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Unitary-group approach to the theory of nuclear magnetic resonance of higher-spin nuclei. II
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NMR spectra of A3 systems with nuclei of spin-1 are treated two different ways. One is the
unitary-group approach (UGA), the other is the more conventional spin-product-basis method. This
is done to illustrate the efficiency of UGA compared to other methods and to clarify some ambigui-
ties in a recent publication of ours on the subject. An extension of UGA to the case of more than
three particles of spin higher than 1 is straightforward.

I. INTRODUCTION II. GENERAL THEORY

In a series of papers' Siddall and Flurry (SF) have dis-
cussed the use of many-spin basis sets in evaluating ma-
trix elements of the nuclear-magnetic-resonance (NMR)
Hamiltonian. Recently, we presented the description of
.the unitary-group approach (UGA) to the treatment of
NMR spectra of A„systems with nuclei of higher than
spin —,'. We outlined the use of the UGA to symmetry-
adapted basis states of pure cr configurations where for
an 1V-particle system 0 is the single-particle spin.

Note that the Weyl basis is not an orthogonal one for
U(n) (where n)2), Matrix elements that we calculate
using formulas of Ref. 4 (jawbone) are done so by impli-
citly assuming that the bases have been orthonormalized
using, say, Gram-Schmidt oithogonalization procedures,
or using Gelfand bases instead of Weyl's.

In the present work we first make clear the relation be-
tween the tensor operators employed in Refs. 1 and 2 on
the one hand and Ref. 3 (KS) on the other (Sec. II). Next,
we work out a nontrivial example of a three-particle spin-
1 system employing the methods of both Refs. 1 and 3
(Sec. III). Finally, we discuss the consequences of the
comparison and comment about the merits of the two
methods (Sec. IV). As such, this paper should be con-
sidered as an extension of Ref. 3.

We begin with the definition of a many-particle opera-
tor in terms of single-particle operators

N

I~ = g I~"(w),
w=1

which, in the unitary group approach, has the explicit
form

I, = g ( —1) ~,)E,,
m, m'= —o.

where

j =o.+1—m',

i =o.+1—I .

The NMR coupling Hamiltonian is defined as

(3)

where the T are tensor-operator coupling constants.
The scalar product of the unit tensor operators is writ-

ten

k
Ik.Ik y ( 1 )eIkIk

q= —k

N k k k
( —1)eI (w)I (w')+ Q g ( —l)tI (w)I (w')+ g g ( —1)eI (w)I (w) .

m&m'=1 q= —k w) w'=1 q= —k 1D=1 q= —k
(4)

The first two terms on the right-hand side of Eq. (4) con-
stitute Siddall's operator as defined in Ref. 1, Eq. (4). The
third is the self-interaction term and can be shown to be
equal to N/(2o+I). The expression is equal to our
operator definition in Ref. 3, Eq. (2.3). Note, however,

that in order to calculate the matrix elements given in
Eqs. (3.2) and (3.3) in that reference, we employed
Siddall's operator, since those values were derived for pur-
poses of comparison with his results. The matrix ele-
ments for the case of' A4 with spin equal to —,

' were calcu-
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lated using "our" operator since no comparison was in-
tended. In summary, we observe that

TABLE I. Tableau states of o. ~ for o.= 1, including correla-
tion with R (3).

[I"I'] =2[ " "l
2o+ 1

(5) [g] Tableau states
R (3)

correlation

where KS indicates Ref. 3 and SF Ref. 1.

III. THREE-PARTICLE SPIN-1 SYSTEM

In this section we treat the case of a three-particle
spin- 1 system —A 3 . The state labeling is based in this
case on the group chain U(3) D U(2) D U(1).

First, we list the tableau basis states in Table I. Next,
we list the nonzero matrix elements of the corresponding
EJ operators in Table II. These were calculated using the
formulas given in Ref. 4.

For the sake of clarity, we give explicit forms for the
I"-I operators for the o.= 1 case:

[I' I']xs, [ (El 1
—E33) +(E11—E33)

+2(E3zE23+Ez1E12+E12E32+E~3E21)],

[3]

[21]

—3

0

~

111)
~

112)

[
123 ),

~

222)

~
133&, [ 223 &

~233)
~333)

i

11)
11 12

[2 13

13
'

22

i

23)

i1)

1

0
1

0
1

0
1

1

0
1

1

1

P,F
P,F
p, E
F

D,P
D,P
D,P
D

[I'I']Ks=—.[«11—2E22+E33 )']
[+ 1O [El 1

—E33+2(E23E32+E12E21 E32E12-

E21E23)+2(E31E13)]

(7)

In Table III we list the matrix (elements) of the [I' I' ]s„
operator, while in Table IV we list the same for the
[I I ]sF operator in the A3 case. For the partition
[A,]= [1 ], we have the values

&21[I'.I']SF
I 2& = &z I

[I'I']sF
I 2& = —-' .

3 3 3 3

In these tables the dots represent a zero-value matrix ele-
ment.

The results can be compared with values obtained by us
using methods of Ref. 1 in the following fashion. First
we transform from tableau states to states of definite total
spin

~

[A, ]SM ). For the partition [3],we find

~
[3]33)=

~

111),
~
[3]32)=

~

112),

~
[3]31)= I/1/5

~

113)+2/v 5
~

122),

f
[3]30)=v'3/5

/

123)+V'2/5
/
222),

f [3]3—1)=v'I/5
)
133+v'4/5

J
223),

TABLE II. One-body operator matrix elements for EJ for i =j +q.

&112[E„[111&=V3

(122
[ E„[112& =2

(113
) E32

/
112)=1

(222[Egg (122)=V3

(223/E21 /123&=2
(223 /E» /222)=3

&233 IE» I223&=2

(3'[E» [,"&=1/1/2

I E3212 & =1/3/2
&3"

I
Ez113"& =~2

&", iE„ i,"&=V 2

(,"iE, I' )=1

&,'[E;, [,')—=o
3

'
3

(113
~
E31~ 111)=~3

&123 (E„~ 112&=V"Z

(133
( E31[ 11)=2

(233
[ E3$

(
122) =1

(233
( E31

)
123) =~2

& V I E31
I

z'
&
=v'3/2

&1'IE31 I3'&=1

(3 ]E31 f3')=1/V2

(", I
E„I,")= —V'3/2
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TABLE III. Matrix (element) of [I'.I']sr. (a) Operator for [A,]=[3]. (b) Operator for [A,]=[21].
(a)

1

2

I
122&

1

2

I
113)

1

6

I
122&

1

3

1

3

I
123)

1

6

I
222)

I /W6

I
133)

I
223&

f
333&

1

6
1

3

1

2

1

2

I

12)
I

22)
I

23)

1

6
1

6
1

6
1

12 I/4v 3

1

6
1

6

1

6

I
[3]3—2) =

I
233),

I
[3]3—3)=

I
333),

I
[3]11)=2/W5

I
113)—I/W5

I
122),

I
[3]10)=v2/5

I
123)—v3/5

I
222),

I
[3]1—1)=2/v 5

I
133)—1/v 5

I
223) .

These lead to the following matrix elements:

( [3]3M
I

[I'.I']sp
I
[3]3M) = —,

'

( [3]3M
I
[I'I']sp

I
[3]3M) = —,', ,

where —3&M &3; and

([3]1M
I

[I''I ]sp I
[3]1M)=-

([» I
M

I
[I'.I']»

I [»1M =-,',

(10)

I
[21]22)=

I

q'),

f
[21721)=1/v2

I
g')+1/v2

f P),
I
[21]20)=v'3/2

f
p)+1/2

I
p),

I
[21]2—1)=1/v 2

I q )+1/v 2
I q ),

I
[21]2—2) =

I q ),
I
[21]11)=1/V2

I
g') —I/W2

I ~ ),
I
[21]10)=1/2

I ~ ) —V3/4
f q ),

I
[21]1—1)= —1/v 2

f

' )+1/v 2
f ) .

These lead to the following matrix elements:

([21]2M
I

[I' I' ]s„ f
[21]2M)=0,

([21]2M
I [I I ]sp I

[21]2M)= ——,
'

where —2&M &2; and

where —1 &I& 1.
Now, for the partition [21], we find similarly the

transformation coefficients:

( [21]1M
I

[I'.I'7 „f
[21]1M) = ——,

'

([21]1M
I
[I I ]sp I

[21]lM)=0,
where —1(M & 1.
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i

TABLE IV. Matrix (elements) of [I~ I2]sF. (a) Operator for [A,]=[3]. (b) Operator for [A,]=[21].
(a}

1

10

I
112&

1

10
1

2

1

5

I
123&

3
10

I
222&

v'6y 100
2
5

1

2

I
223&

1
5'

1

5

I
233&

1

10

I
333&

1

10

1

5

1

10
1

10
1

10
3

20

I

13&

—v 3/20
1

20
1

10

I

22&

1

10

1

10

I

23&

1

5

IV. THREE-PARTICLE SPIN-1 SYSTEM,
AN ALTERNATIVE APPROACH

In this section we wish to verify the results of the
preceding section using the "spin-product basis" approach
as outlined in Ref. l.

Here we express the states in terms of eigenvectors of
the form

I

omi', om2, om3), where m; is the spin magnet-
ic quantum number of the ith particle. This we do in or-
der to compare with the method of Ref. 1, using also the
definition of the I .I operators in that reference. These
basis states are referred to in Siddall's work as spin prod-
uct bases.

Now, Weyl basis states will be expressed as linear com-
bination of the spin product bases:

I
[3]»»=

I
»1&,

I
[3]112)= (

I
110)+

I
011)+ I

1o1 &»
3

I
[3]113= (

I
11—1)+

I
1 —11)+

I

—111)),

I
[31122)= (

I
100)+

I
010)+

I
001&),

3

I
[31»»= (

I
»—»+

I

—»0&+
I
01 —»

+
I
o—» &+ I

—1o1&+
I

1 —1o&»

I
[3]222)=

I
000),

(13)

I
[3]i,i2i3) —6( Imimqm3)+ Im3mim2)+ Im2mim3)

+ Im2m3mi)+ Im3m2mi)

+ Im, m, m, &), (12)

where 1&iii2i3 (3 and i =a+1—m
These states happen to be already orthogonal. In order

to normalize them we write

1[31133&= (
I

—1 —11&+
I

—11—1&+
I

1 —1 —1&),v3

I
[3]223)= (

I

—100)+
I
00—1&+

I
o—1o&»v3

I
[31233&= (

I

—1 —1o&+
I

o—1 —1&+
I

—1o—1»v3

I
[3]333)=

I

—1 —1 —1) .
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For the partition [21] we have two sets of basis func-
tions corresponding to two different irreducible represen-
tations of S2 +] but belonging to the same irreducible

representation 1 2(
'), of U(2o+1). These are

1111213& 1131211&+1121113 & 1131112&) ~

(14)

I
l ll2l3 )

I
l2l 1l3 ) + I

l3l2l 1 )
I
l2l311 ) )

We choose the first set as our basis states and obtain
upon normalization

12') = (
I
110)—1011)),

2

13') = (111—1)—
I

—111)),
2

1212& =
2

13"&*=
2 (

I
1o—1& —

I

—1o1&+1o1—1& —
I

—11o&)
(15)

12 )*=—,'(
l

l —10)+
I

—110)—10—11)—101—1)),

13 ) = (11—1 —1)—
I

—1 —11)),
2

13 ) = (100—1)—
I

—100)),
2

13 )= (101—1)—
I

—1 —10)) .

We have labeled 13 )* and 12 )* with an asterisk. This
is done in order to illustrate the fact that the Weyl bases
are not in general orthogonal. We set 13 )'= 13 ) and
orthogonalize 12 )* using the Gram-Schmidt procedure.
We then have

I,")= I,")*=-,
' (110—1)—

I

—101)

+
I
oi —i) —

I

—i io) ),
(16)

I,")= (
I

—i io) —
I
oi —i )+210—i i )

8

+
I

io —i) —
I

—ioi &) .

Finally, we have for the partition [1 ],

1[1 ]2)= (110—1)+
I

—110)—11—10)—101—1)vS

—1100)—1010)—1001)),

1[3]10)= (110—1)+
I

—110)+ 101—1)
15

0—11&+
I

—101&

0& —31000&)

(19)

For the [21] partition and S =2 we have again, for pos-
itive M only,

I
[21]22)= (

I
110)—1011)),

2

1[21]21)= —,(111—1)—
I

—111)+1100)—1001)),
(20)

1[21]20)= (2110—1)—21 —101)+ 101—1)viz
—

I

—110)+11—10)—10—11)) .

For S=1 we write

1[2i]ii)=-,'(
I
ii —i) —

I

—iii) —
I
ioo)+ Iooi)),

(21)
1[21]10)= —,(101—1)—

I

—110)

+
I

i —io) —10—ii)) .

1[3]33)= 1111),

I [3]32)= (
I
110)+ 1011)+

I
101)),

3
(18)

1[3]31)= (111—1)+ 11—11)+
I

—111)+21100)1

15

+21010)+21001)),

3130)= (21000)+
I

10—1)+ I

—110)+ 101—1)
10

+ 10—11)+
I

—101)+ I
1 —10) ) .

One obtains similar expressions for negative M values.
For S=1 we have

1[3]ll)= (2111—1)+211—11)+21—111)vis

+ 10—11)—
I

—101)),

We substitute into Eqs. (9) and (11) and noting

I
[1']00&=

I
[1']z&

3

we obtain, for S= 3,

For the partition [1 ] there is the one expression,

1[i']00&= '
(Iio —i) —Ii —io& —Ioi —i&

6

+10—ii&+
I
—110)—

I

—101)) . (22)

Following Eq. (5) of Ref. 1, we write for the matrix ele-
ments of the I".I operators
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k ~l(o
(om &,om2, om3 [I".I

~

om ~', crmq', o m'3 &
= g g ( —1)~( —1)

We have calculated the matrix elements of these operators for k =1 and k =2 using the above
found full agreement with the results of Sec. III A. A few sample calculations are as follows.

For the partition [1 ] we have

—q m,')' (23)

basis functions and

( [13]00
f

I'.I'
f
[1 ]00 ) = —,

'
( ( 10—1

)

I'.I'
[

10—1 ) + ( 1 —10
[

I'.I'
/

1 —10)+ (01—1
[

I' I'
/

01—1 )

—2( lo —1
[

I' I'
[

1 —lo& —2& 10—1
)

I' I'
[
01—1 &+2& 10—1

I

I' I'
[
—1H))

—2 ( 10—1
/

I' I'
/

—101) +2 ( 1 —10
/

I' I'
[
01—1 ) —2 ( 1 —10

[

I'.I'
/

0—11 )

—2( 1 —10
[
I' I'

i

—110)+.2( 1 —10
i

I' I'
[
—101 ) —2(01—1

[

I' I'
i
0—11)

—2&01—1[I' I') —11O&—2& —110[I"I'/ —1O1& —
2&O

—11/I' I'[ —1O1))
1 1 1 1 1 1 1 1 1=6(—)( ——) ————————————= ——
6 6 18 18 18 18 18 18 2

in agreement with expression (8) above.
For the partition [3] we have

([3]32/ I .I
/
[3]32)= j'((110)I .I /110)+(011/I I [011)+(101/I.I'[ 101)

+2(»o
f

I'I'
(
011)+2(»o t

I' I'
f
lol )+2&o»

I

I' I'
I
10» )

=3—,( —,)+3—,( —,)=—, ,
1 1 2 1 1

(24)

(25)

in agreement with expression (10) above.
For the partition [21] we have

([21]21/ I I
[
[21]21)= —,'((ll —1 [I .I

/

11—1)+(—111/I I
/

—111)+(100
J

I .I [100)+(001[I .I /001)

+2(11—1
i
I .I

i
100)—2(11—1

i
I I

[
—1 1 1 ) —2(11—1

i
I .I

i
001)

—2( —111 iI .I
F

100)+2(—111 iI I
i
001)—2(100 iI I

F

001))
1 r 1 ~ 1 2 4 2 2 a 1

4 ~ 10 ~ 10 10 lo 10 10 ~ 5
(26)

in agreement with Eq. (11') above.

V. CONCLUSION

We have treated the case of a three-particle spin-1 sys-
tem using two different procedures. In one procedure we
employed the USA. The other procedure was based on
one of the methods advocated in Refs. 1 and 2. It is clear
that even though the former method still lacks a closed-
form expression for the evaluation of other than one-step
one-body operators it is much more efficient than the
latter approach. As a matter of fact, any of the ap-
proaches of Refs. 1 and 2 become much more cumber-

some than the UCiA when applied to three particles or
more. In addition, it is known that UGA is particularly
apt for computer implementation.
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