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Stimulated Raman and Brillouin scattering (SRS and SBS) phenomena have been investigated
analytically with use of density-matrix formulations and assuming parity indefiniteness for the
eigenfunctions of the energy eigenstates of a two-level system in noncentrosymmetric (NCS) crystals.
In crystals, when a molecule is excited, the disturbance travels through the crystal as a vibrational
wave (phonon mode). We have considered the scattering of the incident electromagnetic wave by
phonon modes on a common footing, assuming that vibrations should correspond to optical phonons
for SRS and to acoustic phonons for SBS. The retardation effect due to finite g' ' in NCS crystals is
found to play a more significant role in the case of SRS than for SBS. The classical differential po-
larizability, (Ba/i3u )0 that causes SRS has been determined from the present formulations in terms
of the material consta'nts of the crystal and the photon pump energy. Applying Heisenberg's uncer-
tainty relation, we have also obtained a general formula for the determination of the electrostrictive
coefficient y that is responsible for SBS in crystals. We find (Ba/Bu)0/y —10 with
y-10 ' —10 " mks units for important III-V semiconductors. Both Raman and Brillouin gain
constants are studied over' a wide frequency spectrum in the semiconductors. The ratio between the
two gain constants indicates that for the same pump intensity SBS exhibits higher gain than SRS by
a magnitude -coop/MAp.

I. INTRODUCTION

Stimulated Raman and stimulated Brillouin scattering
(SRS and SBS) have been two of the most extensively
studied nonlinear-optical processes in solid materials since
the advent of lasers. Since their discoveries, ' these pro-
cesses have been studied theoretically in many ways in or-
der to gain clear insight into the physical mechanisms
that are expected to be present in solids. These treatments
may be classified into three groups: classical electromag-
netic, quantum mechanical, and semiclassical. Each treat-
ment has its own merits and drawbacks. The classical
electromagnetic approach can yield valuable information
regarding the threshold value of the pump electric field
for the onset of both Raman and Brillouin instability in
unmagnetized as well as strongly magnetoactive semicon-
ductors, but it is unable to provide any information on
the transition mechanisms as well as the range of the
pump energy under which SRS and SBS can be achieved
most efficiently. Quantum-mechanical formulations
based upon the energy eigenstates describe the emission
and absorption of photons, but phase information is lost
and the theory cannot predict threshold conditions. The
semiclassical treatment ' has so far been regarded as
the best approach in dealing with both SRS and SBS in
crystals. This is essentially based on density-matrix for-
malisms where the electrons are treated quantum mechan-
ically, while both photons and phonons are described clas-
sically. This approach ' can explain the results obtain-
able from an electromagnetic treatment by incorporating
the nonlinear current density arising from nonlinearity in
the electron density; moreover, it gives insight into the
transition mechanisms. The retardation effects arising
from the lack of inversion symmetry in noncentrosym-

metric (NCS) crystals are very important and must be in-
cluded in the formulation for the third-order optical sus-
ceptibility 7' '.". The electromagnetic approach cannot
deal with such effects, while the semiclassical approach
has been found to be useful in the study of retardation ef-
fects, incorporating X' '. Very recently, we have studied
analytically the second-order susceptibility 7' ' in NCS
crystals. ' We noted that the NCS effect could be very
significant in the estimation of X' ', especially when the
investigation is made in the near-band-gap resonant tran-
sition regime in NCS crystals. X' ' and the third-order
material response to a suitable laser have become the most
important tools in the analysis of a wide range of
nonlinear-optical processes, such as optical bistability, '

degenerate four-wave mixing, ' phase conjugation, ' etc.,
in addition to SRS and SBS. In this paper we have con-
fined our attention to SRS and SBS arising from the
first-order Stokes component of the scattered electromag-
netic wave (co„k,). A generalized attempt has been made
to investigate both these processes in NCS semiconducting
crystals on the basis that SRS is caused by the coupling of
the pump-laser photons (to&, kz ) with optical-phonon (OP)
modes, while SBS originates from the coupling of the
former with the acoustic-phonon (AP) modes in the crys-
tals.

In all crystalline solids, SRS arises from the finite dif-
ferential polarizability, while SBS arises from the finite
electrostriction of the medium. The response of electrons
and nuclei to the laser irradiation changes the dielectric
constant of the medium. Weak nuclear motions treated
by the electroinagnetic force of the radiation give rise to
phonon modes (co„,k„) in the crystal. The stimulated
scattering of the incoming radiation by these phonon
modes results in SRS and SBS. Due care has been taken
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to satisfy the rotating-wave approximation throughout the
analysis.

-In Sec. II we have derived a general expression for the
third-order optical susceptibility 7' ' that describes both
the SRS and SBS of the Stokes component of the scat-
tered electromagnetic wave in an NCS crystal. In Sec. III
we deal with the phenomenon of SRS and the Raman gain
constant in the crystals, taking into account the retarda-
tion effect. SBS and the appropriate gain constant is the
subject of Sec. IV. The most important conclusions of the
present investigation are listed in Sec. V.

II. THEORETICAL FORMULATION OF g' '

Here we address the formulation of X( ' for the Stokes
component of the scattered electromagnetic wave to study
both SRS and SBS. The scattering is the consequence of
the phonon-mode generation (optical and acoustic for the
SRS and the SBS, respectively) in the crystal in the pres-
ence of laser excitation. It may be noted in this connec-
tion that in a crystal molecular vibrations no longer
remain localized and can travel throughout the material,
which makes it necessary to replace conventional treat-
ment of SRS due to molecular vibrations by an approach
that explains SRS on the basis of existence of OP modes
in the crystals. The generalized phonon mode can be
represented in the one-dimensional configuration as

for the OP-mode propagation in the crystal. For the AP
branch, co„=coAP and coo——0 since at k„=0 such a mode
does not exist. This results in

-8 u (x,t) C 8 u (x, t) ()u(x, t) &F)
Bt d Bx

The phonon modes thus induced due to finite &F) modify
the dielectric constant and, hence, the susceptibility of the
medium.

We consider the validity of the formulation of the
scattering of light by phonons based upon Placzek's ap-
proximation' that the pump frequency is too high for
ions to be affected. Thus the scattering is produced by the
modulation of electronic polarizability due to lattice vi-
brations. Within this approximation, we have neglected
the direct interaction between the electromagnetic pump
and the ions. We have dealt with the problem semiclassi-
cally, where the electronic system is treated quantum
mechanically and both the pump and vibrational fields are
described classically by waves.

Considering the interaction of the electrons with the
pump photons as well as with the phonons in the crystal,
the interaction Hamiltonian H;„, in terms of the present
one-dimensional configuration can be written as

Hint He-v +He-r ~

with

Bzu(x, t) Ca () u(x, t)
()tz d ()x 2

+coou (x,t)+21 ' = . (1)
Bu (x, t) &F&

at

and

H, „= fu exp[i (—k,x co,t)]—

H, , = iJEO exp[i (—kzx cozt)] . —

Here,

u (x, t) ( =u exp[i(co„t —k„x)])

denotes the relative displacement of the nuclear positions
within the lattice. C, is the linear elastic modulus of the
crystal and d is the mass density. coo is the phonon fre-
quency at k„=0; I takes into account the damping and is
introduced here phenomenologically as a constant param-
eter. &F) is the generalized force per unit volume experi-
enced by the nuclei due to the electromagnetic pump wave
and is defined as &F) =N &f ), with

&F)= &f"')E+ &f"')E'+&f"')E'+, (2)

and N is the number of elementary cells per unit volume
assuming that each cell contains one electron. ' Thus
with aI being a lattice constant, one can consider
N =aJ . From expression (2), it is clear that for a cen-
trosymmetric system, the odd-order force components,
viz. , &f"')E, &f' ')E, . . . , =0, while these are finite

. for an NCS system.
In the case of the OP branch, the phonon frequency

co —coQp and is very large in comparison with
k, (C, /d)'J, as (C, /d)'J is the acoustic velocity in the
crystal. This enables one to neglect the second term on
the left-hand side of (1), yielding

(3)2 +clou xt+
8

——
d p( )) =Tr{pp(J)) (9b)

H, „and H, „are the interaction Hamiltonians for the
electron-vibration and electron-radiation interactions,
respectively, p is the dipole moment matrix,

E=Eoexp[i (kpx coact)], —

Eo being the electric field amplitude of the pump wave.
Both p and E are considered to be parallel to each other
(along the X axis). f is the generalized force given by
f=&F)/N.

For a two-level electronic system, we represent the
ground level by

~ g ) and assume it to be completely occu-
pied, while assuming the excited level

~

n ) to be empty.
The total Hamiltonian for such a system when irradiated
by a laser beam will consist of a part that determines the
unperturbed energy levels of the atomic system, with H;„,
accounting for the interactions in the system in the pres-
ence of the applied fields.

The ensemble average of the induced dipole moment is
expanded as

&p&=&) ('))+&p(')&+&@(')&+.. . ,

where the ensemble averages of both the generalized force
and dipole moment of various orders are defined as

&f(J) ) Tr(fp(J))

and
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with j a positive integer.
In order to evaluate the matrix elements off and p, we

consider the one-dimensional Schrodinger equation given
by

ized force per unit volume having the dimension
(mass)[(length) ][(time) ].

For centrosymmetric systems, U(x) possesses definite
parities such that

fP 8 + U(x) g(x) =eg(x) .
2m„

(10)
and

f- fgg%0 f.g fg. =o

The ensemble average of (F& and (p & can be written as

(F&=A f g„x Pgdx (1la)

(p&=- —e J g'„xPgdx, (1 lb)

with A having the dimension of (mass)[(time) ]. The
origin of the characteristic representation of (F& by Eq.
(1 la) is contained in the definition of (F & as the general-

Pnn~pgg =0i Png~pgn&0

for opposite parities of the wave function f and 1i„. The
NCS crystals lack inversion symmetry, and hence the
wave functions gg and gn will have mixed (rather indefi-
nite) parities and, consequently, one finds all the matrix
elements off and p to be finite. '

The 'density-matrix elements of various orders can be
obtained by using a straightforward perturbation expan-
sion of the density matrix of the material system as

1 1 +c.c.
co —co —l I co —co —I Is ng p ng

p„'g((oz)=H„g((oz)/R(co& (o„g —i—I ),
(2) H„g(co~ )[H„„(co„) H~(co„—)] Hg„(co„)[H„„(co~) Hgg (co~—)]

[fP(ro, —co„g i I )(r—op —co„g—iI )] [A' ((o, —co„g i I )(co—„—(o„g i I )]—

( 2 ) ( 2 ) Hg» ((ov )Hng ( cop )
pgg ((ov) = pnn(('ov) =

fP(co„iI )—

(12a)

(12b)

(12c)

(f"'&(E&= p
A'Q„

(13)

(f(2)&(E2& I p'ng I fnn fgg o

A' n, np

Pngfgn(Pnn Pgg )~vEoE)
A' n, npn„

(14)

Similarly,

2E
())

&

I Png I
Eo

p (15)

with (o, (=(oz —(ov) and k, (=kz —k„) representing the
Stokes component of the scattered electromagnetic wave.
In obtaining Eqs. (12), we have taken into account the role
of various relaxation processes owing not only to the pho-
tons and phonons but also to the applied random fields
through the introduction of a phenomenological damping
parameter I' into the density-matrix formalisms which is
assumed to be the same as that introduced in Eq. (1). I
plays a significant role, especially when the NCS crystal is
subjected to laser irradi'ation in the near-band-gap
resonant transition regime. Other terms are standard and
defined elsewhere. ' lt must be noted that, in deriving the
above set of equations, we have neglected the complex-
conjugate terms in order to avoid mathematical complexi-
ties without loss of generality.

One obtains, from the above formulations,

and

where

(2) I p ng I (fnn fgg )P"Eo

fi QvQq

pngfgn(pnn —
pgg )~vEou

fi Q, QqQ v

+P g y:QPP g I) Q)ng SL v

(f"'&(E& in Eq. (13) describes the first-order force
component which is finite only in the NCS crystals with
fng+0. This force is related to the crystal deformation
potential, piezoelectric property, etc. The classical coun-
terpart of Eq. (13) for a real piezoelectric crystal is
described by pBE/Bx with p a piezoelectric constant.
Equation (14), one the other hand, represents the second-
order force coinponent which arises from the application
of the electromagnetic field on the crystal. This force
consists of two parts. The first part corresponds to the
second-order force arising in a centrosymmetric system,
and the second one denotes the contribution from the
NCS properties of the system. Owing to the application
of the electromagnetic field, the ions within the lattice
move into nonsymmetrical positions, usually producing a
contraction in the direction of the field and an expansion
across it. The electrostatic force thus produced is the ori-
gin of differential polarizability and electrostriction in the
medium.

Equation (15) describes the induced laser polarization
and consequent linear refraction and absorption phenome-
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aI1d

fico~ =fico, +fico„ (17a)

Akp ——Rks+fiku ~ (17b)

yielding m, =cop —co„and k, = kp —k„. When the crys-
tals are irradiated by infrared or near-infrared lasers, one
can easily neglect the pump photon momentum and, con-
sequently, it can be assumed that k„=—k, with

na in the crystals, and is independent of the polar nature
of the medium. (p' ') as given by Eq. (16) is comprised
of two parts, the former being finite in any crystal having
centrosymmetric characteristics, while the latter is an ad-
ditional contribution due to the NCS property of the crys-
tal.

The set of Eqs. (13)—(16) arises as a result of the
response of electrons to the phonon and pump fields. It is
the NCS property of the material systems that is respon-
sible for the finite strain-associated electric field, and
hence the first-order electronic response due to the pho-
non mode is finite for such media only. Although Eqs.
(14) and (16) are similar in nature, in the near-band-edge
region, (p ') »(f' ')(EOEi ). It can be further ob-
served that the NCS contributions to these terms are equal
for both co„and co, .

To our knowledge, no systematic analysis of the role of
the NCS contribution to (p~ ') h'as been undertaken so
far in the study of SRS and SBS,, although its importance
has been mentioned very often'in the available litera-

1 1i 18

We now consider the equation for the Stokes com-
ponent of the scattered electroinagnetic wave, the frequen-

cy (co, ) and wave vector (k, ) of which are obtainable
from the energy- and momentum-conservation relations in
the present investigation as

/ k„/ =
/
k,

/

=
/

k
f

and
[ kp /

-0.
The electromagnetic-wave equation for the Stokes com-

ponent can be written as
2

1 c)2P(t)
at' '

with ct =c /e, c being the velocity of light in free space,
E, the amplitude of the wave, and P(t) the total induced
polarization. The nonlinear contribution of the induced
current density to Eq. (18) is found to be negligible and in-
creases the mathematical complexities. Although its in-
corporation can yield valuable information regarding the
threshold conditions for SBS and SRS, our basic aim is
to obtain the contribution of noncentrosymmetricity to
the induced polarization which causes these scattering
phenomena, and, hence, the nonlinear current density has
been neglected. The total induced polarization P(t) for an
NCS crystal can be described by

P(t) =e,(X"'+X"'
i
E

i

+X"'
i

E'
i + )E(t), (19)

where X'",X' ',X' ', . . . are various orders of susceptibili-
ty. X"' corresponds to the linear component, while X' ' is
the first-order nonlinearity in the optical susceptibility
that describes various passive optical processes. X' ' also
accounts for the retardation effects on the higher-order
nonlinearities. Our principal aim is to study 7' ' and the
retardation effect of X' ' on it in NCS crystals.

To obtain X' ' from the above formulations, we substi-
tute the value of u' from Eq. (1) in Eq. (16). It can be
seen that if only the first-order force (f'")(E) is con-
sidered in Eq. (1), the nonlinear polarization obtained
gives rise to X' '. ' The substitution of the second-order
force (f' ') (EOEi ) for (f) in Eq. (1) explains the origin
of X' ' in the crystal possessing parity indefiniteness of
electronic eigenstates. Thus, one obtains

X( ) N
~ ~

(f f )
P Pf'2

( )
2

Png nn gg
2p'ngfgn(gnn egg )(fnn fgg )cou

(
2 +I 2)1/2 (20)

with

and

~4~a, ~'~n, ~2

D=[—con+k vg +coo+2lconl ],
where we have neglected co„ in comparison with co„g, and
have also neglected the complex-conjugate terms in ob-
taining (f) and (p ) for the'sake of mathematical simpli-
fication. As can be noticed from the above expression, the
first term is finite for a CS (centrosymmetric) system.
The second term is a positive contribution from the NCS
property of the system and its contribution is considered
to be very small in comparison with the third term that
represents the retardation effect on X' '. The first term in
Eq. (20) corresponds to the Raman susceptibility arising

from the finite differential polarizability if we choose
D = (coo—coop+ 2icoopI ) and co, ( »kv, ) replaced by
coop The same factor can explain the SBS phenomena
due to electrostriction by defining D =k v, —co&p
+2l'coApt where ~Ap corresponds to the acoustic-phonon
frequency. These replacements are compatible with the
phonon propagation represented by Eqs. (2) and (3). It
must be remembered here that such a simple relationship
between the two (Raman and Brillouin) susceptibilities
could be obtained only because of the assumption that
each unit cell contains only one electric dipole and one
simple harmonic oscillator.

III. SRS AND RAMAN GAIN CONSTANT

As discussed in Sec. II, here we have attempted to bring
forth an interesting correspondence between the classical
finite differential polarizability (c)a/c)u)o,

'

which is re-
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garded as the origin of SRS in an electromagnetic treat-
ment ' and f~ ' in our analysis. It is well known that the
electrostatic, stored energy density responsible for the oc-
currence of SRS in crystals is proportional to E

I

2, and
can be represented also as N(f ' ') (Z' )u, with
(f~ ')(E ) given by Eq. (14). Upon neglecting the NCS
contribution in Eq. (14), one can obtain a simple expres-
sion for (c)a/c)u )o in the form

2
I v.g I

'(f- fgg —)
eofPQpQg

(21)

&
I v.g I

'(f- fgg)—
A' IQ, I IQ I eodDg

I ng(fnn fgg)
2fg. (V- —egg )~op

with

2 2Dz coo ~op+ 2& ~opI

In obtaining the above expression, we have neglected the
positive contribution of the NCS property. The first part
of Eq. (22) corresponds to the Raman susceptibility in the
crystal when the NCS effect is absent or neglected, and
has been studied extensively. ' The second component
accounts for the contribution of the NCS property to X~.
The same component can be expressed in terms of 7' '

and, consequently, can be designated the retardation effect
on Raman susceptibility due to finite P' '. Examining ex-
pression (22), it is seen that the NCS effect would be
higher in crystals having a stronger polar nature. If the
transition frequency is in the vicinity of the optical-
phonon frequency, the NCS effect becomes very signifi-
cant [as coop » I, e.g. , coop & 10 I (Ref. 3)], although the

From this equation we note that the differential polariza-
bility is not a constant, but instead depends very much on
the pump-laser frequency as well as the transition fre-
quency. This is because of the fact that
Qp cop

——co„—g i I,—and
I p„g I

=
I ep„g(0)/m, cog I, with

png(0) and m, being the band-to-band transition momen-
tum matrix and free-electron mass, respectively; cog is the
crystal band-gap frequency. (c)a/c)u )0 behaves like a
physical constant of the crystal only when one chooses
off-resonant transitions with co„g ( =cog ) »ci)p ct)op aiid
I . During near-resonant transitions (cop-co„g-co, ), one
can achieve a considerably large differential crystal polari-
zability. This leads one to infer that SRS would be much
more efficiently achieved under near-resonant transitions
in the crystal, irrespective of its symmetry properties.
One can also observe from the same equation [Eq. (21)]
that (c)a/c)u)0 will be significantly small for cop»co„g
when (c)a/c)u)o varies nearly as cop (under such cir-
cumstances, coop «cop ).

Remembering the above corresponde'nce, we now
proceed to study SRS and the consequent Raman gain
constant in a crystal exhibiting a lack of inversion symme-
try. The Raman susceptibility can accordingly be ob-
tained from Eq. (20) as

percentage effect remains the same.
We now estimate the Raman gain constant Ig(co, )

I x
of the Stokes mode, which is related to the imaginary part
of X~ ( =gz„+ipse; ) through

k
lg(~s) l~= — &~i IE I'.

2CI
(23)

Substituting the value of X~; from the imaginary part of
Eq. (22), one finds

k&
I s .g I

'(f- f~)~—opI'
I
E

I

'
2&i&'

I Qs I

'
I Qp I

'&Od
I Dz I

'

2fgn (pnn egg )coopx pg(f„, —f~)—

(24)

with @=cori, eo and ei being the permittivity of free space
and lattice dielectric constant, respectively. From Eq.
(24), one can note that the effect of the NCS property
(represented by the second part) will be higher in crystals
having a stronger polar nature. It is also significant in
narrow-band-gap semiconductors.

I g(co~ I z is found to
depend very strongly on.the pump frequency through the
terms

I Qp I
and

I Q, I
. For off-resonant transitions

much below the band edge, both
I Qp I

and
I
Q,

I
are

simPly equal to co„g (because co, =cop coop I'«coop
«cop «cong), such that the Raman gain reduces to an
appreciably low constant value. During off-resonant tran-
sitions far above the band edge (cop »co„g), Ig(co, )

I z
varies almost as co&, and will be even smaller than that
obtainable under the former transition regime. The most
interesting situation occurs when the NCS crystal is sub-
jected to near-band-gap resonant laser excitation. This
yields a giant gain constant of the Stokes component of
the scattered electromagnetic wave indicating its poten-
tiality in the achievement of a tunable laser source at fre-
quency e, =co& —cop. The optical-phonon mode con-
sidered in the study of SRS can be treated either as the
longitudinal or the transverse OP mode, the frequencies
being easily obtainable from a knowledge of the Debye
temperatures of the crystals as well as the usage of
Lyddane-Sachs- Teller relation.

IV. SBS AND BRILLOUIN GAIN CONSTANT

y a, & I I'g I'(f- fgg)&E'&—
2 Bx A'2QPQ,

(25)

Equation (25) can be used to estimate the value of y. In

We proceed, in an almost similar way as followed in
Sec. III, to study SBS and the Brillouin gain constant of
the Stokes mode, inodifications being made only in the re-
placement of D in Eq. (20) by D~ [obtainable from Eq.
(3)]. As discussed in Sec. II, the electrostrictive force act-
ing per unit volume of the crystal, —(y/2)(c)/c)x (E ) ),
corresponds to (f' ') (Z' '), given by Eq. (14), co„being
replaced by co&p. The difference between the two expres-
sions is that the latter includes the NCS effect. Thus, one
can write
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order to achieve this goal, we have applied Heisenberg' s
uncertainty relation for the linear momentum and posi-
tion coordinate in the present quantum-mechanical for-
mulations. It is well known' that for a linear dimension
u of a region in which a particle can move, the uncertain-
ty in the coordinate is -u; the uncertainty in the momen-
tum, and therefore the order of magnitude of the momen-
tum itself, is p„-4/u. Now, —(y/2)(c)/Bx)(E ) can be
written as

with

~AP+k Us +2lI CHEAP

The Brillouin gain constant is

I Png I (fnn fgg) I
E

I

p„u with p„=—i'~ ~

~

BQ

5u

Application of the uncertainty relation in the present con-
text yields Bu/c)x = 1 such that

X IJ, g(f„„fgg)—2fgn (pnn IJgg )coAp

2~ lw.g I'(f- fgg»—

A'opsis

QI
(26)

The suffix QL denotes the quantum limit. For a partic-
ular crystal in the off-resonant —transition regime with
co„g & co& and co„one can obtain a constant value of y due
to the fact that the quantity (fnn f~)u ca—n be expressed
as gRco~p with g ( ——,

' to —,0 ) being a measure of the
perturbing strength of the vibrational wave on the elec-
tronic system. Thus the electrostrictive coefficient y is
obtained in terms of the physical constants of the crystal
as

where it is assumed that coAP= k U, .
The NCS effect reduces the gain constant in the case of

SBS almost like that for SRS. This retardation effect on

I g(co, ) I z is found to be less than that on
I g (co, )

I z [Eq.
(24)] as co&p & coop. The qualitative behavior of

I g (co, )
I z

on the pump frequency is similar to that in the case of

When the effect of lack of inversion symmetry is
neglected in a crystal, the gain constant of the Stokes
component of the scattered electromagnetic wave is found
to be larger for SBS than that for SRS, the ratio being-coop/co~p

2
I png I

'9coAp
2 3

%cong Q7 QZ

(27) V. CONCLUSIONS

The concept of finite electrostrictive force is applicable
only for

I
k

I
&0. One can also note that under the quan-

turn limit as discussed earlier, p„u —A, such that
k„—1/u, and for a lattice, u can be replaced by a~. This
enables one to treat coAP as a constant in the quantum lim-
it, given by co~p ——k„v, =v, /a&, and one obtains

277'f/
I 8png (0)/ltlpcog I vg

e 2a4ggI

Iv.g I' f- —fgg)
evdDggaI R

I Qq I I 0,
I

(f f )
fgn Ann Pgg Ap2f ( — )co

(29)

where we have replaced
I p„g I by

I ep„g(0)/m„cog
I

From Eq. (28), one can determine the value of y for any
crystal, remembering that it is a constant only under off-
resonant —transition situations. The numerical estima-
tions for the important III-V semiconductors yield values
of y-10 ' to 10 " mks units. This is in agreement
with the value quoted by Yariv. Its variation with
respect to pump frequency can be studied from Eq. (26).
Our next objective is to obtain the susceptibility and gain
constant of the Brillouin mode. For this purpose, we use
Eq. (20) with K being replaced by a~, co„by coAp, and
choosing

I
k

I
&0. Thus one obtains

The present analytical investigation of SRS and SBS
has yielded the following interesting results which were
not pointed out categorically in earlier theoretical at-
tempts.

(i) The propagation behavior of the vibrational modes
has been represented by a general phonon-mode wave
equation with the. optical and acoustic phonons being re-
sponsible for the SRS and the SBS, respectively.

(ii) The differential polarizability (Ba/c)u)0 that is nor-
mally treated as a constant parameter of the crystal for
the study of SRS is found to depend on the pump photon
energy. This dependence should be taken into account
especially when the crystal is irradiated with a near-band-
gap resonant laser beam to obtain a very large Raman
gain of the Stokes mode. While drawing an analogy be-
tween the electromagnetic approach and the present semi-
classical approach, we note that (c)a/c)u)o should be
modified due to the NCS properties of the crystal. An ap-
propriate expression has been derived to estimate the same
in the centrosymmetric medium.

(iii) Quite interestingly, in the case of SBS, the classical
electrostrictive coefficient y has been calculated using the
present formulation. The universal validity of
Heisenberg's uncertainty relation has been employed in
deriving an expression for y in terms of the material pa-
rameters of the crystal. An order-of-magnitude agree-
ment with available values has also been achieved. The
frequency dependence of y is similar to that of (c)a/c)u)o.

(iv) A comparison between (c)a/c)u)0 and y for a cen-
trosymmetric crystal using the present formulation gives
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(aalu�),Zy —lo-'.
(v) Both Raman and Brillouin gain constants are affect-

ed by the finite retardation produced due to X' ' in the
NCS crystals, and they should not be neglected in strongly
polar crystals. This retardation effect is more important
in the study of SRS than in SBS.
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