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%c present interaction potentials for AgC1 and AgBr derived from quantum-mechanical approxi-
mations and fitted to the experimental lattice constant and energy, elastic and dielectric constants,
and special phonon frequencies. The expressions are simple enough for atomistic calculations of
crystal defects and molecular dynamics while sufficiently representing the peculiar features of silver

halidcs. Thc oUtstanding flndlng ls thc dominance of stlong VRQ dcl %Rais lntcractlon. Two-body
van der %Rais forces determine the observed small lattice constant, large lattice energy, and small

elastic constant @44, while three-body van der &Rais forces contribute mostly to the violation of the
GRUchy lclRtlon RQd thc large bulk InodulUs. Wc could not find convlnclng lndlcatlons of pRrtlal co"
valency in silver halides nor of an easy quadrupole deformability of the Ag+ ion.

I. INTRODUCTION

Silver halides are interesting materials from both a
theoretical and a practical point of view. They are con-
s1dcfcd Rs csscIlt1Rlly 10Mc 1n thclf bond1ng. Thc 1oMC

aspect is largely suggested by the position of the com-
ponent elements in the Periodic Table, corresponding to
one and seven electrons in the outer shells of silver and
halogen atoms, respectively. High ionicity of silver salts
is furthermore indicated by the crystallization of AgC1
and AgBr (hereafter AgX) in the rocksalt structure which
is characteristic for most alkali halides, by their crystal
color which arises from large band gaps, and by their elec-
trical conductivity in solid and molten states. On the oth-
er hand, silver halides show special features which distin-
guish them clearly from alkali halides. Such features are
unusually small lattice constants, large lattice energies,
lar gc dielectric corlstants, distinct peculiarities among
their elastic constants and phonon spectra, extremely low
solubility in water, predominance of Frenkel defects, and
high mobilities of interstitial silver ions and of disloca-
tions. The latter properties lead to technological applica-
tion of silver halides in photography and as fast-ion con-
ductors. 3

It appears that the ionic framework which successfully
describes the properties of alkali halides is not sufficient
to account for the peculiarities of the silver halides.
Therefore, various explanations have been proposed which
may be grouped into three main streams. The earliest one
assumes that the chemical bond of AgX is mainly ionic,
but also partly covalent. This idea is supported by the
thermochemical and spectroscopic electronegativity scales
of Pauling" and of Phillips and Van Vechten. ' Problems
of the ionicity-covalency scheme have recently been re-
viewed by Catlow and Stoneharn.

Thc sccoIK1 cxplaIlatloIl 1s based oIl thc assumption that
the Ag+ ion is likely to undergo quadrupole deformations
in order to accommodate particular lattice distortions.
Accounting for a quadrupolar deformalibility of the Ag+
ion provided good agreement between experimental data
and calculations of lattice dynamics ' and ionc mobili-

ty" in AgX. In further investigations, the effect of qua-
drupolar deformation on the mobilty' of Ag+ and off-
center behavior' of impurity Ag+ have been examined
and quantum-mechanical origins of ionic deformation
IIlodcs have bccn cxploIcd.

The third approach emphasizes strong van der %'Rais
interaction in silver halides. This concept was proposed
by Mayer' and was confirmed in lattice-defect calcula-
tions. ' " It has also been supported by an analysis of
ionic radii and orbital moments in AgX. '

The interaction potentials presented in this paper pro-
vide further insight into the nature of bonding in silver
halides and allow an evaluation of all three proposed ex-
planations. More important is their application in atomis-
tic calculations of properties of crystal defects such as for-
mation and migration energies of interstitial ions, vacan-
cies, dislocations, and more complicated aggregates. Oth-
er important applications exist in molecular-dynamics cal-
culations. Given reliable interaction potentials, it seems
feasible that such calculations could furnish a valuable
tool ' for investigating rncchaMsms crucial to photo-
graphic processes or fast-ion conductance.

The first set of interaction potentials for AgX was pro-
posed by- MaycI'. Hc assuIIlcs long-range Coulomb 1Il-
teraction between point ions and short-range interactions
depending on the distance between ion pairs (two-body
central potentials). Parameters in the repulsive and van
der Waals terms of the non-Coulombic interaction are fit-
ted to experimental data of the lattice constant, lattice en-

ergy, bulk modulus, and optical-absorption spectrum.
The use of only two-body central potentials leads to the
Cauchy relation between theoretical values of the elastic
constants, c~2 ——c44. Experimental values of elastic con-
stants are found to satisfy the Cauchy relation approxi-
mately in the case of alkali halide crystals. For AgX,
however, c&2 is about five times larger than c44, i.e., the
Cauchy relation is strongly violated by experimental data
of the elastic constants. These circumstances limit con-
siderably the use of Mayer's interaction potentials for
AgX.

An improved set of interaction potentials for AgX has
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recently been proposed by Catlow, Corish, Jacobs, and
Devlin'7's'" (CCJD). The authors incorporate the shell
model to account for the dielectric properties of AgX.
The corresponding shell parameters are fitted to the
high-frequency and static dielectric constants. A quadru-
polar deformation for migrating Ag+ ions is simulated by
effective interaction distances affecting the short-range
terms. The deformation parameters are derived from ex-
perimental data of migration energies of lattice defects.
Despite all improvements of the CCJD potentials they
still contain only two-body central potentials. Conse-
quently they cannot account for the strong violation of
the Cauchy relation between the elastic constants of AgX.
This deficiency gives rise to uncertainties in calculations
of all those structural properties which depend sensitively
on the elastic behavior of a crystal.

In this paper we propose new interaction potentials for
AgX. Our objective is to present interaction terms which
are simple enough for numerical handling in atomistic
calculations, but which sufficiently represent those
features which are characteristic for silver halides. To
this end we have derived the formal structure, i.e., the dis-
tance and angular dependence of interaction terms from
quantum-mechanical approximations. The actual
strength of the various interactions, however, has been fit-
ted to experimental data. Those data were the lattice con-
stant and energy, the elastic and dielectric constants and
special phonon frequencies. Quantum-mechanical ap-
proximations for the interaction potentials also revealed
relations which were used to reduce the number of param-
eters to a small set. We expect that these values bear
physical significance and provide better insight into the
special nature of bonding in silver halides.

The actual motion of interacting electrons about the
(time-independent) probability density of their orbitals can
be regarded as correlated fluctuating multipoles. The
correlation interaction between different atoms or ions is
known as dynamical or van der Waals (vdW) interac-
tion. The leading term —C iJIr,z represents the interac-
tion between mutually inducing dipoles located at ions i
and j. The fact that mutual inductions between all dipole
pairs in a crystal are not independent from one another is
accounted for by correction terms depending on the posi-
tion of three or more ions. The largest of these correction
terms is the Axilrod-Teller potential introduced below.

C. Short-range repulsion

Starting with unspecified expressions having exponen-
tial distance dependence, we arrived at the following in-
teraction potentials for short-range repulsion:

r1+r2
expU„~(1,2) =b exp

p

2r
U„~(1,1)=Pb exp

P11
exp

p

P11
(2)

B. Long-range Coulomb interaction

We assume the lattice particles of AgX crystals to be
ions of charges +Ze with Z=1 and the elementary
charge e. The long-range Coulomb interaction energy be-
tween two ions i and j is then Z;Zje Ir;J Th.e Coulomb
contribution to macroscopic properties of crystals is con-
veniently expressed with the help of corresponding lattice
sums.

II. MODEL

A. Quantum-mechanical background

2r2
U„~(2,2) =b'exp

p
exp

p

The subscripts 1 and 2 denote cations and anions,
respectively. The quantities b and b' are interaction
strength coefficients. Basic ionic radii ri for Ag and r2
for Cl or Br appear in the first exponential term. The
use of basic radii has proven to be successful for alkali
halides, since the radii give nearly constant b values
around 0.25 eV for the entire crystal family. ' The quanti-
ties p and p11 are hardness parameters, and the r;J denote
interionic distances.

It is known from alkali halides that the contribution
from the cation-anion repulsion, Eq. (1), dominates in
most physical properties. Therefore, we used approxima-
tions in the short-range repulsion terms between like ions,
Eqs. (2) and (3). For the hardness parameter pii we used
the corresponding quantity associated with the total orbi-
tal overlap between two free Ag+ ions. The hardness
parameter p in cation-anion repulsion is mainly deter-
mined by the softer electron cloud of the anion. There-
fore, we used the same p also in the anion-anion repulsion,
Eq. (3).

Notice that the strength coefficient b for cation-anion
repulsion, Eq. (1), appears also for cation-cation repulsion,
Eq. (2), together with a correction factor P. We estimated
the amount of P by assuming the same ratio between

Let us briefly outline the quantum-mechanical approxi-
mations which lead to the terms chosen for our interac-
tion potentials. The many-body problem of a crystal is
separated in nuclear and electronic parts by the Born-
Oppenheimer approximation. The electronic part can be
decoupled into one-electron systems (orbitals) by the
Hartree-Fock approximation. The deviation of the
Hartree-Fock solution from the exact interaction is due to
electron correlation.

The localized wave functions of ionic crystals can be
constructed from wave functions of free ions according to
the Lowdin approximation. ' This leads to long-range
Coulomb interaction between ionic point charges and
short-range terms arising from orbital overlap, exchange
interaction, and Coulomb correction. Since all the short-
range interactions between two ions i and j decrease ex-
ponentially with the interionic distance r,j, we can com-
bine them to one simplified interaction potential
A,jexp( rJIp,z). The stren—gth coefficient A,J and hard-
ness parameter p,j are characteristic for the particular
kind of interacting ions i and j. In addition to the leading
pair potentials the Lowdin theory gives rise also to three-
body interaction terms such as A Jkexp[ (r j+rjk)/p Jk]—
between three ions i, j, and k.
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nearest-neighbor and cationic next-nearest-neighbor repul-
sion as between their corresponding overlap energies
which establish the largest contribution to short-range
repulsion. The results showed P values near 1 as also
found for alkali halides. Considering the approximations
involved, we decided to use a fixed value of P= 1.

As a result of the incorporated relations among repul-
sion parameters in Eqs. (1)—(3) we have only three param-
eters, namely, b, b', and p, left to be fitted to experimental
crystal data. Concerning the actual interaction range of
short-range repulsions, the contributions from nearest-
and next-nearest-neighbor ions proved to be sufficient for
all crystal properties of our interest.

D. van der Waals interaction

The leading dipole-dipole interaction potential between
two ions i and j is given by the London formula

(4)

b =ai.ai ——C(1,1):C(1,2) =C(1,2):C(2,2)

=C(1,1,1):C(1,1,2)=C(1, 1,2):C(1,2,2)

=C(1,2, 2):C(2,2, 2) . (6)

Knowledge of the ratio b together with the relation of Eq.
(6) reduces the number of independent vdW parameters to
only one two-body and one three-body strength coeffi-
cient, for example, C(2,2) and C(2, 2, 2).

The convergence behavior of our vdW lattice sums
shows that for crystal properties of our interest, two-body

The fact that this interaction is attractive is expressed by
the negative sign which leaves positive vdW strength coef-
ficients C(i,j). The next higher-order term which ac-
counts for dynamical dipole-quadrupole interaction shows
a distance dependence of inverse eighth power. It is
known from Mayer's interaction potentials' for AgX that
the contribution from dipole-quadrupole interaction to the
lattice energy is -20%%uo of the contribution from dipole-
dipole interaction. The powers n = —6 in Eq. (4) and
n = —8 for dipole-quadrupole interaction actually
represent the asymptotic form for large ion separations.
For small ion distances, additional terms appear. In
view of the uncertainties in determining strength coeffi-
cients for all various vdW pair potentials, we decided to
use only the term with power n = —6 of Eq. (4) to ac-

count for the leading dipole-dipole interaction and to ap-
proximate dipole-quadrupole and other effects of vdW
pair interactions.

The largest three-body vdW term is given by the
Axilrod- Teller formula,

1 +3 cosP;cosgjcosgk
U„dw(i j,k) =C(ij,k)

re rJ.k rkg.

Here pz is the angle formed by the lines connecting ion j
with ions i and k. From London's theory of vdW interac-
tion, ' it follows that vdW strength coefficients are ap-
proximately proportional to the polarizabilities a; of the
interacting ions. Therefore, we assume the following rela-
tion between vdW coefficients and polarizabilities:

contributions due to Eq. (4) from nearest and next-nearest
neighbors are sufficient. In regard to the three-body part
of Eq. (5), we find satisfying convergence only if we in-
clude up to fourth-order neighbors. For the sake of an
equal treatment of two- and three-body vdW interactions,
we take into account contributions from both terms up to
fourth-order neighbors.

E. Dipole mechanisms

r"lJ
p; =er;A exp

p

The quantity r; =S;J (g;r;QJ. ) is the distance between the
nucleus of ion i and the center of overlap of free-ion wave
functions P; and tP~ with the overlap integral
S,J

——(f;QJ. ). The strength coefficient A' is related to the
Szigeti charge by

rpA' =(Z' —Z)exp
, p

2 4
X (ri —r2) (9)

p ro

where rp is the nearest-neighbor distance in the crystal.
Effective charges associated with other phonons, i.e.,

k&0, contain contributions from dipole deformations
caused not only by nearest neighbors but also by next-
nearest neighbors. Since the latter mechanisms are subject
to large uncertainties, we did not attempt to determine
corresponding deformation parameters.

F. Quadrupole deformation

Short-range three-body interaction terms with exponen-
tial distance dependence appear in the Lowdin formal-
ism and have been studied by many investigators.
Sarkar and Sengupta (SS) propose a phenomenological
three-body interaction potential,

Uss(i, j,k) =Djexp
rgj+rJk

P3
(10)

We assume that two kinds of dipoles are present in
AgX. The first kind is the electronic dipole p; induced by
the local electric field Ei (i) at the position of ion i. The
dipole strength is determined by the polarizability a; as

p;=a;Ei (i) .

The second kind is the deformation dipole p; resulting
from mechanisms closely related to short-range repul-
sion. In lattice dynamics it is common to combine
the effect of deformation dipoles and of displaced point
charges to effective charges Z~ ( k,s) which depend on the
mode m, wave vector k, and polarization s of lattice
waves. The effective charge associated with optical pho-
nons of wave vector k =0 (I point of the Brillouin zone)
is known as the Szigeti charge Z*e.

The dominant deformation dipole p; at an ion i, caused
by the presence of a nearest-neighbor ion j, is oriented to-
ward j and has a magnitude of
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which accounts for monopole deformation of ions
(breathing-shell model in lattice dynamics) and for the
negative deviation from the Cauchy relation, i.e.,
ci2 —c44, &0. The strength coefficient DJ is characteristic
for the deformability of the central ion j which is de-
formed by its nearest-neighbor ions i and k. The hard-
ness parameter p3 is usually, and also in our case, assumed
to be the same as p in the cation-anion repulsion, Eq. (1).
We have shown ' ' that Eq. (7) can be generalized to
simulate quadrupolar deformations of ions and to account
for the positive deviation from the Cauchy relation,
c,2

—c44 & 0. To this end we discriminate strength coeffi-
cients Dz and Dj for angular respectively aligned configu-
rations of ion triples ijk. With the assumption that only
one ion species, Ag+ for example, is quadrupolar deform-
able (Es symmetry ) while the other ion species is rigid,
we find a value of q =D /D = —4 for the ratio of Ag+
deformation coefficients.

In our interaction potentials for AgX we account for
the possibility that the Ag+ ion is deformable by a gen-
eralized Sarkar-Sengupta potential, Eq. (7), with a
strength coefficient D and the ratio q =D/D to be fitted
to experimental crystal data. The deformation term of
Eq. (7) is not strictly derived from quantum-mechanical
approximations but merely represents an empirical expres-
sion. Nevertheless, its structure seems to be suited to
simulate the kind of three-body short-range interactions
which appear in the Lowdin formalism. In addition we

can expect that the values of D and q provide some infor-
mation about the quadrupole deformability of Ag+.

III. EXPERIMENTAL DATA

Silver halides show considerably larger anharmonic ef-
fects than alkali halides. In order to eliminate any
thermal infiuence, we have fitted our interaction poten-
tials to experimental crystal data at or near zero tempera-
ture, T=0, as listed in Table I. The elastic constants for
AgC1 in Table I are averages of the close values of the
cited references. The elastic constants for AgBr were ob-
tained by Fujii et al. from inelastic neutron scattering ex-
periments. They differ appreciably from the data of
Marklund et al. , cii ——65.94, ci2 ——34.95, c44 ——10.03,
all in GPa, obtained from ultrasonic experiments. The
latter elastic constants for AgBr are frequently referred to
in the literature. When we used the data of Marklund
et al. we found no interaction potentials within reason-
able limits of interaction parameters. Therefore, we have
more confidence in the data of Fujii et al.

One would expect that ultrasonic experiments are more
sensitive than neutron-scattering methods in determining
elastic constants. Considering the large discrepancies be-
tween the measurements of Marklund et al. and Fujii
et al. it seems desirable to have new ultrasonic data for
elastic constants of AgBr. Because of the emphasis on
elastic constants in the fit of our interaction potentials,
the results depend strongly on the experimental data. We
noticed that both the interaction parameters of our poten-
tials for AgBr and their contributions to crystal properties
showed less systematic features than those for AgCl.
Also applications of our AgBr potentials in crystal-defect

rp (A)
U (eV)
cia (GPa)
c)2 (GPa)
c44 (GPa)

6'p

fp, (THz)
f&I (THz)
fi, (THz)
f21 (THz)
f2, (THz)

2.755'
—9.46'
74 91'd
39.08'

6 908'"

9.55'

3.00g

1.91g
6.05"
2.30"

2.867b
—9.33'
71.2'
35 5'
8.51'
4.68'

10.64'
2.74'
2.90'
1 93'
4.00'
1.62'

'J. Vallin, Ark. Fys. 34, 367 (1967).
E. Vogl and W. Waidelich, Z. Angew. Phys. 25, 98 (1968).

'C. D. Thurmond, J. Am. Chem. Soc. 75, 3929 (1953).
W. Hidshaw, J. T. Lewis, and C. V. Briscoe, Phys. Rev. 163,

876 (1967).
Y. Fujii, S. Hoshino, S. Sakuragi, H. Kanzaki, J. W. Lynn, and
G. Shirane, Phys. Rev. 8 15, 358 (1977).
R. P. Lowndes and D. H. Martin, Proc. R. Soc. London, Ser. A
308, 473 (1969).
~R. H. Stulen and G. Ascarelli, Phys. Rev. B 13, 5501 (1976).
"P. R. Vijayaraghavan, R. M. Nicklow, H. G. Smith, and M. K.
Wilkinson, Phys. Rev. 8 1, 4819 (1970).

calculations were less satisfactory than with AgC1 poten-
tials. We therefore consider the possibility that newly
determined elastic constants of AgBr might help in deriv-
ing improved interaction parameters for AgBr.

Concerning phonon data, we have not included the fre-
quency of the longitudinal-optical —phonon mode at the I
point since it provides no additional information to the
data in Table I. This is because of the Lyddane-Sachs-
Teller relation which is in accordance with the dielectric
theory underlying our interaction potentials.

IV. RESULTS

A. Fitting procedure

The fixed interaction parameters in Table II were either
a priori determined or they turned out to be insignificant
so that their variation was not worthwhile. Previously
determined quantities were the basic radii r; for short-
range repulsion' and the overlap distances r; calculated
by Bauer. Our polarizabilities a; (and their ratio h)
were derived with the Clausius-Mossotti relation and ad-
ditional assumptions of two mechanisms characteristic for
AgX. The Szigeti charge Z* is obtained from dielectric
data with the Szigeti relation. The hardness parameter

TABLE I. Experimental crystal data at T =0. Symbols: rp
is the nearest-neighbor distance; Up is the lattice energy;
c ~ ~,c~2, c44 are elastic constants; E„,6p are high-frequency and
static dielectric constants; fp, is the frequency of the transverse
optical-phonon mode at the I point. The last four frequencies
correspond to longitudinal ( I) and transverse ( t) phonons at the
L point of the Brillouin zone. In these modes only the cation or
anion sublattice vibrates as denoted by subscripts 1 and 2,
respectively, while the other sublattice is at rest.

AgBr
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AgC1
AgBr

r, (A)

1.26
1.26

r2 (A)

1.81
1,95

p)) (A)

TABLE II. Fixed interaction parameters.

ai (A')

1,67
1.67

o.2 (A')

3.29
4.55

0.68
0.66

r& (A)

1.24
1.24

r2 (A)

1.52
1.63

pii for cation-cation repulsion was adapted from overlap
data, and P was estimated as explained in Sec. II. Tests
confirmed that variations of both pii and P had very

small effects in the potential fit. The ratio q =D/D be-
tween strength coefficients of the Sarkar-Sengupta poten-
tial, Eq. (10), was varied from —10 to 10 in steps of 1.
Favorable solutions for interaction potentials, according
to the criteria stated below, were found with q values
around 1. Wc did not obtain values around q = —4 which
simulates a quadrupole deformation of Ag+. Considering
the phenomenological background of Eq. (10) and the
finding that Sarkar-Sengupta contributions to lattice ener-

gy and elastic constants were, on the average, 1 order of
magnitude smaller than contributions from three-body
vdW interaction, Eq. (5), we decided to use a fixed param-
eter q= I.

As we will see below (Table V), short-range repulsion
and vdW iIltcfaction bctwccn Ilcarcst ncighbofs plovidc
very large counteracting contributions which considerably
cancel one another. In order to obtain interaction param-
eters within reasonable limits, strong guidance is neces-
sary. We decided to use the same ratio h between vdW
coefficients, Eq. (6), as between the polarizabilities. This
lcavcs six qURntItics, namely, thc hRfdncss parameter p
and the strength coefficients b, b', C(2, 2), C(2, 2, 2), and
D to be fitted.

Important information about quadrupole deformability
of Ag+ ions can be expected from L-point phonons pro-
vided all other contributions are sufficiently known. We
found that the Coulomb contributions to frequencies of
L-point phonons are comparable to those from (vdW and
Sarkar-Sengupta) three-body interactions. The Coulomb
terms involve effective charges at the L point. Since we
have no reliable prior information about these effective
charges, we decided not to fit to frequencies of I.-point
phonons. This leaves six crystal properties, namely,
Uo, ro, c», cia, c44, and fo, to be fitted to. Notice that
the crystal equilibrium condition at the observed nearest-
neighbor distance ro can be formulated as vanishing hy-
drostatic pressure c i ——0 (first-order elastic constant ).

For a given value of p the five properties c„c», ci2,
c44, and fii, establish linear equations with the five
strength coefficients as unknowns. We varied p in steps
of 0.001 A and solved exactly for the strength coefficients
in the equations for the five above properties. We finally

adopted the set of parameters which showed the least de-
viation from the experimental Uo. The values are listed
in Table III.

B. Comparison with other authors

Qur polarizabllitics iIl Table II RI c vcI'y close to
Mayer's values. ' They differ, however, by —15% from
the CCJD (Refs. 17 and 18) values (in A ) ai ——2. 17,
a2 ——3.03 for AgC1 and ui ——2.36, az ——4.27 for AgBr.
The CCJD polarizabilities are derived from a shell model
with the assumption of polarization of independent ions.
Problems of this concept have been discussed by Catlow
et aI."

All parameters for short-range repulsion of the CCJD
potentials wcfc obtalncd UsIng fhcof ctlcal tcchn1qUcs
based on the electron-gas method with conserved density
approximation. ' The CCJD repulsion terms show
slightly "harder" distance dependences than ours. How-
ever, the contributions to Uo from both methods agree
closely although they were quite differently derived. The
domInant cation-RQ10Q IcpulsIon energies RIc RboUt tw1cc
as large as Mayer's values. '

Large discrepancies exist, among two-body vdW coeffi-
cients from the different authors shown in Table IV. Our
values are about 5 times as large as Mayer's coefficients.
If, hRs been Icpcatcdly noted thaf, Mayer's vd%' coeff1-
cients for alkali halides are too small and amount to
roughly one-third of more recent values. ' CCJD used
as C(2,2) for AgX averages of Mayer's vdW coefficients
bctwccn anions in alkali halidcs. This choice is based On

the concept of independent anions, which works well for
alkali halides but less satisfactory when halide quantities
are transferred to AgX. The limitation of the concept of
independent anions is indicated by differences around
15% when we compare Mayer's az and C(2, 2) for alkali
halides with those for AgX. For the vdW strength
C(1, 1) between two Ag+ ions, CCJD adapted 4 times
Mayer's C(1,2) (i.e., for cation-anion; compare Table IV)
of AgCl. The authors justify this rather arbitrary choice
with successful lattice-defect calculations and the finding
tllat the i"atlo of calculated elastic constants c44 /c i i
comes close to the ratio of experimental data.

Our strength coefficients C(1,1) between two Ag+ ions
in AgCl or AgBr agree within 10%. Since this result was
not anticipated, we regard it as a good indicator for the

TABLE III. Fitted interaction parameters.

0.340
0.341

210.74
188.48

12.22
41.18

483.34
852.38

1913.1
4415.3
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0
TABLE IV. Comparison of van der Waals coefficients, all in eVA .

Mayer'
CCJDb
This work

AgCl
C(1,1)

224.00
125.72

AgC1
C(1,2)

55.55
219.52
246.50

AgC1
C(2, 2)

83.01
75.00

483.34

AgBr
C(1,1)

224.00
116.69

AgBr
C(1,2)

68.03
228.39
315.38

AgBr
C(2,2)

129.82
124.70
852.38

'Reference 15.
References 17 and 18.

quality of our interaction potentials. Our C(1,1) are
-3.6 times as large as Mahan's recent vdW coefficients
between two free Ag+ ions obtained from quantum-
mechanical calculations.

The quantity C(1,2) is (besides shell parameters for
Ag+) the only fitted strength coefficient of the CCJD po-
tentials. The values are —10% and -30% smaller than
our C(1,2) coefficients for AgC1 and AgBr, respectively.
The ratios between the CCJD strength coefficients are in
striking contrast to the ratios between polarizabilities of
ions, Eq. (6). Nevertheless, in spite of some disturbing
features among the individual vdW coefficients, the
CCJD potentials certainly give support to the notion of
strong vdW interaction in AgX.

Concluding our comparison with other authors we want
to point out that our interaction potentials reproduce ac-
curately the bulk crystal properties Up, rp aild fpi elas-
tic and dielectric constants (exact fit). No experimental
data from lattice defects have been used in their deriva-
tion. This is in contrast to the CCJD potentials which
provide calculated formation and migration energies of
point defects in AgX (Refs. 11, 17, and 18), in good agree-
ment with experiment. The CCJD potentials, however,
are less successful in reproducing the simpler bulk-crystal
data. The elastic constant cii for AgCl calculated by
CCJD is -10% larger than experiment; c~~ is -40%
higher and ci2-75% lower. The calculated c» and c4&

for AgBr reproduce the data of Marklund et al. while

ci2 is again -75% too low. The frequency fp, for AgBr
is —15%%uo too high. We also noticed that the CCJD po-
tentials fail to reproduce the lattice constant. The equili-
brium condition, c&

——0, can only be satisfied with CCJD
parameters if rp is -2%%uo smaller than experiment.

C. Contributions to crystal properties

Good insight into the circumstances which lead to our
interaction potentials for AgX, Table III, can be gained
from an inspection of the various interaction terms to
crystal properties. Table V shows such contributions for
AgC1. It is also instructive to compare with alkali halides
which are much better understood than AgX. For such a
comparison we chose NaCl, because (1) it has the same
anion species as AgC1 and (2) its neighbor distance
(rp=2. 789 A) is only 1% larger than in AgC1. The latter
property causes very similar Coulomb contributions.

Lattice energies Uo in Tables V and VI are given in eV
and elastic constants and moduli in GPa. Concerning the
frequency fp, of transverse optical phonons at I, we show
contributions from force constants, in units of 10 Nm
to the quantity m coo, with the reduced mass
m =m i m2/(m i +m2) and cop, ——2mfp, . Contributions
from short-range repulsion are denoted by R and those
from vdW interaction by V. As before, the numbers 1

and 2 stand for cations and anions, respectively. The total
three-body vdW and Sarkar-Sengupta contributions are la-
beled with V38 and SS. The Coulomb part and the total
of all contributions are given by COU and TOT while the
non-Coulombic part is abbreviated with NC [which is the
total (TOT) less the Coulombic part (COU)].

The NaC1 contributions, Table VI, were obtained from
interaction potentials ' with exact fit to experimental elas-
tic constants, dielectric data, and least deviation from
the experimental lattice energy (Up ———8.04 eV). Be-
cause of weak vdW interaction in NaC1 we neglected
three-body vdW terms and accounted for two-body vdW
terms only up to next-nearest neighbors.

TABLE V. Contributions to crystal properties of AgC1 (see text for symbols and units).

R12
R11
R22
V12
V11
V22
V3B
SS
COU
TOT
NC

Uo

3.19
0.01
0.03

—3.55
—0.23
—0.88

1.00
0.11

—9.13
—9.45
—0.32

—Ci

33.04
0.12
0.48

—27.20
—1.76
—6.75
11.46
2.26

—11.66
0.00

11.66

C11

300.79
0.97
2.97

—210.75
—7.44

—28.59
55.55
24.24

—62.85
74.91

137.76

C12

0.49
1.48

—3.41
—3.30

—12.70
35.28
7.33

13.93
39.08
25.15

0.486
1.484

—3.413
—3.304

—12.705
10.433

13.927
6.908

—7.019

2m coos

11.112

—7.258

0.046
0.558

—2.154
2.304
4.458

89.25
0.61
1.82

—63.46
—4.09

—15.75
38.22
12.21

—7.78
51.02
58.80

133.88
0.18
0.51

—90.07
—1.19
—4.57

4.41
7.33

—32.56
17.92
50.48
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TABLE VI. Contributions to crystal properties of NaCl (see text for symbols and units).

1 ~ 38
0.00
0.09

—0.28
—0.00
—0.29
—0.02
—9.02
—8.15

0.87

14.40
0.00
1.35

—2.05
—0.03
—2.14
—0.41

-11.11
0.00

11.11

136.80
0.00
8.78

—16.43
—0.12
—8.56
—3.32

—59.84
57.33

117.17

0.00
4.39

—0.06
—4.28
—2.08
13.26
11.23

—2.03

0.00
4.39

—0.06
—4.28

13.26
13.31
0.05

—0.573

—0.187
—1.857

2.606
4.463

40.80
0.00
5.40

—4.79
—0.07
—4.99
—2.36
—7.40
26.60
34.00

61.20
0.00
1.52

—7.19
—0.02
—1.07
—0.42

—31.00
23.05
54.05

Starting our inspection with Uo in Table V, we see a
negative NC which indicates a dominance of non-
Coulombic attraction in AgX. Contrast this with the pos-
itive NC in Table VI which results fmm a dominance of
short-range repulsion in NaC1. Within the framework of
our model the strong NC attraction in AgC1 can only be
accounted for by very strong overall vdW interaction. On
the other hand, we can expect stronger nearest-neighbor
repulsion in AgC1 than in NaC1. This is because there are
46 electrons in Ag+ and only 10 electrons in Na+, while
the nearest-neighbor distances ro of both crystals are very
close. In fact R12 is -2.3 times as large as in NRCl. The
strong repulsion in AgC1 is more than compensated by
very strong two-body vdW attraction as expected from the
negative NC. It is known from the theory of vdW interac-
tion that large two-body vd% energies are accompanied
by substantial three-body vdW energies. This is also con-
firmed in Table V. Note that the overall contribution
V38 from all three-body vdW terms is of a repulsive na-
tur'e.

Next we turn to c~ in Table V. Since in tangential
shear the nearest-neighbor' distaQces change only 1Q

second order, we have no R12 and only moderate V12
contributions (from third neighbors in AgC1) to the
(linear) elastic constant c44. The total c44 is about one-
half of the Coulomb part. This is caused by a strong vdW
attraction V22 between Cl ions which is partly compen-
sated by correcting three-body vdW repulsion. In NaC1,
Table Vl, on the other hand, small non-Coulombic contri-
butions from second neighbors cancel almost completely,
leaving c44 very close to its Coulomb part.

The 1RI'gc difference cip —c44 of AgC1 CR11 only bc Re-
counted for by many-body terms such as V38 and SS
since all two-body central potentials satisfy the Cauchy
relation. Table V shows that the three-body vdW contri-
bution to e~z is about 5 times as large as the Sarkar-
Sengupta term. We found that SS remained comparative-
ly small if we used, as an alternative, a fixed ratio q = —4
in order to simulate a quadrupolar deformability of Ag+.

More about quadrupole deformation in AgX can be
learned from the binorrnal shear modulus
6 =

& (cii —c&2+el ). Tllls qllalltlty characterizes clRs'tlc

stiffness in response to axial stress equal and opposite in
two orthogonal directions. From the right-hand columns
in Tables V and Vl we see that the NC contributions to G
of AgCl and NaC1 agree within 10%. This shows that in

binormal shear AgC1 behaves essentially similar to NaC1
rather than "usually. "

The three-body vdW lattice sum to 6 was found to be
very small. This explains the small V38 contribution in
Table V. Also, the other three-body term, SS, is 1 order
of magnitude smaller than the entire NC contribution and
causes a small stiffening effect on 6 of AgC1. Thus
three-body potentials play only a minor role in 6 of AgC1.
As a consequence the amount of 6 results mainly from a
counteraction of repulsive and attractive forces between
nearest neighbors such as in 6 for NaC1. If the Ag+ ion
wcic cRslly dcfoHIlablc ln qlladrupolar (volllIIlc conscrv-
lllg) Eg symmetry, this sllollld S11ow up IIlost clcal'ly 1I1 R

substantial negative (softening) SS contribution ' to G.
Our interaction potentials cannot confirm such softening
contributions.

Another combination of elastic constants is the bulk
~odulus' K = —,

' (cl I+2c I&+el ), representing stiffness in

response to isotropic compression. The NC part of the
AgC1 bulk modulus, Table V, is -70% larger than the
NaCl value, Table VI. Here again we see one of the
"unusual" pmperties of silver halides, namely, strong
resistance against compression (small compressibility).
Table V reveals that the very large terms from two-body
vdW attraction cancel most of the even larger contribu-
tion from short-range repulsion. The small difference,
—15% of K, is almost completely offset by the attractive
Coulomb part. This leaves the three-body terms V38 and
SS which furnish -75% and -25%, respectively, of K.

We find a similar situation among the contributions to
—c, representing the equilibrium condition. Here short-
range repulsion balances essentially two-body vdW attrac-
tion, while the three-body terms balance the Coulomb
part. It is also interesting to compare the sum of short-
range repulsion and two-body vd%' attraction in the quan-
titites Uo, —ci, and E, all of which correspond to perfect
cubic crystal configurations. The values of —1.43 eV,
—2.07 O'Pa~ and 8.38 GPa~ respectively~ show the dom1-
nance of vdW attraction in the lattice energy but increas-
ing influence from short-range repulsion in the first- and
second-order elastic constants c~ and X. This comes
from the "harder" distance dependence of the repulsive
potentials, whose second derivatives yield relatively larger
contributions to e& and X than those from vd%' attrac-
tion.

Finally we turn to contributions to the quantity mmo,
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which is related to transverse optical phonons at I". We
found the corresponding three-body vdW lattice sum to
be extremely small. This explains the very small V38
contribution in Table V. The SS term is an order of mag-
nitude smaller than the NC part. This leaves the non-
Coulombic two-body terms from nearest neighbors whose
large amounts counteract such that NC comes very close
to NC of NaC1, Table VI. This shows that optical I
point phonons in AgC1 behave essentially as "normally"
as in NaC1.

Much information about the quadrupole deformability
of Ag+ has been deduced by different authors from the
phonon dispersion of AgX and in particular from the fre-
quencies at the L point. ' We have calculated these fre-
quencies with our interaction potentials. Lacking reliable
effective charges for L-point phonons, we used Z =1 in
the Coulomb contribution to the frequencies. This is, of
course, a crude approximation particularly since the
Coulomb contribution and the non-Coulombic contribu-
tions other than from nearest neighbors (i.e., the forces
which distinguish L-point from I -point phonons) are of
the same order of magnitude. Thus we cannot expect
more than qualitative trends from an inspection of contri-
butions to frequencies of phonons at L. Our calculated
values in THz for AgCl (AgBr) are f~~=3.37 (3.26),
fl, ——1.69 (1.75) f2(=5.59 (3.85), and fp, ——2.28 (1.56).
Agreement with experimental data in Table I is not good
(up to 10% deviation) as expected. The contributions
from three-body vdW interaction to frequencies of trans-
verse phonons at L (not listed) are very small according to
extremely small lattice sums. We found that very large
contributions from three-body vdW repulsion to frequen-
cies of longitudinal phonons at L were mainly compensat-
ed by attractive vdW terms between second neighbors of
the vibrating sublattice. This leaves as the dominant
terms the same nearest-neighbor contributions as in fo,
accompanied by the insufficiently known Coulomb terms.
We could not find any clear indication for easy quadru-
pole deformalibilty of Ag+ among the contributions to
the frequencies of L-point phonons.

D. Apphcatlons

Our interaction potentials have been applied in atomis-
tic calculations of simple crystal defects in AgX (Refs.
70—72). Potstada's calculated Frenkel energy of 1.39 eV
for AgC1 is in excellent agreement with the experimental
value of 1.45 eV. Calculated formation energies for hy-
pothetical Schottky defects in AgC1 (AgBr) of 1.79 (2.05)
eV by Potstada and 1.83 (1.89) eV obtained by Leutz with
a different method confirm the observed predominance of
Frenkel defects in AgX. The calculated Frenkel energy
for AgBr of 1.48 eV compared to the experimental value
of 1.13 eV is less satisfying. As discussed in Sec. III, we
suspect that our potentials for AgBr are subject to uncer-
tainties among the elastic constants used in their deriva-

tion and hope that this article may stimulate new mea-
surements of elastic constants of AgBr.

We present interaction potentials for AgCl and AgBr
fitted to experimental data of the lattice constant and en-

ergy, elastic and dielectric constants, and the frequency of
optical phonons at I . The long-range Coulomb interac-
tion appears well represented by integer ionic charges,
Z = 1. We saw no necessity to account for partial ionicity
as suggested by Pauling, and Phillips, Van Vechten or
used in interaction potentials for AgI by Vashishta and
Rahman. ' Thc plcscncc of 1ntcgcr 10Q1c chalgcs 1n
contributions to the lattice energy and elastic constants
must not be confused with the occurrence of effective
charges in lattice vibrations whose origins are well under-
stood within the ionic framework.

The non-Coulombic terms for short-range repulsion
and vdW interaction are backed by quantum-mechanical
appoximations. The Lowdin approximation ' and
LQIldon s theory of vdW 1ntcI'action ' ' plovldcd rela-
tions which were used to reduce the number of interaction
parameters. Wc 1ncludcd onc phcnoIllcIlolog1CRl potcnt181
proposed by Sarkar Rnd Sengupta" ' which allowed us to
simulate a quadrupole deformability of the Ag+ ion. Our
interaction parameters, Tables II and III, appeaI' reason-
able in comparison with other authors' ' ' and in their
contributions to crystal properties, Table V. First applica-
tions of our interaction potentials in atomistic calculations
of crystal defects showed acceptable results.

In regard to the nature of bonding in AgX, our poten-
tials exhibit very strong vdW interaction. This aspect
seems to explain many of the "unusual" features of AgX.
So does the very strong two-body vdW attraction cause
thc obscrvcd small lattlcc constRQt and large lattlcc cQcrgy
as well as the small elastic stiffness c44 in tangential
shear. Considerable repulsive effects from three-body
vdW interaction cause the severe deviation from the Cau-
chy relation and contribute to the large bulk modulus X.
The elastic stiffness G for binormal shear and the fre-
quencies of optical phonons at I are found to be "usual"
compared to alkali halides.

Our results do not confirm an easy quadrupole defor-
mability of Ag+. This finding is based on (1) the parame-
ters obtained for the Sarkar-Sengupta potential, (2) inspec-
tions of contributions to c~q —c44 and 6, and (3) the trend
among contributions to frequencies of L-point phonons.
It is possible that indications from lattice dynamics ' in
support of quadrupole deformation of Ag+ actually result
from three-body vdW interaction. We must bear in mind
that these indications are based only on foxce constants,
i.e., second derivatives, rather than on explicit interaction
potentials. It is also possible that hints from Pauling's
and Phillips —Van Vechten s ionicity schemes toward co-
valent contributions in silver halides actually reflect the
presence of strong vdW interaction.
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