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Excitation energies of multilevel tunneling states in the presence of large local strain fields:
A possible model for the glassy state
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The density of states, Po(E), of the elementary excitation energies E is obtained for a single two-
level and four-level tunneling state in the presence of a distribution Pi(gl of random local strain
fields ( and a fixed tunneling matrix element h. Whereas the two-level states have low-energy exci-
tations only when both 6 and g are small, the four-level (or six-level) states have very-low-energy ex-

citations, E ~ b, /g, even for large values of 5, provided the strain fields g are sufficiently large. We
thus obtain the unexpected result that the excitation energies become smaller with increasing local
strain fields for the multilevel states but not for the two-level states. For the case when

Pi(g)~ ~g'~
" for large g, the density of the low-energy excitations for the four-level states is

Po(E) ~E for E &&h. For k=2, Po(E) is a constant for low E for the four-level states. We
also show that for a number of physically interesting probability distributions of strain fields Po(E)
is approximately constant for the four-level states-but not for the two-level states. In particular we

find that the probability for low g is not relevant in determining the low-temperature thermodynam-

ic properties of the four-level (and six-level} states. The possible significance of our results to the
low-temperature thermodynamic properties of glasses is discussed.

I. INTRODUCTION

It has been suggested that the low-temperature proper-
ties of glasses, ' amorphous solids, and of certain im-
purities in alkali halides ' all arise from tunneling states.
For this reason, it is important to understand the nature
of the low-energy excitations from tunneling units. Re-
cently, the author considered the statistical mechanics of
pairs of two-level and four-level tunneling units which in-
teract via a potential J(r) of the form J(r)=+a/r",
where a is a constant and r is the distance between the
tunneling units. He obtained the density Po(E) of the
low-energy excitation energy E, the specific heat C( T) for
temperature T, and the thertnal conductivity «(T). The
calculation was limited to the physical situation in which
(a) the depth of each of the potential wells of any single
tunneling unit was equal and (b) where the pair interaction
alone was a good description of the physics of the prob-
lem (terms in the free energy only up to the second virial
coefficient were kept). The effective interaction A,J be-
tween the pairs of tunneling units was assumed to have
the form A,t. —— J(r)o';oJ. , wh—ere o'; and oj are the z
components of the Pauli spin matrices for the two-level
states and A,J. J(r)iJ, ; pz, where p——; a—nd pz are classi-
cal dipoles which may take values of p; =(p„,p~ )

=(+1,0) and (0, +1) for the four-level tunneling states.
It was found that for a fixed value of the tunneling matrix
element 6, the density Po(E) of the excitation energy E is,
Po(E)ccE' "'~" for E&&b„and that C(T)ccT"~ and
«(T) cc T' " '~". For n =3, we obtain that Po(E) is ap-
proximately constant for low E and that C(T) cc T and
«(T) ~ Tz for very low T, not unlike the results observed
for glassy systems. These results are interesting, particu-
larly since the strain-strain interaction calculated in a con-
tinuum model ' for pair of strain dipoles give n =3.

The purpose of this paper is to consider the low-energy
excitations from two-level and four-level (also six-level)
tunneling units in the presence of a large local strain field
which allows the distortion of the depth of the wells. In
previous work on two-level states such a distortion was
not allowed, for it resulted in an exponential decrease of
the specific heat from its linear dependence on T. The
strain interaction is assumed to be "volume conserving, "
in the sense that in two dimensions, an increased strain
energy associated with the strain dipole when it is oriented
in the x direction will result in a decreased strain energy
when it is oriented in the y direction. Our calculations
show a completely different behavior of the two-level tun-
neling units from those of the four-level units. Whereas,
the two-level tunneling units contribute to the low-energy
excitations only when both, the local strain field g and the
tunneling matrix element 6 are small, the four-level (and
six-level) tunneling units contribute to the low-energy ex-
citations for large local strain fields g, even for the case
when 6 is not too small. We find that the low-energy ex-
citation Ecch, /g for sufficiently large g, and the larger
the local strain field the smaller the excitation energy. We
therefore obtain the important result that the density of
low-energy excitations for the four-level (or six-level) tun-
neling units is determined by the probability for large lo-
cal strain fields.

The contents of this paper is as follows. We first derive
the relationship between the probability density Pi(g) of
the local strain fields g and the probability density Po(E)
of the excitation energies E. Next we obtain Po(E) for a
number of physically interesting distributions Pi (g).

Case 1. Pi(g) is a Lorentzian centered about go, with
width 5 and cutoff in the maximum local field g'M. For
this case, we obtain that Po(E) is approximately constant
for E «b and E & [(/M+43, )'~ —gtit])/2=2 . Po(E)
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=0 for E&A
Case 2. Pi(g) ~g /(g +5 ) . Again, Po(E) is approxi-

mately constant for A &E «b, .
Case 3. Pi(g) ~

~ g~ ". For this case we show that
Po(E) ~E for low E, thus for k =2, Po(E) =const.

Case 4. Gaussian distribution of strain fields. For this
case Po(E) is exponentially small for low values of E.

Case 5. Here, we consider the case where the local
strain field results from the interaction potential
J(r)=+a/r" with a single tunneling unit, where r is the
random distance between the tunneling units. For the
four-level (and six-level) states we obtain Po(E) cc T'
and the corresponding specific heat C(T) ac T"~3 and the
thermal conductivity a(T) ~ T' " '/". Thus, for n =3
(i.e., for 1/r interaction between the tunneling units),
which arises when the strain field is calculated in a con-
tinuum model, '9 we obtain Po(E)~E, C(T)~T and
Ir(T) ~ T . These results are not unlike those observed in
glasses.

Examining more closely cases 1—5 discussed above, we
find that a local field at the multilevel (but not two-level)
tunneling site which arises from an r potential gives a
constant density of states for low E, and deviations from
the r field gives deviations from the constant density of
states. These results suggest that the constant density of
states may arise from the strain fields which have an r
dependence.

Even though the predicted results for n =3 agree with
those observed in some glasses, we explicitly avoid a de-
tailed comparison of our work with experiments on the
thermodynamic properties of glasses at low temperatures.
One reason for this is that the nature of the tunneling
states and the realistic distribution of Pi(g) are not avail-
able for glasses at the present. We still believe, however,
that our results present an interesting microscopic model
for a constant density of excitation energies for asym-
metric potential wells, provided the tunneling units are
multilevel systems and have sufficiently large local strain
fields.

In Appendix A, we consider the Hamiltonian for a six-
level tunneling unit with a volume conserving traceless
strain tensor such that the sum of the strain energies in
the x, y, and z directions equal zero. The orientation of
the strain dipole p is assumed to be p=(p„,p~,p, )

=(+1,0,0), (0, +1,0), and (0,0, +1). We find that the
low-energy excitations of the six-level states are qualita-
tively similar to those of the four-level states.

and

F; = —P ',InI2cosh[P(g;+6;)' ]I, (2.2)

where P=(k~ T) ' with T representing the temperature.
We next consider the four-level state. For convenience

we let the potential minima of the four levels be of the
form shown in Fig. 1(a) and the four states of the system
are labeled by ~x), (

—x), )y), and
~

—y) as shown in
Fig. 1(b). The tunneling states are assumed to have an
electric dipole moment of magnitude p, and a strain di-
pole moment of magnitude p, . The vector electric dipole
moment is then p„

pe =pep

and the strain dipole moment p„
Ps =PsP ~

(2.3a)

(2.3b)

where the magnitude of IM is unity and p =(p„,p„). The
allowed values for p are assumed to be

p=(+1,0),(0, +1) . (2.4)

The longitudinal mean-field Hamiltonian H; arising
from a local strain field at site i is obtained in Appendix
B, with the result,

H = p.(I . Eo) —C(S Sy—)—2 2 (2.5)

where Eo is an externally applied electric field having x
and y as components E„and E~, respectively. &e note
that the strain field has the volume conserving term
—g;(p~ —p;~), i.e., a strain field decreases the energy in
the x direction and increases the energy in the y direction.

In the absence of strain interaction the four states of the
(FLT) unit are given by

~

+x ) and
~

+y ), with the opera-
tor equations,

V I+x&=+ 1+x& V I+y&=+ I+y& .

The transverse part of the Hamiltonian H is obtained
by connecting the

~

+x ) states with the
~
+y) states via

in the presence of a local strain field g; and a fixed tunnel-
ing matrix element 6;. We have,

I

l

(2.1)

II. DERIVATION OF THE DENSITY OF STATES

A. Hamiltonian for a single tunneling unit

The Hamiltonian and the free energy of a single four-
level tunneling unit at site i in the presence of a local
strain field g'; is now obtained. In Appendix A we obtain
the two lowest-energy levels for a set of six-level tunneling
units for which the low-energy excitation is qualitatively
very similar to those of the four-level states.

To compare with the results for the four-level tunneling
states (FLS), we first write down the Hamiltonian H; and
the free energy F; for the two-level tunneling states (TLS)

= IX&

FIG. l. (a} Shows the assumed potential minima for the
four-level tunneling unit. (b) Graphical representation of the
four states. These are conveniently labeled by

~
x), j

—x &,

~y&, and
~

—y&.
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the tunneling matrix element 6;. %e only allow 90 tun-
neling and neglect 180' tunneling from

I

—x & to
I
x & and

I

—y & to
I y & states. The total mea'n-field Hamiltonian

of a FLS at site i is

H; =S.(u .F ) C(—S ' I y—)

—~[(lx &+ I
—x &)(&y I+& —y I)+~«

where H, is the Hermitian conjugate of the previous term.
The Hamiltonian, Eq. (2.7), is conveniently written in

matrix form,

4

a; —b

C)
(2.8a)

where

a;= 0

0

0

(+E—' ' b.;
(2.8b)

-6

Cj— g;+Ey
-8

. 2+

Xp= —(g'+4m')'"

0

A,'=(g'+46, ')' '
The free energy F for X tunneling states is given by

(2.9a)

(2.9b)

(2.9c)

(2.9d)

F=—p 'gin(2I cosh(pg;)+cosh[p(g;+46;)' ]I )

(2.10a)

= —p 'g(lnI2 cosh[pE+'(i)] I +lnt 2cosh[pE (i)]I ),

(2.10b)

The eigenvalues A,„(v=1,4) of Eq. (2.8) in the absence
of an externally applied electric field are FICi. 2. Shows the four eigenvalues of the Hamiltonian, Eq.

(2.8), as a function of the local strain field g;.

is not small. Therefore, TLS contribute to the low-
temperature thermal properties of the system only when
both g and b, are small, whereas the major contribution to
the low-T properties of the FLS arises from large strain
fields. We, furthermore, show that several physically in-
teresting probability distributions give an approximately
constant density of states for the excitation energies for
the four-level (and six-level) states, but not for the two-
level states.

L

B. Calculation of density of states

We next relate the probability density, Pi(g'), of the lo-
cal strain fields to the density Pp(E) of the excitation en-
ergy E. Suppressing the subscript i, we have,

where

(g2+4g2)1/2+g
E+(i)=

2
(2.11)

Pp(E+ ) =P((g) d
dE+

Since

(2.12)

The four eigenvalues of the Hamiltonian as a function
of the local strain g; and for a fixed value of 6; is shown
in Fig. 2. We note that for positive g'; the gap, E (g;),
between the ground state and the first excited state is 2b,;
for g;=0, and E (g;) is monotonically decreasing and
approaching zero, E (g) ~ 5 /g, for large g. This result
shows a radical departure of the g dependence of the low-
energy excitations E for the two-level states given by Eq.
(2.2) and those of the four-level states given by Eq. (2.11).
Whereas in the former the excitation energy E is propor-
tional to (g;. +b.; )'~ and is small (compared to k~ T) only
when both g; and 5; are small, in the latter the excitation
energy E (g) is proportional to b;/g; (for positive g;)
and E (g) is small for sufficiently large g even when 6;

g=+(E+ —&')/E+,

Eq. (2.12) becomes

E2 ++2
Pp(E+ )=, Pi

+(E+ —& )

(2.13)

(2.14)

where Pp(E+) and Pp(E ) give the density of excitation
energies for the first and second terms of the free energy
given by Eq. (2.10b). The lowest excitation energies are
contributed by E (g) for positive g and by E+(g) for
negative g'.

We next calculate the density of states Pp(E) for several
interesting probability distributions for the local field g'.
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Case 1. Lorentzian distribution of fields. We consider
a Lorentzian distribution of strain fields g, centered about

gp and having a cutoff gM in the maximum field. Thus,
Xp5 gp

Pp(E+ )= 1+2
Q2

III &4
5

P(g) = 5 +(k—kp)

k&4r,
(2.15)

(3gp+ 3a' —5')
g2 Q

+

where

+p I tan [(0 4) /51+tan [(kM +gp)/5] I

=0, E &A, E+&3+ . (2.19)

/1+ = [(6s+4~')'"+4M ]/2

Using Eq. (2.15) in Eq. ( 2.14) gives

(2.17)

E
Np5

5 E+ + [+(E+ —& ) —gpE+ ]2 7

Pp(E+ ) = .
&E, A+ &E+

0, E &3, E+&A+ .
(2.18)

Graphs of Pp(E/b, ), are shown in Figs. 3 and 4. For a
typical near-neighbor strain interaction energy of the or-
der of 500 K, g~ is of the order of 2000 K. For values
of E & b, /gM, Pp(E+ ) =0.

For small values of E+ (i.e., E+ «b.) we obtain from
Eq. (2.18) for E &2 and E+ &/1+,

(2.16)

is the normalization constant for P& (g).
The cutoff in the maximum value of g will restrict the

maximum and minimum values of E+. Let

We thus obtain that Pp(E+ ) is approximately constant
for (E+/6) «1 and E &A . For reasonable experi-
mental values' ' " of 5 of order 1 K,
=(1/2000) K, thus Pp(E ) is approximately constant for
E & 10 K. To calculate the thermodynamic quanti-
ties given in Eq. (2.10b) for low T we are interested in
[P+(E+)+P (E )]/2. Thus, the term proportional to
gp in Eq. (2.19) cancels to give a lowest correction of order
E to the constant density of states. The coefficient of
the E term is positive for 3(gp+h2) &5, and negative
when 3(g +b, ) &5 . The sign of the coefficient of the
E term determines the sign of the corrections to the ther-
modynamic quantities from their T~O values.

Before we end this section, it is interesting to consider
the case of a set of randomly, uniformly, and indepen-
dently distributed tunneling units in which the local field
at site i, g;, has the following form:

g;=g(+a/r ),
J

where a is a constant, the plus and minus sign has equal

1.8

1.5—

1.2—

C)

~ 0.9—
CO

CL

0.6—

0.3

0.0
0.0

I

0.3
I

0.6 0.9
I

1.2 1,5
EIQ

1.8 2.1

I I

2.4 2.7

FKJ. 3. Density Po(E) as a function of the excitation energy E for a Lorentzian distribution of strain fields g and for several width
5 of the Lorentzian, gp=O. The graph shows 6'Po(E/b, ) vs E/b, for several values of E/b, . The dotted line shows the approximate
shape of Po(E) when the local field arises from a single r potential. Note the change in curvature of Po(E) for small E for small
and large values of 5.
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3.0 .
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!~8=0.5

o 2.0
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~ l.0
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I
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FICx. 4. Density of states [Po(E+ )+Pa(E )]/2 for the case when go/6 =2. Notation is the same as in Fig. 3. When g'o»O, there
is a second peak in Po(E) as is shown in the figure above.

2

(~)
1

(~2 52)p & I 0 I &kM

l41&4~
(2.21)

with Ni 45[tan '(gM——/5) gM5/(gM+—b, )]
Using Eq. (2.19) in Eq. (2.14) gives

Po(E+ )=

(E++&')(E+—& )'
[52E2 +(E2 g2)2]2 '

&E, A ~ &E+ (2.22)

0 otherwise .

where A+ is given by Eq. (2.17). For E« b, we obtain

N)5 2 E+
Po(E+)= 1+[3—2(5/5) ]Q2

(2.23)

We have explicitly chosen P~(g') given by Eq. (2.21) to

probability, and r;J is the distance between the tunneling
units. For this case one obtains'

P(g') =—1 5
(2.20)

52+ g2
/

with 5= (2m. /3)
I
a

I
noc, where c is the fractional concen-

tration of the tunneling units and no is the number of
sites per unit cell. Thus, Eq. (2.15) is an ad hoc simula-
tion of Eq. (2.20) for the case when the distance of closest
approach between the tunneling units is limited by a
near-neighbor distance in the solid. The g dependence
of Pi(g) for large g is a consequence of the 1/r form of
the local strain field.

Case 2. Three-dimensional vector fields. We next con-
sider the density of states arising from a probability distri-
bution of strain fields of the form,

consider a distribution in which Pi(g')

ccrc

for low g, in
order to show that even though an internal field distribu-
tion of the form given by Eq. (2.21) gives a density Pi(g)
for small g which is proportional to g, when this distribu-
tion is used to calculate the density of states for a four-
level tunneling state, we obtain (for energies E &A )

that Po(E) is approximately constant. The coefficient of
the E term may be positive or negative depending on
whether 3b is greater or less than 25 . Pz(E) for low E
is approximately constant for the four-level tunneling
units, but not for the two-level ones. For the two-level
states Eq. (2.13), is replaced by the expression
g =(E2 5)'/, and P—o(E) ~E for E & b, for the distribu-
tions P(g') given by Eq. (2.20), Po(E)=0 for E &h. This
result shows explicitly that the constant density of states
arises only in the multilevel, but not the two-level tunnel-
ing units.

It is of interest to examine the case when

g; =g(+a /rj )rj,
J

where rJ is a three-dimensional unit vector which is equal-
ly likely to be oriented in any one direction, and r,j is the
distance between the tunneling units at sites r; and rj.
%'ith randomly, uniformly, and independently distributed
tunneling units, the probability density for g; is similar to
that assumed in Eq. (2.21). See for example, C. Held and
M. W. Klein, Phys Rev. Lett. 35, 1783 (1975). The spin
system discussed in this reference is of no interest here, we
just use a local field whose distribution Pi(g) ~g for
small g and Pi(g'=0)=0. In spite of this, Po(E) is ap-
proximately constant for low E. This constant Po(E) re-
sults from the r potential, which gives that Pi(g) ~ g
for large g'.

The probability density Pz(E) for this case is shown in
Fig. 5. Note that for 3h &26, the initial slope of Po(E)
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FIG. 5. Density of states I'otE) as a function of E, for a distribution of strain fields given by Eq. (2.21) of the text. The graph
shows E~Pp{E/b, ) vs E/6 for several values of 5/b, and gp=O.

is positive, and that Po(E)~0 as E~b, .
Case 3. Consider the case where for large g:

14'
I &4M

P (c)'
O h

o (2.24)

Using Eq. (2.24) in Eq. ( 2.14) gives

E++6
P()(E+ ) ~ (2.25)

For k =2, Pp(E) is approximately constant for low E.
The probability densities given in Eq. (2.15) and Eq.
(2.21), both have P)(g) ccrc for large g and therefore
give approximately constant densities of state for low E.

Case 4. Gaussian distribution of strain fields. We next
consider the case where

P)(g') =(2m52) '/ exp[ —g /(25 )] (2 26)

Using Eq. (2.26) in Eq. (2.14) gives

E~ —6 & +E+
P (E)= Y2' 5'"p —

2 5E, E
(. L

(2.27)
For this case P()(E) for E «b, is

Po(E) cc E exp ——
z

1

2 '6E
Thus, the density of states for small energies E is ex-
ponentially small for Gaussian distribution of strain fields

(2.28)

Case 5. Finally we consider the case where the field at
site 0 arises from the interaction with a single tunneling
unit separated by a distance r from the tunneling unit
under consideration. We consider the case where the
strain field g,

/=+a/r ,
n (2.29)

P()(E) ~ [1+3E /b +O(E) )] . (2.31)

We also note, that the very-low-temperature specific
heat C o: T"/ from the pair model and is linear in T for
n =3, the low-temperature thermal conductivity
~~T' " ' " and is proportional to T for n =3. We
also found that the low-temperature specific heat
C cc exp[ —const/T] for T «1/A . However, the very-
low-temperature ( T « 1/A ) thermal conductivity is
determined by boundary and impurity scattering and is
not proportional to exp[ —const/T] as is suggested in
Ref. (7). The reason for this is that Pp '(E), which enters
the denominator of Eq. (3.25) in Ref. 7, becomes infinite
for E

A rough sketch of Pp(E) versus E from Eq. (2.29) for
n =3 is shown by the dashed line in Fig. 3. Note that the
density of states represented by Eq. (2.29) starts from a
constant and increases with E until Po(E) has a seeming
divergence at E =b, . For small E the behavior of P()(E)
is approximately constant for the case where the strain
fields arise from a single random potential of the form
g; =+a/r, j as well as for the case when the strain field js
given by the sum

with the plus and minus signs each having equal probabil-
ities. We let the second tunneling unit be randomly and
uniformly distributed in the effective volume, V() of the
pair of tunneling units. This case was treated previously
with the result that

(E2 g2)(E(3 n)ln)—
P()(E)~, ), E &&b, . (2.30)

~

(E2 g2)
~

(3+n)/n

For a continuum model, it was found that n =3, and we
obtain for low E,
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g; =g(+a)/r~j~ . 2g
0 2g —b, ,B= —b, —b,

0 —b,
In each case it is only the 1/r interaction that determines
the constant density of states for low E, and it does not
matter whether the local strain field arises from a single
or many tunneling units.

0
0

(A2)

III. CONCLUSION

We consider the low-energy excitations from a set of
two-level, four-level (and six-level) tunneling states in the
presence of large local strain fields. %'hereas, the excita-
tion energies E for the two-level states is E= (g +6 )'
for the four-level and six-level tunneling states E cc 5 /g
for large strain fields g. Therefore, for a fixed value of b, ,
the excitation energy decreases for increasing strain fields.
We calculate the density of states arising from a number
of physically interesting distributions of strain fields and
find that the density of states is approximately a constant
for low energies. In particular, we find that when
Pq(g)cc ~g~ for large g, Pp(E)ccE for small E.
For k =2, the density of the excitation energies is approx-
imately a constant for low E. It is interesting to note that
for an effective interaction between the tunneling states
proportional to r, P, (g) ccrc for large g, thus a 1/r3
potential results in a constant density of states. This is
very suggestive that the approximately constant density of
states of glassy and amorphous materials arise from the
strain interactions in the disordered solid.
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APPENDIX A: SIX ORIENTATIONAL
TUNNELING STATES IN THE MEAN-FIELD

APPROXIMATION

We consider a volume-conserving strain field, with a
(1,1,0) stress, ' ' such that the trace of the strain tensor
equals zero. ' I.et the strain field in the x direction be
—2g' and the strain field in the y and z direction be +g.
We show that the energy difference E between the ground
state and the first excited state for large g is proportional
to 6 /g. Thus (dg/dE) cc 1/E for small E (large g) just
like in Eq. (2.1, 3). Hence, the density of states for the
various probability distributions has the same qualitative
behavior for the six-level as the four-level tunneling states.

The Hamiltonian for the six-level state is equal to

A B
B C (Al)

where

The ground-state and first excited state energies of the
six-level states are

A,p- —2J—8A /g, A, )
———2J .

The lowest excitation energy

E=A, )
—iP=8b, /$+0(g ).

Thus, for small values of E, we have

dg' 1

dE

(A3)

(A4)

It is useful to compare this result with the one obtained
in Eqs. (2.12) to (2.14). We thus find that the qualitative
results for the low-energy excitations from the four-level
and six-level states are the same and depend only on P~(g')
for large g.

APPENDIX B: EFFECTIVE STRAIN HAMILTONIAN
IN THE MEAN-FIELD APPROXIMATION

In this appendix we obtain an effective strain Hamil-
tonian in the mean-field approximation. We start with a
Hamiltonian of the form

P'= —$J; (P;.P ) —$K~ (P; P . ) . (81)

(Pi Pj ) = 2~

I l(Pix Piy)(Pjx Pjy))+ (82)

Using Eq. (82) and adding a constant term to Eq. (81)
gives

2 QJij(P!X Pl~pl )(Pjx Pjy ) g+ij(P~l PJ

(83)

Defining

ki = 2~ XJij ~ I Pjx Pjy I
) (84)

where the angular brackets in Eq. (84) represent thermal
averages, we obtain,

The first sum in Eq. (Bl) represents a "quadrupolar"
term which depends upon the square of the vector dipole
moment P, the second sum represents an effective "dipo-
lar" term. Equation (2.4) gives for each P; that

2 2
I ix+I iy 1.

Using the result that p;~p;~ =0, we have
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(B5)

where Eo and Zt are external and internal electric fields,
go is an external pressure or strain field. For the case
when K,z

——0 and go ——0, the longitudinal mean-field Ham-
iltonian is given by Eq. (2.5) of the text.
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