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Remarks on fractional statistics
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Some issues in the theory of fractional (or intermediate) statistics are discussed with an eye on possible

applications to the quantum Hall effect: spins and statistics of clusters, invariant characterization of statis-

tics, and the effect of space topology.

Recently, the subject of quantum statistics in two (spatial)
dimensions has attracted more and more attention. This is
because particles in two-space can obey fractional statistics
which are characterized by a continuous angular parameter 8
and are intermediate between the normal Bose-Einstein
(8 =0) and Fermi-Dirac (8 = n ) statistics. They were sug-
gested in the flux-tube-charged-particle composite model'
and O(3) nonlinear a. model. ' Later a general theoretical
framework is established in the Feynman path-integral for-
malism. ' The relevance of these 8 statistics to the frac-
tional quantum Hall effect has also been suggested in dif-
ferent contexts. 7 9 (For related discussions, see also Refs.
10-15.) In this Rapid Communication we shall discuss
some issues in the theory of fractional statistics, which are
of importance for possible applications to real systems and,
in particular, to the quantum Hall effect.

net result is a factor exp[tp[(p —1)8"+2srs'] ]; namely,
the spin of the cluster is

p p —1 8'
S = +ps'+integers

2m
(3)

Comparing this equation with Eq. (2), we reach the con-
clusion that the conventional spin-statistics connection is as-
sured for the cluster [i.e., S=8/2m (mod 1)], if it is true
for the constituent particles. Note that in this case the spin
of the cluster is p2s'+integers; the term p(p —1)8'/2n in
Eq. (3), originated from the extra angular momentum bar-
rier between particles, ' plays an essential role in recovering
the spin-statistics connection for the clusters.

One can also obtain the results (2) and (3) in the effec-
tive Lagrangian formulation for 8 statistics, 4 ~ in which wave
functions are single valued in r &'s, but a topological term

SPIN AND STATISTICS OF A CLUSTER

Consider a two-dimensional system of indistinguishable
particles which have, a charge e", spin s" and obey the frac-
tional statistics with parameter O'. It can be described by a
multivalued wave function'

8=p28 (2)

To consider the spin (i.e., the total angular momentum)
of the cluster, we rotate it through an angle 2m about the
center of mass r 0. It is easy to see that the 2m rotation
leaves 4 invariant, but gives a factor exp(2i8) for each of
the p(p —1)/2 pairs in the cluster. It also gives a factor
exp(2sris') for each particle because of their spins. So the

together with normal interactions in Hamiltonian. Here, 4
is single valued and totally symmetric for r ~. . . . . r ~ all
different; @tt is the azimuthal angle of r t

—r, , and X, is
the spin part of the wave function.

Let us first consider the statistics of a cluster of p parti-
cles. Suppose there are two such clusters, and their own
sizes can be neglected compared to their separation. The
exchange of the two clusters (with no change of internal
states) leads, according to the wave function (1), to a
phase-factor exp(ip28') So the 8. parameter describing the
statistics of the cluster is

(4)

—ie'A( r 1)exp —i exp8
Bft

ie"A( r t)

where

A=(~)B && r +gradA( r ), pl=tan '[(yt yo)/(xt —xo)]—
Now it is under 2m rotation by this operator that 4 is in-
variant. One obtains the same conclusions as before.

Equation (2) has some importance for the discussion of
the fractional quantum Hall effect. The Laughlin wave
function'6 at fillings v =1/p with p odd has been claimed to
have the following two properties. (1) The 8 parameter for

is added to the Lagrangian. Under a 2m rotation, this term
contributes a phase factor exp[ —ip(p —1)8"] to the path
integral. So the total angular momentum of the cluster re-
ceives an extra contribution p(p —l)8'/2n in addition to
the usual sum of spins ps', and the sum of ordinary orbital
angular momenta which is always integral.

For the fractional quantum Hall effect, it is the fractional-
ly charged quasiparticles which supposedly obey fractional
statistics. In this case there is a uniform magnetic field B
perpendicular to the plane. We assume that interactions
between the electrons have axial symmetry and the one-
body potential is uniform, at least locally. Then the physical
system still has rotational symmetry with the gauge-
modified rotation operator
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quasiparticles is 1/p (2) Creating p quasiparticles at the
same point is equivalent to adding an electron. ' From Eq.
(2) one can easily see that for even p it is impossible to
write down a wave function that satisfies both conditions,
while for charged bosons p must be even, as Halperin7 has
observed. Thus, the physical reason for the nonexistence of'

fractional quantization with even denominator may be rath-
er deep. An attempt is made in Ref. 9 to use this to explain
the origin of the experimentally observed odd-denominator
rule. However, it would seem to be easy to modify the
many quasiparticle wave function in such a way that 1/p2
rather than 1/p is the value of 8'.

INVARIANT CHARACTERIZATION OF 8 STATISTICS

As emphasized before, ' there are different ways to for-
mulate 8 statistics. One can use either wave functions hav-
ing a multivalued phase together with normal interactions,
or the usual totally symmetric (or antisymmetric) wave
functions which are single valued in r s with Bohm-
Aharonov-type interactions among the particles. In the
former formulation, 8 appears in the multivalued phase,
while in the latter 8 appears as a coupling constant in the
Bohm-Aharonov-type terms. More generally, if one likes,
one can even use a kind of mixed description" in which
both the wave function has a multivalued phase and the
Bohm-Aharonov-type interactions appear in the Hamiltoni-
an. The physical 8 parameter is then the sum of Hph ln
the multivalued phase and 8;„t in the Hamiltonian. There-
fore, we stress that one cannot make a judgement about
quantum statistics merely from the form of permutation
symmetry of the wave functions as we used to do in three-
dimensional cases. Because of this situation, an invariant
characterization of statistics (or the physical 8 parameter) is
in demand.

These various descriptions differ from each other only by
"phase gauge transformations" on wave functions. So what
we need is, in some sense, a "gauge-invariant" characteri-
zation of 8 statistics. Recall that the configuration space of
n indistinguishable particles C„ is the set of points
f r i, . . . , r „jfor all r & different and modulo the action of
the permutation group, S„, of particle indices. The wave
functions of the system are cross sections of a complex line
bundle on the base space C„with U(1), the group of phase
transforrnations as structure group. '8 We point out that the
quantum of the particles can be described in terms of topo-
logical information of the principal U(1) bundle associated
with this complex line bundle.

Suppose that the classical Hamiltonian is Ho( r;, p, ).
Then in the "regular gauge, " namely, in the above called
effective Lagrangian description, the phase of wave func-
tions is single valued on C„, and the Hamiltonian for parti-
cles obeying 8 statistics is Hp( r &, pi —A& ), where

are the "statistical" potentials describing the Bohm-
Aharonov-type interactions among particles. It is easy to
see that these potentials are curl free. Using them we can
define a curl-free connection, A'"', on the principal U(1)
bundle mentioned above as follows. The n components of
the connection on the bundle, AP'" (i =1, . . . , n), corre-
sponding to the n coordinates ( r i, . . . , r „) of the base

C„, is taken to be

(A ""A P', . . . , A „'"')

This is to say, in this gauge the line integral of the "statisti-
cal connection" along a path y(t) in C„represented by
[ r i(t), . . . , r „(t)], by definition, is

stat + A stat .d r
( ) l

Thus, the principal U(1) bundle under consideration is a
flat one. Though A"" changes in other gauges, its holono-
my is a gauge invariant concept. Recall the integrals of A""
along all loops starting and ending at a fixed point in C„,
after exponentiation, form a subgroup U(1), called the
holonomy group of the connection. Since the statistical
connection is flat, its holonomy along a loop which is con-
tinuously deformable to a point is always the identity.
Therefore, the holonomy group gives us a mapping from
the first homotopy group, 7r, (C„), to U(1), i.e., a character
of n &( C„). We know that all the characters can be
parametrized by an angular parameter 8, ~ so the same is
true for the all possible holonomy groups of the flat bundle
of C„, as we can directly check from Eq. (6).

Thus, we have proved that the quantum statistics can also
be described in terms of the holonomy group on a flat U(1)
bundle on the configuration space of indistinguishable parti-
cles. When there are external electromagnetic fields, as in
the case of the quantum Hall effect, we have to subtract the
effects of the external potentials on the holonomy before
obtaining the flat statistical connection. So far these are
fancy words to describe what we have been familiar with.
However, it provides us a gauge-invariant way to determine
the physical 8 parameter describing statistics. In fact, one
needs to consider only the simplest loop in C„, which corre-
sponds to exchanging two of the particles along a loop with
no other particles inside, and compute the holonomy along
it. In this regard we mention that the Berry phase' in the
adiabatic theorem is also a holonomy on the principal U(1)
bundle on the parameter space of the Hamiltonian. 'In
Ref. 8, the Berry phase is used to determine the statistics of
quasiparticles in the fractional quantum Hall effect from the
Laughlin wave functions.

THE EFFECT OF SPACE TOPOLOGY ON STATISTICS

In this section we shall examine a novel feature of the
path-integral formalism of quantum statistics5 that the topol-
ogy of space can have significant effects on statistics for par-
ticles moving in it. The general formulation given in Ref. 5
holds good for any space I The configuration space of n
indistinguishable particles in M is instead

C„=(M x M x . M D)/S„—
The statistics of the particles is still determined by the char-
acters of the first homotopy group of C„, which is again iso-
morphic to a braid group. But now it is the braid group on
M, denoted by B„(M), which can be defined in the same
way as in the R case. For two-spaces of different topology,
the braid group is different and so is the set of its charac-
ters. Therefore, it would be interesting to see how the to-
pology of the two-space affects the statistics of particles
moving in it. This problem is not so academic as it might
look at the first glance. For two-dimensional systems with



REMARKS ON FRACTIONAL STATISTICS 1193

different geometry or topology could perhaps be experimen-
tally accessible, and in the literature there have been
theoretical discussions of the fractional quantum Hall effect
for systems having various geometry and topology. '

As an example, let us consider the case ' in which M =S
(2 sphere). Since locally one cannot distinguish between S~

and R', the braid group B„(S~)has the same generators, o &

(i =1,2, . . . , n —1), as the braid group B„(R') does Bu.t,
becuase of their global difference, for B„(S~) there is one
rriore relation among the generators in addition to those for
B„(R~). Recall that o, represents the exchange of the 1th
and the (i+1)th particles along a counterclockwise loop
without other particles inside. It is easy to verify the rela-
tion

for B„(S') Fo.r the effect of the left side is equivalent to
move only the first particle around a big loop enclosing all
other particles, and on S2 this big loop is contractible to a
point. It can be proved that there is no more relation
among the generators o-&'s." Therefore, the characters have
to satisfy only one more similar constraint with o-; replaced
by the character Y(a,). From B„(R') we already have
X(o&) =exp( —i()) Not a. ll characters of B„(R~) satisfy the
new constraint, so the topology of S2 restricts the possible

values of the 8 parameter to be

8= (m =0, 1, . . . , 2n —3)
(n —1) (9)
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'Note the n dependence of the possible 8 values. This n
dependence could be observed, if somehow, only when the
total number of particles of a particular kind on the sphere
is very small. When n is very large, the set of possible
values in Eq. (9) is dense everywhere in the interval [0, 2n. )
so that the difference between S and R is physically unob-
servable.

The above discussion can apply to any continuum space.
The generators of the braid group are always the same as
those of B„(R'), but the nontrivial topology will lead to ad-
ditional relations among the generators. Hence, the effect
of nontrivial space topology is to restrict the possible 8
values for the statistics to be a subset of the allowed values
in R', i.e., a subset of [0,2m). However, when the particle
number is very large, this effect is expected to be physically
unobservable.
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