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In order to gain insight into whether amorphicity can be interpreted as spatial chaos, we investi-
gate one-dimensional chaotic configurations of atoms. These configurations are generated by the
Baker transformation or, equivalently, by the Bernoulli shift, which is characteristic for chaos. We
show that the distribution function G; of the jth nearest-neighbor distances of these configurations
is asymptotically (as j— ) a Gaussian distribution with a width growing as \/; (local limit
theorem). Furthermore, the pair distribution function G exhibits peaks related to the positions of
nearby atoms, but in the limit of large distances these oscillations go to zero, and the pair distribu-
tion function converges to a constant, as expected for amorphous solids.

I. INTRODUCTION

Two different concepts have been developed to con-
struct models of the atomic arrangement of amorphous
structures. The oldest one, introduced to describe the
structure of amorphous solids with covalent bonds, such
as window glass (SiO,) or amorphous semiconductors (Si,
Ge), is the concept of random networks, originally due to
Zachariasen.! The main idea of this approach is to build
random structures in arranging the atoms in such a way
that the lengths and angles of the bonds do not deviate
much from their counterparts in the crystalline phase of
the substance. The resulting structure is then topological-
ly different from the crystal, but with preservation of the
coordination number. Polk? and Polk and Boudreaux?
used tetrahedrally coordinated random networks to simu-
late the atomic arrangement of armophous Si and Ge.
The radial distribution function they obtained was in
quite good agreement with the experimental one. Dandol-
off, Dohler and Bilz*® proposed a tetrahedrally coordinat-
ed random network with still more local order. It con-
sists, apart from small distortions, only of two “unit
cells,” a 5- and 6-ring (but a different 6-ring than in dia-
mond structure).

The other concept, developed to build models of metal-
lic glasses, is dense random packing of hard spheres. This
can be done according to geometrical or energetical condi-
tions. The geometrical construction, which simulates va-
por deposition onto a solid substrate, operates, according
to Bennett,® as follows: Starting with a seed cluster one
deposits additional spheres at the surface of the growing
cluster. The site where to place the next sphere is chosen
according to a global (minimal distance to the center of
the seed cluster) or a local (minimal distance to the plane
of the three nearest neighbors) criterion. The second, en-
ergetical method consists of spreading atoms randomly in
space and relaxing them, according to a specified pair po-
tential, into a minimum energy configuration (see e.g.,
Maeda and Takeuchi’). In both cases the resulting pair
distribution function agrees very well with that of an
amorphous solid: It exhibits more or less pronounced
peaks, related to nearest, next-nearest neighbors, and so
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on, which disappear for growing distance.

There are also methods which are applicable to both co-
valent and metallic solids. One reason for this is the pos-
sibility of associating unambiguously a random network
with an arbitrary configuration,® especially with one gen-
erated by dense random packing. Such random networks
do not generally fulfill the above-mentioned characteris-
tics of small distortions of bonds, and therefore do not
necessarily correspond to covalent structures. An exam-
ple of such a concept, which is applicable to both types of
solids, is the gauge theory of amorphous structures by
Rivier and Duffy,”'® which explains in a natural way the
existence of two-level systems, which seem to be charac-
teristic for glasses. This approach shows impressively the
power of topological arguments. Another interesting con-
struction is due to Kléman and Sadoc.!""!? It is based on
the idea that local arrangements of atoms, which cannot
fill Euclidean space regularly, may do this in curved
space. The amorphous structure is then obtained by map-
ping the regular structure within the curved space into
Euclidean space. The patching of such local mappings in-
duces two types of effects: distortions, which keep local
order in the interior of the image of one patch, and de-
fects in local order at the boundaries.

In this paper we follow a quite different approach,
which can be characterized by the following question:
Can amorphous structures be interpreted as spatial chaos?
By the notion “spatial chaos” we mean a spatial analogy
to irregular time evolution, which has been discovered in
dynamical systems.’*~!> The possibility of such a con-
nection between spatial chaos, obtained from dynamical
systems and amorphicity, was probably first mentioned by
Aubry.! Another approach to spatial chaos is due to
Ruelle,!” who proposed the existence of “turbulent crys-
tals” as thermodynamic equilibrium states' at nonzero
temperature.

In order to find an answer to the question raised above,
we restrict our considerations, as a first step, to one-
dimensional models, which lead to chaotic stationary con-
figurations. The restriction to one-dimensional systems,
although making a comparison with real systems in na-
ture difficult, also allows us to investigate the question of
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how far topological defects (which are absent in one di-
mension) are important for amorphous structures.

Such one-dimensional models for a classical chain of
interacting atoms have been studied by several authors; in
particular, Aubry'® and Janssen and Tjon!° have shown
under certain conditions the connection between station-
ary solutions of such models and orbits of corresponding
maps. If one considers interactions up to rth-nearest
neighbors, these stationary solutions are related to the or-
bits obtained by iterated application of a (2r—2)-
dimensional map. The sequence of one component of the
iteration points of this map corresponds to the sequence
of distances v, between neighboring atoms. There are
three important types of orbits: periodic, quasiperiodic,
and chaotic. The first two represent crystalline and in-
commensurate states of solids, respectively. Therefore, it
may be supposed that chaotic orbits can be identified with
amorphous structures. This identification would give a
microscopic explanation of amorphicity. In chaotic re-
gions of maps, which we define here to be neighborhoods
of transverse homoclinic points, there exist embeddings of
the Bernoulli shift into the map.!*2°=22 Because of this,
and the simplicity of the Bernoulli shift, we use this spe-
cial map, or equivalently, the Baker transformation to
generate chaotic configurations. This reduction of the
original problem preserves the main features of the chaot-
ic orbits and it allows us to derive analytical results for
the pair distribution function of the corresponding config-
uration.

This paper is organized as follows: In Sec. II we
demonstrate how the chaotic configurations are generated.
The results for the jth-nearest-neighbor distribution func-
tion G; and the pair distribution G are presented in Sec.
III, and Sec. IV contains a discussion of the results. The
mathematical details of the proofs of the results in Sec.
III will be published elsewhere.?

II. CHAOTIC CONFIGURATIONS

We consider one-dimensional configurations of atoms,
which are constructed in the following way: The atomic
positions u, are given by

Up y1—Up=V,=A+Bx,, A>0,B>0 (1)

where we fix uo=0 without restriction of generality. If
the mean value of the quantities x,, is zero, we have

IJE‘LE}V(“”N‘“"—N):A for all n . (2)
This means that A is the mean distance of neighboring
atoms. The parameter B is a measure of the deviations of
the nearest-neighbor distances from their mean value A.
The quantites x, in (1) are generated by the Baker
transformation, which we prefer to the Bernoulli shift, be-
cause it can be better illustrated. x, is expressed by the
transformation T by

X, =(T™"a,))1—+ . 3)

Starting with an initial point (a,f3), x, is the x com-
ponent of the nth iteration point of the Baker transforma-
tion, reduced by % This transformation is given by

T: [0,12—][0,1)%,

(2x,5y) for0<x <+,

T(x,y)=
(x.7) (2x —1,2(y +1)) for + <x <1.

Figure 1 illustrates the action of the Baker transformation
and Fig. 2 the relationship between its orbits and the con-
figurations.

The choice of the Baker transformation to construct
chaotic structures is motivated as follows: As already
mentioned in the Introduction, for models of atomic
chains with interactions up to the rth nearest neighbors,
there is a correspondence between the sequence of atomic
distances and the sequence of points generated by iteration
of a (2r —2)-dimensional map F. Typically, such a non-
linear map will have regions with chaotic orbits. A gen-
eral feature of such a region is that there exists an embed-
ding of the Bernoulli shift or the Baker transformation
into the map.?%?! This means that in this region the map
F is a deformation of the Baker transformation in the fol-
lowing sense: There exists an F-invariant set 4 CR> ~2
and a transformation ¢: 4 —[0,1 )2, such that

F | A=<p_loTo<p. (5)

This implies that the iteration points of F restricted to 4
and the iteration points of T are connected by the
transformation @, which is independent of the iteration
index n. Instead of starting from a special potential,
which would lead to a special map F, it is therefore natur-
al to take the Baker transformation, which unifies the
characteristic features of chaotic regions of such maps,
and to look at the properties of configurations generated
by this map.

The presence of short-range order in an amorphous
structure is reflected in our configurations by the strong
correlations of successive v,, which are bounded between
A—+B and 4 + +B, which is obvious from (1) and (3).
The fact that these correlations, which depend on B/A,
decay exponentially,, and that the deviations of the jth
nearest-neighbor distances from their mean value j4 in-
crease with j, is also consistent with the absence of long-
range order in amorphous solids. The ratio B/A4 is the
crucial parameter in our configuration; it is a measure of
short-range order. We assume O<B/A <2 to ensure
v, >0.

0
0 1 2

FIG. 1. Action of the Baker transformation: The unit square
is first deformed to be twice as large in length and half as large
in width, then the right-half part of the obtained rectangle is
shifted to the top of the left part to get a map from the unit
square to itself.
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FIG. 2. Correspondence of the x component of the orbit of
the Baker transformation (within the square of length B) to the
atomic distances of the configuration.

III. PAIR DISTRIBUTION FUNCTIONS

To decide whether the chaotic configurations of Sec. II
can represent the atomic arrangement of amorphous
structures, we examine the following distribution func-
tions: Gj, the distribution function for the jth-nearest-
neighbor distances and G, the pair distribution function of
the configuration. These functions are related to each
other by

6=3¢. (6)
j=1

G; can be determined as follows.
neighbor distances are given by

The jth-nearest-

Uy +j— Uy =D;((T™a,B))) , (7
where Dj is the function
D;: [0,1)>R*
defined by
j—1
Dj(x)=jA +B Y, {[2x (mod 1)]—7} . (8)
1=0

Because the x components of the iteration points are
uniformly distributed in the unit interval for a and S nor-
mal numbers (this is obvious from the definition of nor-
mal numbers; see Niven?*), i.e., with density p(x)=1, we
have to calculate the distribution of D;(x) with the as-
sumption p(x)=1. Let N;(R) be the number of solutions
x,(R)E[0,1) of

Dj(x)=R . ©

The probability that the jth-nearest-neighbor distance is
between R and R +dR is by definition 4 ~'G;(R)dR,
which is given by

Ni(R)
A~'Gi(R)YAR= 3, p(x,(R))|dx,| , (10)
v=1
where dR and dx,, are related by
dD;
— dx,=dR . (11)
dx |x=x

v

Using p(x)=1 and
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dD] j_l N
—L(x)=B'S 2!=B(2/—~
dx (x) I=§0‘, B(2/-1)

almost everywhere, it follows from Egs. (10) and (11) that
(12)

The mean atomic distance 4 is introduced in Egs. (10)
and (12) in order to make G; dimensionless.

Hence, G; is a piecewise constant function, which is
zero outside the interval [j(4 —5B), j(4 ++5B)]. For
small j, G; can easily be calculated according to Eq. (12).
Figure 3 shows the behavior of G; for some values of j
and in Fig. 4, G{—G, are represented in the same scale
to display their relative positions and heights. For large j,
this procedure becomes laborious because the number of
steps of G; grows exponentially with j. But for the
asymptotic behavior of G; for j— « an explicit expres-
sion can be derived.

For convenience we define

Y, (x) = [D;(x)—jd] (13)
Then the number of solutions of Eq. (9) is of course equal
to the number of solutions of

1 .
Yj(x)=§(R —jd) . (14)
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FIG. 3. Behavior of the distribution functions G; for

B/A=1 and some values of j. The essential form of G, is in-
dependent of the parameter value; B/A only determines its

width.
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FIG. 4. sttrlbutlon functions G;—G,, visualizing the

overlap of the G;’s for two different values of 4 /B.

The function Y; can be split into two parts:

Y;(x)=Y}(x)+ Y(x),
1y k 1 1
nm_—y4_2+z—ﬂ4]m, (15)
iz2 i—
Yix)="3 oyl —i=L

v=0 2

with

k=[2"x]= S 0k, Ax=2"'x—k€E[0,1), (16)

v=0

where [x] denotes the integer part of x and o,(k) the
binary digits of k. This deoomposition reveals the struc-
ture of the function ¥; as shown in Flg 5. The graph of
Y is a set of parallel hnes of slope 2/ 1, Wthh are con-
tamed in a strip of slope equal to —1. Y spreads these
lines into j strips, which are parallel to the original one.
The number of lmes in each strip is related to the number
of sequences {o,}4 %, for which

S o it)=m
v=0

where the positive integer m depends on the strip. Be-
cause o, equals O or 1, the number of sequences fulfilling
Eq. (17) is equal to the binomial coefficient (4, ). There-
fore, the number of solutions of Eq. (13) is closely related
to the binomial distribution, which, as is well known, can
be approximated by the Gaussian distribution. This leads
finally to the following.

=const , (17)

Theorem 1:
B\/— ‘/—l 1 z?
lim =L iA —— 18
Jim =3 GipAr T =R | 18

Yi(x) Yi(x)
24 -2 24 +2
11 -1 11 - ==}t
X X
-1 -1 1q4—=- - -1
"2 -2 24 --2
Y(x)
—
J
2 | 2
14 '_
-1 4 R
-2 - .
J
-3 | 2
]

FIG. 5. Decomposition of Ys=Y!}-+ Y% according to formula

(15).

for all zE€R, uniformly in every bounded z interval.

This theorem states that the distribution function of jth
nearest-neighbor distances G; behaves asymptotically as a
Gaussian distribution, which is centered at j4 and the
width of which grows as V/j. The details of the proof
which is based on the ideas described above, and the
equivalence of the theorem with a local-limit theorem of
strongly dependent random variables, are given in Ref. 23.

The pair distribution function G can be calculated ac-
cording to formulas (6) and (12). For fixed R, the sum of
formula (6) consists only of a finite number of nonzero

terms, because G, is zero outside [j(A—3B),
j(A+5B)]:
2R
24—B
G(R)= 2 G;(R) . (19)
| 2r
1= \24+B

Therefore, for small R, only a few G; contribute to G.
Figure 6 shows the pair distribution function G for
0 <R <54 and three different ratios B/A.

In order to determine the asymptotic behavior of G for
R — «, the following approach is useful: For large
enough j, we approximate G by a Gaussian distribution
with standard deviation o;= +BV/j (Theorem 1). Then
G, which is the sum over the G s, is approximated by a
sum of Gaussian distributions, which are centered at the
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positions jA4. The main contribution to this sum ori-
ginates in a range of j value with size of the order of 1/jz
around jr =[R /A]. Within this range, the dependence of
the width of the distributions on j can be neglected, and
our sum can be reinterpreted to a sum over values and one
Gaussian distribution, taken at points which are separated
by A. Because the width of this single distribution grows
as V/jg, this sum tends in the limit of large R to A~'
times the integral of the distribution, which is, according
to our normalization, equal to 4. Thus we conclude as
follows.

Theorem 2:

Rlim G(R)=1. (20)
The proof of this theorem can also be found in Ref. 23.
We remark that this convergence to 1 is a necessary con-

dition for amorphicity and reflects the absence of long-
range order.

IV. DISCUSSION

The pair distribution function of our configurations
generated by the Baker transformation resembles that of
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FIG. 6. Pair distribution function of our chaotic configura-
tions for three different values of the parameter B/A.
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FIG. 7. Pair distribution function for B/A =+ for a larger
range of R values.

an amorphous solid: On one hand it exhibits the absence
of long-range order due to the property that G (R)—1 for
R — « (Theorem 2), which by itself is based upon the
fact that the deviation of the jth-nearest-neighbor dis-
tances from their mean value jA is proportional to V/j.
On the other hand, they show the short-range order,
which depends sensitively on B/A4. For decreasing B/A,
more and more peaks appear in G. Thus to resemble the
pair distribution function of an amorphous solid, where
only nearest-, next-nearest-, third-, fourth-, and perhaps
fifth-nearest-neighbor peaks appear, B/A has to be fairly
large. This leads to the peculiarity that the first peak of
G can originate from a superposition of nearest and next-
nearest neighbors (compare Figs. 4 and 6 with B/4A=1).
In three-dimensional systems, B/A can be much smaller
(see Polk?), such that this peculiarity need not be present.

After these first peaks, the pair distribution function
shows an oscillatory behavior with decreasing amplitude.
The “period” of these oscillations is not as expected equal
to A (see Fig. 7). The origin of this becomes obvious by
comparing Figs. 4 and 7. The deviations of the contribut-
ing G;’s from Gaussian distributions are larger than the
oscillations with period A4, which would arise from
Gaussian distributions. In particular, the fact that the
G,’s have two central peaks leads to the absence of period
A.

In conclusion, we can say that the one-dimensional
chaotic configurations we have generated by the Baker
transformation may be interpreted as one-dimensional
amorphicity at least concerning the atomic arrangement,
which is characterized by the pair distribution function.
Further efforts in mainly two directions are necessary:
first, the investigation of one-dimensional configurations
generated by chaotic maps, which originate from an in-
teraction potential (considering the embedding of the Ber-
noulli shift), and second, the generalization to higher di-
mensions. Mainly the last point seems to be important,
because the dimensionality of space may be crucial for the
phenomenon of amorphicity.
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