted
to the set of M, satisfying g, M, =M.

The matrix elements of unit irreducible tensor, or mul-
tipole, operators Iq, is defined as

(t' cr,' k crt)
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The evaluation of these proceeds in a manner directly re-
lated to that for pure spin-species systems. Since no inter-
species effects are considered, the operator is expressible
in the form

T
Iq Q I——

q (t)

T &t (ot k crt)= g g( 1)~™I, , ,~E(a,'. ,a,.),
g
—Pl) g mj j

where the sum over contributions from each pure species
is made explicit. In a similar manner, the evaluation of
two-particle operators such as I .I can be simplified by
writing

T T
I k I k y Ik(t) Ik(t) + 2 y Ik(t) Ik(tf )

t t, t'
t&t

using the fact that Iq"(t) and Iq"(t') commute when t&t'

III. TRANSFORMATION
TO SPIN-ADAPTED STATES

The tableau basis constitutes permutational-adapted
many-spin basis states. In many applications, however,
there is a need to compute matrix elements in a basis such
that its members are simultaneous eigenstates of S and
Sz, that is, a spin-adapted basis. There are two ways to
achieve this. One, by transforming the pure-species
tableau basis to states of total spin and the other by
transforming the mixed-species tableau basis to states of
total resultant spins.

The "highest" tableau formed from the unique product
of pure-species highest tableaux forms an eigenstate

~
O1 ',O2 . . . , ImaxM») Of the SPin OPeratOr S,[Z, ] [~2] 2

where S=Qt, S„with eigenvalue I,„(I,„+1) whereI,„=M,„has the value of the maximum sum M. By
operating successively on this state with the lowering
operator

s =ps,
' 1/2

a;(2ot+1 —a;) E(a;+1,a;),
t i

[A, l] [A,2]
one produces states

~
o1 ' o2 '. . . ,I,„M), and

M =I „,. . . , —I „.At each new M level there may
l~l 3 [~2]

arise orthogonal states labeled
~
o1

' o.
2
'. . . , IM =I ),

I &I „,which must be expressed in terms of linear com-
binations of tableaux. The number of such states is the
difference b, QM

——QM —QM+1, M&0. Most often it is
the case that b, QM & 1, hence the need to distinguish be-
tween two or more states of the same total spin I.

Pure-species spin-adapted basis states can be construct-
ed as

Starting from the highest state

[~l] [~2]
O2 ' ' ~I1maxM1 ) =

I I1max
' ' ITmaxMT =ITmax ~

We first apply lowering operators S, within each pure
species producing states

[A,
l ]

~
&1 ~ ~ ~ ~ ~ ~ItmaxMt =Itmax

or T new states. If additional states exist orthogonal to
these maximum spin states, then they must be projected
out. One can use a Gram-Schmidt orthogonalization pro-
cedure as used by Drake, Drake, and Schlesinger for this
purpose. It should be noted that this method is able to
resolve cases where more than one state of given spin I is
produced.

Alternatively, total resultant spin-adapted basis states
are constructed as

[~)] [~p]. oT', I1 . . IT,I1,I123 I12. . . T)

Once again we start with the highest tableau where
I, =I, „and the intermediate resultant spins

t

Il ~ ~ tmax g Irmax .
r=l

Application of the lowering operator S allows one to
produce states of varying M. However, the application of
projection operators as above fails to resolve states with
the correct I, and I&. . . t labeling. Instead, linear com-
binations of properly labeled states are obtained.

The projection of the correct spin-adapted states can be
achieved by the application of a spin-eigenfunction projec-
tion operator, proposed originally by Lowdin, of the
form

I,= / [S' K(K+I)—] .

The actual operators used as adapted to each spin label re-
quired in the representation and the product is over spins
not equal to I. The process in practice has the following
simplifying features. The first is that the projection
operator is applied successively at each new M level, and
so it restricts the range of K&I states to those already
present at the current M level. The other has to do with
the order of application of the pure spin-species projection
operators; namely, a general spin-projection operator will
be expressed as

I, . . . ITTi2 . I l —r

In general then, we will require matrix elements of the
operators S, and S, S, in the tableau basis. These can be
efficiently evaluated and stored at the beginning of the
projection process and reused as necessary in the applica-
tion of the general operator above, and in other operators.

It should be noted that the operators above do not pro-
duce normalized linear combinations, hence the need to
compute the normalization factor. As should be expected,
it is also possible that application of the P operator to a
given tableau may result in a zero projection. This simply
means that the tableau chosen does not contribute to the
desired spin-adapted state, hence a different tableau must
be chosen to operate on.

A word about phase convention is in order. First, ma-
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trix elements of the one-body, one-step operators are all
set to be positive. Second, for both pure- and mixed-
species systems, the projection operators used in the gen-
eration of eigenvectors guarantees a definite consistent
phase (see Ref. 5). Thus the phase convention used in the
UGA is in harmony with the one used in standard vector
coupling approaches. This correspondence is achieved by
equating the highest tableau state with the highest R(3)
state.

IV. APPLICATION TO A2B2 SPIN-1 SYSTEMS

In paper I we examined the case of A2B2 systems
where 3 and B species are both spin 1. We demonstrated
the methods for evaluating multipole operator matrix ele-
ments in the tableau basis and the subsequent production
of spin-adapted states

f
cr 1,I,M) within each pure-

species system. Mixed-species states of the form
[x,] [x2]

f
o

&

' 0 2
',I

& M, I2M2 ) were produced by taking. direct
products of pure-species spin-adapted states. However,
we were able to produce total resultant spin-adapted states

[A, ] [A. j
f

o.
&

'
cr2 ', I&IzIM ) only through the use of explicit vec-

tor coupling.
We shall demonstrate here the use of the spin-

eigenfunction projection-operator technique for producing
states of total spin directly from mixed-species tableaux.
From Table II of paper I, we obtain the EQM values for
partitions [2][2], [2][1 ] ( = [1 ][2]), and [1 ][1 ]. It
should be noted that the tableaux listed in Table II of pa-
per I represent direct products of tableaux and not S~
( N =N, +N2 ) adapted tableaux; that is, the tableau
shapes for each pure species are discong. ected. Thus a
tableau expressed as 44 is really just 11&&44. In practice a
table like Table II is never produced in its entirety as it re-
quires storage totaling the product of pure-species irrep
dimensions. Instead, each pure-species set is stored
separately requiring only the sum of those dimensions
worthy of storage.

It will be sufficient to consider the [2][2] system. The
highest tableau, highest spin state is given as

f2244)=
f
11)X f44& .

For brevity we have used the notation
f
I,I2IM ),

suppressing the partition labels, and to avoid confusion in
the tableau labeling we use labels 1, 2, and 3 to denote
species-1 states and 4, 5, and 6 to denote species-2 states.

At level M =3 we have b,g3 ——1, indicating that an
I =3 state is also present. From the angular momentum
addition rule

f I& I2
f

&I &I&+I2, it i—s evident that
since I] ——I2 ——2, then I=0, 1, . . . , 4. Hence, the new
state at M =3 must be the state

f
2233). Clearly at least

one new state of the form
f

22IM=I) will arise at each
M level, M =0, 1, .. . . , 4.

The spin-projection operator which we apply at M =3
reduces to

P2q3 ——(Sf +S2+2S,.S2—20)

due to the fact that no pure-species spins other than
I~ I, =2 can exist. (Equiva——lently, the relevant pure-
species spin operators reduce to the identity operators. )

Applying the S&, S2, and 2S~ Sz operators successively to

the first tableau, we find

S',
f
11)

f
45 & =6

f
11)

f
45 ),

S
f
11)

f
45) =6

f
1 1 )

f
45),

2S, .S
f
11)

f
45)

=2(S~p Spp —S~ Sp+ S&+Sg- l
I

)

=2(2.1
f
ll)

f
45)+v2.V2

f
12)

f
44)+0)

=4(
f
11)

f
45)+

f
12)

f
44)) .

Using these results, .we have

Pe&31»& l45&=[(6+6+41111&145&+4112&f44&

20f »& f45&]

—4(
I

11&145&—
f

12&144& l .

After normalizing, we find

145 &
—&1~2111&145

As a check we operate on the state
f
2244) with the

lowering operator to obtain

S
f
2244) = —V 4

f
2243)

=(S& +S2 )
f
11)

f
44)

=( —V2
f

12)
f
44))+( —W2

f
11)

f
45))

= —v 2(
f
12)

f
44)+

f
11)

f
45)),

from which follows the result

f
2243) =el/2(

f
11)

f
45)+

f

12)
f

44)) .

Obviously this state is orthogonal to the projected state
f
2233&.
At level M =2 we find b,g3 ——3. As before, we must

have one state labeled
f

2222). The remaining two states
can only differ in the I~ or I2 labels. By choosing I& ——2,
it must follow that I2 ——0; similarly, we must also have a
state with I] ——0 and I2 ——2. Finally, there will also be
I =3,4 states present at this level. Thus the projection
operators to be used are

P2p2 ——(S —20)(S —12)(S2—6)(S i
—0)

for the state
f
2022),

Pp22
——(S —20)(S —12)(S2—0)(Sf —6)

for the state
f
0222), and

P222 ——(S —20)(S —12)(S2—0)(S) —0)

for the state
f
2222).

Due to the ordering of the mixed-species tableaux, the
best strategy to adopt is to apply the pure-species. projec-
tion operators with highest I] first, then proceed to lower
I] values. This is because the &pecies-1 tableaux have M~
sums which. are nonincreasing from q =1 to Q~, hence
they will contribute to I] labeled states starting only from
below a certain value. This maximizes the probability of
avoiding applications of P operators which result in zeros.
Also important from the computational viewpoint is to
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& llx46ls',
I
llx46&=&»xss Is',

=& lzx45 Is',

(12x45 Is',
I
12x45) =(13x44I s',

=(22x44
I
s2

(13x44 Is& I
13x44)=(11x46

I
s,

&13x44I s',
I
zzx44) = & 11x46

I
s',

11X55)

12X45)=6,
I
13x44)

I
zzx44) =6,

I
11x46) =2,

I
»xss&=zvz,

collect the matrix elements of the S&, S2, and 2S~ Sq
operators only as they are required and access them for re-
peated use.

The nonzero matrix elements are

(22 x 44
I
s',

I
22 x 44) = (22 x 55

I s, I
11x 55 ) =4,

( 1 1 x46
I
zs, .s& I

12x45)

=(13x44 I2s, .s, I
lzx45) =2v 2,

( 1 1 x 55
I
zs&.s2

I
12x45)

=(zzx44
I
2s, s,

I
lzx45) =4,

(12x45
I
2s, -s,

I
12x45) =1 .

Using these values, we apply the operator P202 to the
first tableau at M =2,

P2O2 I
1 1 x46) =(s —20)(s —12)(s2 —6)si

I
11x46)

=6(S —20)(S —12)(S2—6)
I

11x 46 )
=2.6(s —20)(s —12)(—2

I
1 1 x46)+v 2

I
1 1 x 55) )

=2 ~ 6(s' —20)I —2[( —12+6+2)
I

1 1 x46)+zv 2
I

1 1 x55)+2v2
I
12x45)]

+v 2[( —12+6+4)
I

11xss)+zvz
I

11x46)+4
I
lzx45)]I

= —z.6 6(s' —zo)( —z
I

1 1 x46)+z
I

1 1 x ss) )

= —2 6 6I —2[( —20+6+2)
I
11x46)+2v2

I
11x55)+2v'2

I
12x45)]

+v 2[( —20+ 6+4)
I

11x 55 ) +2v 2
I

11x 46) +4
I

12x 45 ) ]I

= —2 6.6.14(2
I
llx46) —v2

I
llx55)) .

Normalizing this combination yields the results

I
2022& =v'2/3

I
1 1 x46& —v'1/3

I
1 1 x 55 & .

We can easily check this result using standard vector coupling since the
I
11) species-1 state is an I =M =2 state, and

we have

Izozz&=&»oolzz& l»&x Ioo)= lzz)x Ioo& .

The
I
00) state can be computed and is given as

oo) =v'2/3
I
46) —v'1/3

I
55)

The remaining spin states are found by applying

P», I
12x45) =(s'—20)(s' —12)s,'s',

I
lzx45)

=6.6(s —20)(s —12)
I
12x45)

=6.6(s' —20)[(—12+6+6+2)
I
lzx45)+2v 2

I
1 1 x46)

+4
I

1 1 x 55 &+zv 2
I

13x44) +4122x44 &]

=6 6I2(2
I
12x45)+2v 2

I
11x46)+4

I
11x 55)+zv2

I
13x44)+4

I
zzx44) )

+2v 2[( —20+6+2)
I
11X46)+2v 2

I
ll Xss)+2v 2

I
12X45)]

+4[(—20+6+4)
I

1 1 x 55) +2v 2
I

1 1 x46)+4
I
lzx45)]

+zv2[( —20+2+6)
I
13x44)+zv 2

I
zzx44)+zv 2

I
lzx45)]

+4[(—20+4+6)
I
zzx44)+2v 2

I
13x44)+4

I
12x45)]I

= —6 6 12(v 2
I

11x46)+2
I

1 1 xss) —3
I
lzx45)+v2

I
13x44)+2

I
zzx44)) .

By normalizing we find
1

I
2222) =v'2/21

I
11x46)+&4/21

I
1 1 x55) —v9/21

I
12x45)+v'2/21

I
13x44)+v'4/21

I
zzx44) .
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TABLE I. Tableau basis and R (3) correlation of ( 2
)t '~ system.

Tableaux R (3)
111
5

111 112
3 2
111 112 113 122
4 3 2 2
112 114 113 122
4 2 3 3
113 114 122 124
4 3 4 2
114 123 134 124
4 4 2 3

123
2
123 133 222
3 2 3
133 222 223
3 4 3

1

1

2
1

2

0

33'
2

2, 2'

Finally, using the operator Po22 we obtain

P»,
~

13X44) = —2 6.6 14(2
~

13X44) =v 2
~

22 X44) )

or, after normalizing

~

0222) =+2/3
~

13X44)—v'1/3
~

22X44) .

This procedure is continued at levels M =1 where only
a single additional state arises (Ag& ——1) which must be a

~

2211) state, and M =0 where two additional states arise
(b.go ——2) which must be

~

2200) and
~

0000). All other
states may be obtained using the lowering operator.

The use of the spin-eigenfunction projection operators
has allowed us to proceed directly from the mixed-species
tableau basis to pure-species-resultant —spin-adapted states
without the need to rely on vector-coupling considera-
tions. The technique is easily extended, furthermore, to
cases of more than two pure species as we shall see in the
next section.

V. A482C2 SYSTEM
WITH NONEQUIVALENT SPINS

We shall now consider the case of an A4B2Cz system
where the spin of A is —, with pure-species S4 irreps [4],
[31], [2 ], and [1 ] and the spins of B and C are both 1

with irreps as in Sec. III. Our aim here is to demonstrate
the use of UGA and the spin-eigenfunction projection-
operator techniques for a more complicated case to which
the method of Siddall cannot be directly extended. It is
characteristic of UGA that there is no significant differ-
ence in approach to that of the simpler A2B2 spin-1 sys-
tem considered in Sec. IV.

The mixed-species total spin-adapted states are labeled

[X1] [Ar2] [A 3]
~z 'o3 ' Ii1213 i2 i23

TABLE II. One-step generator matrix elements of ( 2
)t"~ .

111
2

111
3

111
4

112
3

113
2

122
2

112 112
4

there must be states
~

52177M=7) and
~

52167M=7).
The values of b, gM at this level are therefore used. These
can be expressed as a triple (b,gM, , b.gM, b,gM ) where

M ] +Af 2 +M3 —M. In this case, we have three such tri-
ples (1,1,0), (1,0,1), and (l, l, l). If the triple contains a
zero, then no new state arising from a new I, labeling
occurs. The third triple (1,1,1) shows that a new spin- —,

'

species spin state arises which must be an I] ——4 state.
(Indeed one expects this within the pure species as can be
seen from Table I.) Thus we expect to find the state

~

42167M =7).
In the case of the M =7 states to be projected out, we

require the operators

Pg2)77 ——(S f/3 72)(S tp
—42)(S (

—20),

P52167 = (S123 —72)(S i2
—56)(S i

—20),

P42(67 ——(S (23 —72)(S )2 —56)(S, —30),
where the PI and PI have been reduced to the identity

2 3

(only I2 ——2 and I3 ——1 states contribute at this level to the
labeling) and we introduce the notation

s„.. . , = gs;

Considering the case of irreps [A,&]=[31],[A2]=[2], and
[13]=[1], we find the tableau basis of ( —', )13') given in

Table I, E(a;+I, a;) matrix elements in Table II, and
spin-adapted states in Table III. Those of (1)1 1 and
(1)1' 1 were given in Table I of paper I. We shall consider
an example from the system irrep ( —, )( ') (1)1 l(1)1' 1.

The highest tableau is uniquely spin adapted with
I( ——5, 12 ——2, I3 ——1, I)2 ——7, and I$23 —8 hence,
suppressing irreps labels

52178M=8) =, X55X,',
where the labels cz; =1,2, 3,4 denote the Sz-projections of
o.]———, and a; =5,6,7 and 8,9,10 are used for the
(T2 o 3 —1 Sz projections. At level M =7, Eg'7 =3 and

111
3

112
2

112
3

+4/3113
2
112'. 2

0 +2/3 V 4/3 0

0 V4

113
3

122
3

123

114
. 2
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TABLE III. ( 2
)t 'i spin-adapted basis vectors.

111

i
54) =V'1/5(v 2,"'+V 3,"')
53) V 1/9 5[~3111+(~9+~4)112+~8112+~9122]

V 1 /4 5(~31 1 I +~25 1 12 +~8 1 1 3 + 1/ 9 122
)

i
44) =V 1/5{V 3 —V 2 ' }

~

43) =V 1/4 5[V 9/24"'+(V'27/2 —V'8/3)3" —V'16/3z" —V 6z j
=)/1/120(V 274"'+ V 253' —V 32z" —V 36z )

I
33) =V'1/3672(v 2601&"—V'8673" +V 96'' +.V'108z )

i
3'3) =v'1/17(v 9,'"—V 8,'")

to denote the intermediate and final spin couplings used.
These operators are thea'applied to the tableaux

i
M=7, »= iz"'X55X»&,

i
M =7,2) =

i

z"' X 56X,'),
i
M=7, 3)= (,"'X55X,s),

i
M =7,4& =

i
z'"X55X,'& .

For example,

Pszi7z I

z" X 55 X io &

= —2 10.14( v 49
i
7, 1 ) —v 2

i
7,2)

~2i7, 3& ~3i7,4&1,

giving the normalized state

i
52177M =7 ) =v'1/56( v 49

i
1 ) —v 2

i
2)

—v 2
~

3) —V 3
i
4)) .

The remaining states are found by applying Pqzt67 to the
next tableau

i
2) and P4z[$7 to the tableau

i
3).

At the next level hg6 ——7 and we find q indexes, ex-
pressed as triples: (1,1,0), (1,0,0), (2,1,1). From angular
momentum addition rules we predict states

i
52176),

i
52166),

i
52156),

i
42166), and

i
42156), leaving two

states unresolved. From the triple (2,1,1) we determine
that two new I~ ——3 states have arisen, hence the remain-
ing spin states are

i
32156) and

i
3'2156). The applica-

tion of the operator P3z$56 to the tableaux
i 4 X 55X9)111 8

and
i 3 X55X9& gives identical results; hence a third ap-

plication of P3zi&6 to either the tableau
i

z' X55X9) or
i z X 55X9) is necessary to resolve the second Iz =3' la-

beling. It should be noted that the same problem occurs
for this (and similar cases) using Gram-Schmidt orthogo-
nalization and so no relative loss of computational effi-
ciency occurs due to the choice of projection operator.

VI. CONCLUSION

We have once again' -demonstrated the power and ver-
satility of the unitary-group approach in calculations
where'other methods, such as those of Siddall, become too
cumbersome. Typically, for simple cases UGA is not
simpler than other approaches. It is precisely at the com-
plex systems level that its power is evident.

During the course of this work, we pointed out a
variety of computational strategies for the benefit of the
practitioner. %'e have in the past implemented UGA on
small computer systems and found that a highly modular-
ized programming approach (using machine or assembly
language) is most effective.

The method is sufficiently general so that it can handle
both pure- and mixed-spin-species systems of arbitrary
nuclear spin. Although the work is done with NMR in
mind, it also has applications to the magnetic properties
of transition-metal ions and thus is widely applicable.
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