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For any arbitrary external-field direction, three distinct muon-spin relaxation functions can be de-
fined; that is, there is a longitudinal relaxation function in the direction of the external field and two
transverse relaxation functions in the plane perpendicular to the field direction. One of these latter
functions, termed the coplanar transverse relaxation function, lies in the plane defined by the field
and the incoming moon-spin polarization, while the other, termed the perpendicular transverse re-
laxation function, is perpendicular to both the field direction and the incoming spin polarization.
All three relaxation functions can be measured simultaneously if the applied external field is not in
either of the standard geometries, namely longitudinal or transverse. This suggests that a skewed-
field arrangement provides an experimental technique in which the traditional relaxation functions
for a given sample may be determined in a single experiment with the use of one apparatus. Thus,
at the very least, such an experimental alignment eliminates the down time required when changing
from one geometry to the other in the determination of the relaxation functions for a given sample.
With the use of the static Kubo-Toyabe theory as an illustrative example, explicit expressions for
these relaxation functions are obtained in terms of a pair of one-dimensional integrals. In particular,
an alternate, but equal, expression for the standard longitudinal Kubo-Toyabe relaxation function is
obtained. An analytic expression for the coplanar transverse Kubo-Toyabe relaxation function is
presented which agrees with the numerical results derived by Kubo, while an analytic expression for
the new perpendicular transverse Kubo-Toyabe relaxation function is given.

INTRODUCTION

Muon-spin-rotation (pSR) experiments in condensed
rnatter' probe the local magnetic environment experi-
enced when spin-polarized positive muons thermalize in
diamagnetic or paramagnetic states. That is, the dynarn-
ics of the spin polarization of an ensemble of muons is
followed by observing the decay positrons that are emitted
preferentially along the muon s spin direction. Histo-
grams of these ensembles are fitted to a function of the
orm

1V(r) =Noexp( —FIT&)[ 1 +6 (t)]+Bo
where r& ——2.2 psec is the muon's lifetime, Ko is a nor-
malization constant, Bo is a background constant, and
G(t) is the relaxation function. The experimental relaxa-
tion functions are related to theories for the spin dynam-
ics of a single muon. Experiments are performed using
two standard' geometries, namely longitudinal and
transverse. In the longitudinal case, the incoming muon-
spin polarization and the applied external magnetic field
are collinear, while counters are placed normal to this
direction. Gn the other hand, for the transverse case, the
incoming polarization and the magnetic field are perpen-
dicular, while counters are placed in the plane perpendicu-
lar to the field. Experiments with the same sample but
different geometries are carried out separately. Indeed,
there often are two completely different experimental ap-
paratuses for the different geometries. On the other hand,
if one apparatus is used, alterations are required to change
the field direction. In both situations measurement of the

longitudinal and transverse relaxation functions for the
same sample requires a down time in which the apparatus
is either changed or modified.

The purpose of the present paper is to point out that
longitudinal and transverse experiments can be carried out
simultaneously. Such a simultaneous measurement is pos-
sible using a skewed-field technique wherein the direction
of the magnetic field and the incoming polarization are at
an arbitrary angle to each other. At the very least there
are two advantages to such a technique, namely that a sin-
gle experimental apparatus is required and that no down
time is needed for obtaining the longitudinal and trans-
verse relaxation. functions for a given sample. Indeed, the
advent of spin rotators, ' with which the muon's spin
may be rotated with respect to its momentum, makes the
single-apparatus experiment very attractive. Thus, given
the appropriate apparatus, whether the skewed-field tech-
nique or one of the traditional alignments is used is then a
matter of priorities determined by the particular experi-
ment. For such an apparatus the counters define the labo-
ratory reference frame, that is, an orthonormal coordinate
system X, Y,Z with counters placed normal to these direc-
tions (in both the positive and negative sense). There are
two other directions associated with this experiment,
namely the external magnetic field direction and the
direction of the incoming muon-spin polarization. These
directions are associated with the muon's spin dynamics.
They and the plane defined by them can be related to the
laboratory frame. Indeed, this plane defines two ortho-
normal directions with the third spatial direction being
perpendicular to it. Thus measurements of the muon po-
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larization in a general coordinate system can be expressed
in terms of these dynamical directions. Here, in particu-
lar, the external magnetic field is taken to lie along the Z
direction, while the incoming muon-spin polarization is
assumed to lie in the XZ plane. When the magnitude of
the external field is allowed to approach zero, the Z direc-
tion is still a well-defined quantity.

To illustrate that longitudinal and transverse experi-
ments can be conducted simultaneously, three distinct re-
laxation functions associated with the dynamics of a di-
amagnetic muon are evaluated using standard static
Kubo- Toyabe theory. ' This model for the spin
dynamics of a diamagnetic muon assumes that the effects
of the environment on a thermalized static (nondiffusing)
muon are well characterized by a classical random isotro-
pic local magnetic field. That is, a statistical average of
the dynamics associated with an isolated muon is taken
using an isotropic distribution of classical local random
fields about the given external magnetic field. The result
is an expectation value for the spin polarization of a muon
wherein the components in the appropriate directions are
called relaxation functions. Analytic expressions ' [see,
for example, Eq. (A9)] for the longitudinal geometry us-
ing either a Gaussian or a Lorentzian random local field
constitute the standard model, while numerical results
for one of the transverse relaxation functions have also
been given. Here, for a Gaussian field distribution, an al-
ternate analytic expression for the longitudinal static
Kubo-Toyabe relaxation function is derived, while analyt-
ic expressions for the two transverse static Kubo-Toyabe
relaxation functions are presented. In particular, each of
these relaxation functions is written as a sum of three
terms. That is, there is a static term and two time-
dependent terms. The static term is due to the component
of the incoming spin polarization along the appropriate
direction, while the time-dependent terms are products of
relaxation functions with either the cosine or sine of the
product of the time and the diamagnetic Larmor frequen-
cy (co&). Such a resolution of the full longitudinal, copla-
nar, and perpendicular transverse relaxation functions is
more akin to the isolated dynamics than the previous re-
sults. Thus it is hoped that these new expressions are
more illustrative of the physics. In addition, it is to be
emphasized that all three Kubo-Toyabe relaxation func-
tions can be observed simultaneously if the incoming po-
larization and the external field are neither parallel nor
perpendicular.

For a skewed-magnetic-field technique the relaxation
function in the direction of the external magnetic field is
the product of the usual longitudinal relaxation function
and the component, cos(8;„), of the muon-spin polariza-
tion in this direction. Here, 0;„ is the angle between the
external field and the incoming polarization, the skew an-
gle. Thus, for zero external fields, this longitudinal relax-
ation function reduces to the product of cos(8;„) and the
standard zero-field Kubo-Toyabe relaxation function,
while for high longitudinal fields it becomes simply
cos(8;„). Furthermore, it is possible to simultaneously ob-
serve two other relaxation functions which lie in the plane
perpendicular to the external field. One of these lies in
the plane defined by the external field and the incoming

muon polarization. Thus it is termed the coplanar trans-
verse relaxation function and it is the product of sin(8;„)
and a transverse relaxation function. For zero fields this
coplanar transverse relaxation function reduces to the
product of sin(8;„) with the zero-field Kubo-Toyabe relax-
ation function, while for high fields it becomes the prod-
uct of sin(8;„) with a Gaussian damping function and
cos(a&&t) T.his transverse function has a nonzero signal
for low fields since it contains a component of the initial
polarization. On the other hand, the perpendicular trans-
verse relaxation function, which is also the product of
sin(8;„) and another transverse relaxation function,
reduces to zero for low fields and is the product of sin(8;„)
with a Gaussian damping function and sin(cezt) for high
fields. This perpendicular transverse relaxation function
is zero for low fields since it does not contain any of the
initial polarization. Finally, for high fields, the transverse
motion becomes a rotation about the external magnetic
field with a Gaussian damping due to the random local
magnetic field.

The polarization dynamics of a spin- —, particle in a
magnetic field are reviewed in Sec. II, while in Sec. III
Kubo-Toyabe theory is presented for an arbitrary magnet-
ic field direction. Gaussian relaxation functions are ob-
tained in Sec. IV.

II. MUON-SPIN DYNAMICS IN A FIELD
For a diamagnetic muon in a magnetic field with mag-

nitude B and direction 8, the Zeeman spin-Hamiltonian
operator, H,~=( ——,fez)B.P,~, involves the spin polari-
zation of the muon, P,~=(2/iri) I,z and the muon Larmor
frequency co& y&B, where ——y„=0.0136 MHz/G
(y&

——2myz) is the muon's gyromagnetic ratio. The time
dependence of the expectation value of the polarization of
an isolated muon is described by the Heisenberg equa-
tion, "

d(P,p)(t) /dt=((i/iri)[H, p, P,p])(t)

co~@:B(P—,p) =F0~8 X (P,p), (2.1)

where e is the Levi-Civita, "' third. -rank antisymmetric
tensor. The dot-product convention, F:G=I,J GJ, , has
been adopted here. There is no difference between quantal
and classical motion for this spin- —, particle. " Quantum
mechanics only enters in the discrete magnitude of the
spin. The resulting motion of the normalized muon-spin
polarization,

(P, ) (t)=(P, )(t)/~ (P, )(0)
~

=G(t) &;, (2.2)

involves the initial polarization of the muon,
(P,~) (0)=P;„, and a second-rank motion tensor,

G( t) =exp( co„to B)—
=U+ (U BB)[cos(co&t) —1] eB sin(co&, —t)—,

(2.3)

which describes the classical or quantal rotation dynamics
of a spin- —, particle in a magnetic field B. Normalized
polarizations are considered here since it is in this form
that experimental relaxation functions are written. - Using
Eq. (2.3), the normalized muon-spin polarization becomes
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( P,p)&(t) = [BB+(U B—B)cos(co„t) e—B sin(cozt)] P;„

=B(BP;„)+[P;„B(—B.P;„)]cos(y„Bt)+BXP;„sin(y&Bt)

=8 cos8+sin8[n cos(y„Bt)+m sin(y&Bt)] . (2.4)

The last form of Eq. (2.4) involves three contributions.
One of these, in the direction of the magnetic field 8, is
the longitudinal term, namely the component of the in-
coming polarization in the field direction, cosO=P;„.B,
which is independent of the time. The other two are the
transverse terms which lie in the plane perpendicular to
the magnetic field. One is in the plane defined by B and

P;„, that is, along the direction

t

This may be written as a sum of three terms when Eq.
(2.4) is used. Since there is only one direction (8,„)asso-
ciated with this Kubo-Toyabe dynamics, the second-rank
motion tensor can then only involve the isotropic unit ten-

sor U, the dyadic 8,„8,„, and the combination of 8,„
with the Levi-Civita antisymmetric tensor, e B„. In par-
ticular, the first term in Eq. (2.4) gives rise to a static con-
tribution to the dynamics, namely

n =(P;„—8 cos8)/sin8 .

Thus it is the coplanar transverse component. The other,
in the direction m =B&(P;„/sinO, is perpendicular to both
the magnetic field and the incoming polarization and,
thus, is the perpendicular transverse component. This
transverse motion is, of course, the usual rotation of the
spin about the magnetic field axis with frequency y&B.
The magnitude of these terms is the component of the in-
coming polarization, sinO, which is perpendicular to the
magnetic field. On the other hand, the terms in the B,P;„
plane may also be resolved along the direction of the in-

coming polarization and along the component of B per-

pendicular to P;„. However, the dynamics of the isolated
muon contains three functionalities of the time, namely a
static term, a cos(y&Bt) term, and a sin(y&Bt) term. Be-
cause of this general behavior, the Kubo-Toyabe relaxa-
tion functions obtained for the Gaussian local random
field are also resolved in terms of a static contribution, a
cos(y„B,„t) contribution and a sin(y„B,„t) contribution,
where B„is the magnitude of the external field.

III. KUBO-TOYABE THEORY

The above dynamics represents the motion of an isolat-
ed muon in a magnetic field B. However, when a muon
thermalizes in condensed matter, the effects of the envi-
ronment on the muon's spin polarization must be taken
into account. One model for the effects of the environ-
ment is static Kubo-Toyabe theory, ' where a non-
diffusing muon is assumed to be at a site which contains
an isotropic classical random local magnetic field. That
is, the muon experiences a classical distribution of local
fields around the given external magnetic field. The ex-
pectation value of the muon s spin polarization is then as-
sumed to be an average over this field distribution of the
isolated dynamics given by Eq. (2.4), that is

(P,p)~ (t)= J dBf(B—B,„)(P,p)~(t)

I, (8,„)= f d 8f(8—B „)88

= —,A i (8,„)(U—8„8,„)+C i (B,„)B,„B,„,
Ci (8,„)=B,„B,„:f dBf(8—B,„)BB, (3.3)

A i (8,„)=U: f d Bf(8—B,„)BB C, (8,„)=—1 —Ci (8,„) .

On the other hand, the second and third terms can be
written as

I2 (t;B,„)=2 A2(t&B,„)(U—B,„B,„)+Cz(t;8,„)8,„8,„,

I 3 (t;8,„)=C3(t;8,„)e.B,„

C3(t;8,„)=8,„ f dBf (8—B,„)8sin(y„Bt),

respectively. The Kubo- Toyabe motion tensor,

GKr(r;B,„)=B,„B,„GL (r;B,„)

(3.5)

+«—Be.Bex)Gcr (r,'Bex)

F.'B Gtr (t;8,„—), (3.6)

may then be expressed in terms of the second-rank ten-
++

sors, 8,„8,„, U B,„B,„, and e.B—,„, whose coefficients
are the standard longitudinal (L) relaxation function,

GL (t;8,„)=C)(B,„)+C2(t;8,„)

C2(t;8,„)=B,„B,„:JdBf (B—B,„)(U—88)cos(y&Bt),

(3.4)

A2(t;B,„)=2J dBf(8 B,„)c os(y„—Bt) C2(t;8,„)—,
and

=G ~~( Br,„).P;„,
where the Kubo-Toyabe motion tensor is

G "r(r;8,„)=J daf(8 —H,„)G(t)= g I," (r;8,„) .

(3.1)

(3.2)

=8,„8,„:J dBf(B—B,„)

)& [88+(U BB)cos(y&Bt)], —

the coplanar transverse (CT) relaxation function,

(3.7)



31 SKEWED-FIELD TECHNIQUE IN MUON-SPIN ROTATION:

Gc~r(t'»e }———,
' [3&(8,„)+A&(t;8,„)]

, 8—,„8,„:f dBf(B—B,„)[(U—88)+(V+88)cos(y„Bt)],
and the perpendicular transverse (PT) relaxation function,

G»(t;B,„)=C,(t;8,„) .

Thus the normalized Kubo- Toyabe polarization,

(Pop)x (t) =B,„(B,„.P;„)GL (t;8,„)+[P;„—8,„(B,„Pi~)]Gcr (t;8,„)+B,„&&P;„GV(t;8,„)

=B,„G t (t;8,„)+n,„Gg(t;8,„)+m,„Gpp(t;8, „),

(3.8)

(3.9)

(3.10}

involves the orthonormal coordinate system,

8,„,r~,„=(P;„—B,„cos8;„)/sin8;„,

longitudinal relaxation function can be written in a form,

GL (t;8,„)=GL(b)+cos(bs)GL(s;b)+sin(bs)GL(s;b)/b,

(4.2)

G P(t;8,„)=sine;„Gg(t;8,„),
G P(t;8,„)=sine;„GP(t;8,„),

(3.11)

which are observable if counters are placed normal to the
coordinates B,„, n,„, and m,„, that is, if the dynamical
and counter geometries are the same. Equation (3.10)
holds for any isotropic classical random local magnetic
field. In such a counter-defined geometry, the direction
associated with the external field is well defined whether
or not an external magnetic field is applied. In addition,
longitudinal and transverse experiments can be performed
simultaneously. However, the amplitudes of the signals
will be reduced by the cos(0;„) or sin(8;„), respectively.
Taking Ojg 45 will reduce both signals by the same
amount, namely 0.7071. This reduction in the signal am-
plitude is offset by the fact that all three relaxation func-
tions are obtained from one experiment.

IV. GAUSSIAN RELAXATION FUNCTIONS

In standard Kubo- Toyabe theory, ' the isotropic
local-field distribution is taken to be either a Gaussian or
a Lorentzian about the external field. Here, only the
gaussian distribution is considered, namely

m,„=B,„&(P;„/sinO;„

(where B,„P;„=cose;„,0&8;„&n); cf. E. q. (2.4). This
coordinate system, n,„,m,„,B,„, can be associated with
the laboratory system I,Y,Z, which is defined by the
counter geometry. Equation (3.10) contains three relaxa-
tion functions,

GL (t;8,„}=cos8;„GL (t;8,„),

GL(b) = 1 [b F(b)]/—b— (4.3)
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which emphasizes its oscillatory nature and its relation to
the isolated dynamics given by Eq. (2.4). That is, it con-
tains all three general dynamical time dependences. There
is a static term since there is a component of the incoming
polarization in the B,„direction, and there are cosine and
sine terms since there are components of the random local
field in the n,„and m,„directions. These latter trans-
verse components give rise to the time dependence. Here,
b =8,„/~&BO is the reduced external field and
s =W280y&t is the reduced time. In particular, for
random-field spreads of a few gauss, this reduced time is
of the order of microseconds. Equation (4.2) is an alter-
nate, but equal, expression for the standard longitudinal
Kubo-Toyabe relaxation function; see Eq. (A9). The stat-
ic term,

f (B)=(2mBO) / exp( 8 /280) . — (4.1) 0.0
0.0 1.0 2.0 3.0 4.0 5.0 6.0

The three relaxation functions are now evaluated for this
choice of the random local field. It is to be noted that the
muon experiences a magnetic field which is the sum of
the external field and the local random field.

A. Longitudinal relaxation function

When the integrals in Eq. (3.7) are performed using this
Gaussian distribution function [see Eqs. (Al) —(A8)], the

TIME

FIG. 1. Longitudinal cosine relaxation function. The re-
duced external magnetic fields b, for which these curves are
evaluated, are 0.1 for the upper curve, 1.0 for the middle curve,
and 4.0 for the lower curve. These values for the reduced exter-
nal field are used in the subsequent figures. The relaxation
functions and the times in this and subsequent figures are di-
m ensionless.
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FICE. 2. Longitudinal sine relaxation function. The values of-
the reduced external fields increase from 0.1 through 1.0 to 4.0
from the lower to upper curves.

00 I I I I I

0.0 1.0 2.0 3.0 4.0 5.0 6.0

TIME

FIG. 3. Standard longitudinal Kubo- Toyabe relaxation func-
tion. Again, the values of the reduced external field increase
from the lower to the upper curves. These are the standard
longitudinal Kubo-Toyabe relaxation functions (Refs. 7—10)
evaluated using Eq. (4.2).

involves Dawson's integral, '

F(b)=exp( b) f d—y exp(y ), (4 4)

which, for small b, reduces to b —2b /3. It is this term
which is responsible for the recovery to one-third for zero
fields. On the other hand, for large reduced external
fields this static contribution approaches unity. The
cos(bs). term involves a longitudinal cosine relaxation
function.

reduced external fields.
In the limit of zero external field the longitudinal relax-

ation function, Eq. (4.2), reduces to the standard zero-field
Kubo-Toyabe result, ' namely

GL (t;B,„)=—,
' + —,(1—2s )exp( —s /4) when b =0 .

GL(s;b) =b exp( —s /4)[1 —60 (s;b)] (4.5)

(see Fig. 1), where
1

Go (s;b) = f dx cos(bsx)exp[ bx (2—x)]— (4.6)

is a function common to all three Kubo-Toyabe relaxation
functions. This latter function reduces to

GL(s;b) = —exp( —s /4)60(s;b) (4.7)

(see Fig. 2), where
1

Go(s;b) =b ' f dk sin(bsx)exp[ bx (2—x)]—(4.&)

is the other one-dimensional integral that is also common
to all three Kubo-Toyabe relaxation functions. For small
b this latter function approaches —,s, while the longitudi-
nal sine relaxation function becomes ——,s exp( —s /4).
The sine relaxation function also decays to zero for large

1 —(2+ , s )b /3—
for small reduced external fields. Thus the longitudinal
cosine relaxation function reduces to

exp( —s /4)(2+ —,'s )/3

for small external fields. On the other hand, this cosine
function decays to zero for large reduced external fields.
Equation (4.2) also involves the other general time depen-
dence, namely sin(bs), with a longitudinal sine relaxation
function

All three terms in Eq. (4.2) contribute to this result. The
longitudinal relaxation function is plotted for various
values of the reduced external field in Fig. 3. For large
fields, since both the sine and cosine relaxation functions
approach zero, the longitudinal Kubo-Toyabe relaxation
function approaches 1, as does the static contribution to
it. When measured in the skewed coordinate frame de-

A. A W A
fined by the counter geometry X, F,Z ( n «, m,„,B,„), the
longitudinal Kubo- Toyabe relaxation function
6z+r(t;B,„), Eq. (3.11), is the product of Eq. (4.2) and
cosO;„. Thus, while the overall signal is reduced by cos0;„,
the relaxation function remains the same.

B. Coplanar transverse relaxation function

%fath the skewed coordinate frame it is also possible to
simultaneously measure the two transverse relaxation
functions. The first to be considered is the coplanar
transverse relaxation function which lies in the plane of
the external field and the incoming muon polarization,
that is, in the n,„(X)direction. Again, using Eq. (4.1) in
Eq. (3.8) [see Eq. (A10)], this coplanar transverse relaxa-
tion function,

Gcr (t;B,„)= G~(b)+cos(bs)Gcr(s;b)

+sin(bs)Gcr(s;b)/b, (4.10)

can also be written in terms of all three time functionali-
ties of the isolated motion; see Eq. (2.4). Since there is a
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COPLANAR TRANSVERSE COMPONENT
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FIG. 4. Coplanar transverse cosine relaxation function. The
values of the reduced external field increase from the lower to
upper curve.

component of the incoming polarization in the n,„direc-
tion, then there is a static terrp, namely

—1.0 I I I I I

0.0 1.0 2.0 3.0 4.0 5.0 6.0

TIME

FIG. 6. Coplanar transverse Kubo-Toyabe relaxation func-
tion. For large times the reduced fields decrease from the lower
to upper curves. The 0.1 reduced-field curve is essentially the
standard zero-field Kubo- Toyabe relaxation function (Refs.
7—10).

(4.11)
dependence, namely

Gcr(b) = ,' b [b ——F(b)].
Gcr(t;B,„)-exp( s /4)c—os(bs) as b~ ~ . (4.14)

This function approaches one-third for small reduced
external fields and zero for large reduced external fields.
There is a cos(bs) term,

Gcr(s;b)= , b exp( ——s /4)[2b —1+Go(s;b)]

(see Fig. 4), and a sin(bs) term,

Gcr(s;b) = —,
'

exp( —s /4)[GO(s;b) —s]

(4.12)

(4.13)

(see Fig. 5), due to the external magnetic field.
The full coplanar transverse relaxation function is plot-

ted for various values of the external reduced field in Fig.
6. It agrees with the numerical results of Kubo. For
small reduced fields this relaxation function reduces to the
standard zero-field Kubo-Toyabe result, Eq. (4.9), while
for large fields it has a Gaussian-damped cosine time

C. Perpendicular transverse relaxation function

The other transverse Kubo-Toyabe relaxation function
lies in, the I,„(Y) direction, that is, in the direction per-
pendicular to the plane defined by the external field and

When measured in the skewed coordinate frame the copla-
nar transverse Kubo- Tobaye relaxation function
G g(t;B,„), Eq. (3.11), is the product of Eq. (4.10) and
sinO;„. Thus, while the overall signal is reduced by sinO;„,
this transverse relaxation function varies from the stan-
dard zero-field Kubo-Toyabe function to the expected
high-field transverse behavior, namely a Gaussian-
damped cosine time dependence.
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FIG. 5. Coplanar transverse sine relaxation function. The re-
duced field decreases from the lower to upper curve.

—05 —— I I I [ I

0.0 1.0 2.0 3.0 4.0 5.0 6.0

TIME

FIG. 7. Perpendicular transverse cosine relaxation function.
The lower curve has b =0.1, while the upper curve has b =4.0
and the rniddle curve has b = 1.0.
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the incoming muon-spin polarization. This perpendicular
transverse relaxation function can be written as

Gpy (t '8 ) =cos(bs)Gp~(s;b)Ib +sin(bs)6py(s;b) jb

(4.15)

[see Eq. (All)]. It has no static component since there is
no component of the incoming polarization in the m,„
direction. The cosine and sine terms have the following
relaxation functions:

6 ~(pbs) = —,s exp( —s /4)[1 —26O (s;b)] (4.16)

Gpr(s; b) =exp( —s l4) I —, +b [1—s60(s;b)] I, (4.17)

respectively. Reduced external field dependences of these

PERPENDICULAR TRANSVERSE COMPONENT
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FIG. 9. Perpendicular transverse Kubo-Toyabe relaxation
function. For b =0.1 the perpendicular transverse relaxation
function is essentially zero. The curve whose first maximum
appears at about unit time has b =1.0, while the highly oscillat-
ing damped curve has b =4.0.
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FIG. 8. Perpendicular transverse sine relaxation function.
The values of the reduced field increase from the lower to upper
curves. The value of the sine relaxation function for b =4.0 at
zero time is 16.5

functions are plotted in Figs. 7 and 8, while plots of the
full perpendicular transverse relaxation function appear in
Fig. 9. This full relaxation function reduces to zero for
small fields and to a Gaussian-damped sine for high
fields, namely

Gpr (t;B,„)-exp( —s l4)sin(bs) as b~ao . (4.18)

When measured in the skewed coordinate frame, the per-
pendicular transverse Kubo-Toyabe relaxation function
Gpss(t;8,

„), Eq. (3.11), is the product of Eq. (4.15) and
sinO;„. Thus the overall signal is reduced by sinO;„ in this
geometry. For large external fields the muon precesses
about B,„with the appropriate Larmor frequency. How-
ever, its magnitude is reduced by the Gaussian-damping
function. In low or intermediate external fields the pre-
cession about B„is modulated by the local random field.

V. DISCUSSION

6 (t; 8,„)=6 (8,„)+G (8,„)cos(y&B,„t)

+ G (B,„)sin(yqB,„t) (5.1)

[see Eqs. (4.2), (4.10), and (4.15)], emphasize the physics.
That is, they are combinations of appropriate isolated
dynamical time dependencies multiplied by relaxation
functions. For zero-field experiments with an arbitrary
skew angle, the longitudinal and coplanar transverse ob-
served relaxation functions will be cos8;„and sin9;„multi-
plied by the standard zero-field Kubo-Toyabe function,
respectively. The perpendicular transvei'se relaxation
function will be zero. For intermediate fields all three re-

The advent of spin rotators, ' with which the angle be-
tween the muon's spin. polarization and its momentum
can be varied, makes feasible the construction of a single
apparatus that is suitable (without modification) for both
longitudinal and transverse experiments. In such an ap-
paratus, counters would be placed normal to the laborato-
ry coordinates X, Y,Z with the external field aligned in the
Z direction and with the incoming muon-spin polariza-
tion in the XZ plane. Three relaxation functions are ob-
servable, namely the longitudinal relaxation function (nor-
mal to the Z direction), the coplanar transverse relaxation
function (normal to the X direction), and the perpendicu-
lar transverse relaxation function (normal to the Y direc-
tion). Traditional longitudinal experiments can be con-
ducted when the incoming polarization lies in the Z direc-
tion, while, in separate experiments, traditional transverse
experiments can be performed when this polarization lies
in the X direction. On the other hand, both the longitudi-
nal and transverse experiments can be performed sirnul-
taneously if the incoming polarization is set at an arbi-
trary angle in the XZ plane. Which of these alignments is
chosen will depend on the particular sample of interest
and on the information that is required.

To illustrate that the skewed-field alignment is of in-
terest, new alternate analytic expressions, but equivalent
to the standard literature formulas ' and numerical re-
sults, for the various relaxation functions, have been
presented within static isotropic Kubo- Toyabe theory.
These expressions, which are of the form
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laxation functions are different, while for high fields
(much greater than Bo) the longitudinal relaxation func-
tion repolarizes and the two transverse relaxation func-
tions are equal except for a simple phase shift of 90'.
Such a situation then provides either a rather stringent
test of isotropic static Kubo- Toyabe theory or a test of the
accuracy of the apparatus for samples that obey isotropic
static Kubo- Toyabe theory.
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APPENDIX

The static contribution to the longitudinal Kubo-Toyabe relaxation function, Eq (3..7), involves the function C&(8,„),
Eq. (3.3). Taking B,„as the z direction with cos8=8.8,„,this integral becomes

C~(8,„)=(2m80) f dB8 f d&sin8 f dPcos OexpI —[(8cos8 —8,„) +8 sin 8]/28O j

=(2/9 ~) f dxx exp[ —(1 x)b —] f dy exp( —y )(y+bx) (A 1)
where the variables have been changed to x =cos8 and y =8lv 28O bx. He—re, b =8,„/&280 is the reduced external
field. Now the range of the x integral is separated into positive and negative regions. In the latter region, x is replaced
by —x, while in the former, y is replaced by —y. The two integrals are summed so that the range of the y integral cov-
ers all space, that is,

C~(8,„)=(2/~m) f dxx exp[ —(1—x )b ] f dy exp( —y )(y bx)—
1= f dx exp[ —(1 x)b ]—x (1+2x b )=1 b[b ——F(b)], (A2)

(A3)

where F(b) is Dawson's integral, Eq. (4.4).
To obtain the time-dependent terms in the longitudinal relaxation function, the integral C2(t;8,„),Eq (3.4)., must be

evaluated. Following the procedure for C& (8,„),this integral becomes

C2(t;8,„)=(2rrBO) ~ f dB8 f d8sin8 f dg(1 —cos 0)cos(y&Bt)expI —[(8cos8 8,„) +8 si—n 9]/2BO j

=(2/v n)f dx. (1—x )exp[ —(1—x )b ] f dy exp( —y )(y bx) cos[—s(y bx)]-
=exp( —s /4) f dx exp[ —(1—x )b ](1—x )Icos(sbx)[(1 —,'s )+2b —x ] 2sbxsi—n(sbx)j

=b exp( —s /4)[(1 —, s )[b F (—s;b) F2(s;b)]+2—[b F (s;b) F4(s;b)]—2s[b Ff(s;b—) F3(s;b)]j,—

where s =~28oyzt is the reduced time. The last form of this integral involves a series of integrals of the type
b

F„(s;b)=exp( b) f dyy "e—xp(y )cos(sy)
b= —,

'
exp( b) f dyy—" 'cos(sy)[d exp(y )/dy]

,' b" 'cos(bs)+ —,
' sF„)(s; b) —,

'—(n—1)F„2—(s;b) (A4)

b
F„(s;b)=exp( b) f dyy "exp—(y )sin(sy)

21
b"-1 ls(nb) s—21SFc l(s;b) —

2 (n —1)F„' 2(s;b) .

Making use of these definitions, Eq. (A3) becomes

C2(t;8,„)=b exp( s l4)[b cos(s—b) —Fo (s;b)] .

Furthermore, the integral Fo (s;b) can be expressed in terms of cos(bs) and sin(bs), that is,
C b

Fo(s;b)=exp( b) f dycos(sy)e—xp(y )
b

=exp( b) f dx cos[s (x——b)]exp[(x b)]-
=b cos(bs)GO (s;b)+b sin(bs)Go(s;b),

(A6)

(A7)

where Go(s;b) and Go(s;b) are the cosine and sine relaxation functions defined in Eqs. (4.6) and (4.8), respectively.
Thus the function C2(t;8,„)becomes
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C2(t;B,„)=b exp( —s /4) Icos(bs)[1 —Go (s;b)] b—sin(bs)Go(s;b)] I .

The standard longitudinal Kubo- Toyabe expression,

(AS)

S
GL (t;B,„)=1 b —[1—cos(bs)exp( —s /4)]+(2b )

' f ds~exp( —s&/4)sin(bs~), (A9)

can be derived from Eqs. (Al) and (A2) when the x integrals are performed before the y integrals.
To evaluate the coplanar transverse relaxation function, Eq. (3.8), the function A2(t;B,„), Eq. (3.4), is required. As

with the previous integrals, this function can be written as

32(t;B,„)+C2(t;B,„)=2(2mB&) ~ f dBB f d8sin8 f dP cos(y&Bt)expI —[(Bcos8 —B,„) +B sin 8]/2B0I

=2b 'exp( —s /4)[(1 —zs )Fo(s;b) —2sF~(s;b)+2F2(s;b)]

=2b 'exp( s /4)[b—cos(bs) ——,'s sin(bs)] . (A10)

Finally, the perpendicular transverse relaxation function, Eq. (3.9), requires the C3(t;B,„)integral, Eq. (3.5), namely

C3(t;B,„)=(2mBo) f dBB f d8sin8 f dP cos8sin(yet)expI —[(Bcos8 B,„) +B—sin 8]/2Bo j

=b exp( —s /4)[(1 ——,'s )F&(s;b)+2sF2 (s;b)+2F3(s;b)]

=b exp( —s /4)Icos(bs)( —,bs)[1 —2Go(s;b)]+sin(bs)[b + —, sb Go(s;b—)]I . (Al 1)
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