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Screened Coulombic impurity bound states in semiconductor quantum wells
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The ground bound state of Coulombic impurity screened by free carriers in a quantum well versus

the free-electron concentration n, is calculated for several well thicknesses. Zero temperature and

electric quantum limit are assumed. The random-phase-approximation dielectric function is used to
describe the screening effect. For a given well thickness the binding energy decreases with increas-

ing electron concentration until a saturation is reached at large n, . The remaining binding is not
negligible. At low temperature this may give rise to a freeze-out effect.

INTRODUCTION

There has been some interest in the determination of
the binding energy of the hydrogenic impurities in nomi-
nally undoped semiconductor (SC) quantum wells

(QW). ' Photoluminescence experiments involving hy-
drogcI11c lmpur1t1cs have bccn Icpor'tcd. ' Thc calcula-
tions of hydrogenic impurity levels squeezed in a quantum
well are in qualitative agreement with experiments.
The intrinsic luminescence of high-quality QW s displays
a clear excitonic behavior. ' Similar to the impurity
problem the carrier confinement along the growth axis in-
.crcascs thc cxclton blndlng cncr'gy over thc bulk value.

Optical experiments have also been performed in QW's
colltallllllg frcc carl lcl's. Tllcsc carl lcl s can bc optically
generated by intense illumination of a nominally undoped
QW or can be of extrinsic origin. Some recent optical ex-
periments have involved modulation-doped" ' or
RlltlIIlodlllatloll-doped ' GRAs QW s, wllcl c IIIlplll ltlcs
are selectively placed in the cladding barrier or in the well,
respectively. As a result of modulation doping there are
free carriers in the QW. For antimodulation doping' '
the situation is unclear at low temperatures. In the pres-
ence of free carriers the Coulombic interaction is screened.
In metal-oxide-semiconductor structures the bound states
supported by screened Coulombic potentials have been ex-
tensively studied. ' ' To our knowledge no such calcula-
tions are available for QW's. There are, however, notice-
able advantages in studying screening effects in QW's. In
these structures the doping control is quite advanced
(selective doping appears to be possible) and the structural
parameters (barrier height, well thickness) can be adjusted.
The energy levels of both doped QW and of their impuri-
ties can be precisely measured and possibly accurately cal-
culated. In the present communication we report the re-
sults of variational calculations of the ground-state bind-
ing cncr'gy of an 1solatcd hydl ogcnlc lmpurrty placed at
the center of SC QW's containing free carriers. Zero tem-
perature and electric quantum limit ar'e assumed in the
evaluation of the random-phase-approximation (RPA)
static dielectric function. We will show that the carrier

confinement along the growth axis, which induces a
concentration-independent Thomas-Fermi wave vector,
leads to the persistence of a sizable impurity binding ener-

gy at high electron concentration. This result is in
marked contrast with the bulk situation where the
Coulombic binding energy vanishes beyond some critical
carrier concentration. Although we calculate the binding
energies of impurities in the presence of a given concen-
tration of free carriers whose origin is not specified, there
exist situations (antimodulation doping) where the value
of tllc blIldlllg cllcl'gy Illay feed back oIl flic carrier coIl-
centration itself. We will only briefly discuss the oc-
currence of the carrier freeze-out in antimodulation-doped
QW's.

DISCUSSION

Let us consider a quantum well of width 1. and barrier
height Vb IFig. 1(a)]. Because of the confining barrier,
the z motion (z parallel to the growth axis) becomes quan-

L
FIG. 1. (a) Conduction-band profile of an undoped semicon-

ductor quantum well. (b) Conduction-band profile of a
modulation-doped n-type semiconductor quantum well.
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tized. Let E
&

be the ground-state conduction subband. In
thc following wc will neglect band nonparabollclty Rnd Rs"

sume a constant effective mass m* throughout the whole
structure. The ground-state wave function is then

y, (z) =~ cos(koz),
f
z

f

(—0 L
2

component V, (qj,z) is related to the corresponding aver-
age of the bare Coulombic potential by

e(qi ) rcSq,

0 Lg, (z) =Bexp ~—b z ——
2

Xi(z) =Xi( —z),

hag p Akp= Vb —E), ——E),2' 2m

L
2

ZQ
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where 5 is the sample area, K the lattice dielectric constant
assumed to be the same throughout the whole structure,
and e(qj ) the wave-vector —dependent dielectric function.
In the electric quantum limit at T=O and neglecting
damping, e(qj ) ls given by

2
«qi ) =1+ f,(qi )g(qi ),

Q pQ'y

where 00 ls the three-dlmens1onal Bohr radius ( 103 A
in GaAs). The screening form factor f, (q~ ) is defined as

L
ko tan kc =Kb'2

E, =E', +(X',
~

—ey ~X', ), (4)

where P(z) is the self-consistent electrostatic potential due
to charges. It includes the ionized impurities as well as
the electronic contributions, the latter being treated in the
Hartree approximation. The chemical potential p at
T=Ois

In doped QW's the presence of free carriers as well as of
charged impurities induces band bending. ' ' Suppose
that n, electrons occupy the E~ subband (electric quan-
tum limit). In this limit the band bending can be treated
perturbatively for sufficiently thin QW's. To a good ap-
proximation, first-order nondegenerate perturbation on E

&

is sufficient. This approximation improves for decreasing
n, and is better in antimodulation-doped than in
modulation-doped QW's. To this first order, the band
bending leaves the eigenfunctions unchanged and shifts
E ~. We will denote the perturbed energy by E~ ..

f, (qg)= J J dzdz'(X)) (z)(X)) (z')

&&exp( —q~ ~z —z'
~

) . (10)

g(qz)=1 — 1— 2k
1f qg)2kF .

Note that the presence of g (qz ) in (9) is imperative in ob-
taining a reasonable description of the screened potential
at low-carrier concentration and ultimately in ensuring
the absence of screening if n, =0.'

Both f, (qz) and g(qz) contribute to a decrease of the
s nig at tlagew cto . A ot edby
Price, ' f, (qj ) can be safely approximated by

f.(qi)=(1+«L)qiL) ' (12)

where C(L) is a C constant. The impurity Hamiltonian
Is

The function g(qz) takes into account the finite size of
the Fermi surface:

g(qg)=1 1f qg +2ky

where the Fermi wave vector kz is equal to

kF ——( 2m.n, )
'i

We now consider the problem of the bound state associ-
ated wltl1 R single, isolated, impurity plRccd Rt thc center'
of the quantum well (previous studies have shown that
on-ccntcr in1puIltics statlsticRlly doll11natc thc iIIlpuIlty-
associated optical featuI'es when the imporities are ran-
domly distributed in the well). The mobile carriers screen
the impurity potential. In the random-phase approxima-
tion the screened Coulombic potential felt by the bound
carrier may be Fourier expanded

V, (r )= g V, (q~, z)e

where qz, rz are two-dimensional wave vectors and I
refers to perpendicular to the growth (z) axis, i.e., in the
layer plane. The average value over (P&) of the Fourier

.+ V, Y(z' L'/4) —eP(z)+—V, ( r ),2m*

where 1'(x) is the step function, which is unity if x &0
and 0 otherwise. We have calculated the impurity binding
energy by using the one-parameter trial wave function

g(r ) =EX)(z)exp( r~ /A, ), — (14)

where X is the normalization constant and X,(z) the ap-
proximate (i.e., correct to first order in P) ground solution
of the doped quantum well defined in (1)—(4). The wave
function (14) is separable in r~ and z. We know that (14)
and some nonseparable trial functions (i.e., those obtained
from (14) by changing r~ into (rz+z )'~ gives very simi-
lar binding energies if L/ao&3 and Vb ——00 for un-
screened Coulombic potential. We expect the same agree-
ment for finite V~, provided the well thickness is not too
small. The separability in rz and z makes the know-
ledge of V, ( r ) unnecessary: Only the averages
(X&

~
V(qz, z)

~
X& ) are required. Therefore (8) can be



30 SCREENED COULOMBIC IMPURITY BOUND STATES IN. . . 907

used, which greatly simplifies the algebra.
To distinguish between the respective actions of f, (qi )

and g(ql) it is illustrative to discuss first the case of an
ideally two-dimensional problem. In terms of QW' such a
limit corresponds to letting Vb ——oo and then L, =0. Then

~
XI(z)

~

'=&(z), f, (qi )= I .

The variational calculations reduce to the minimization of

n, (cm )
1olO

l

n/re E,
—

0 I 1 I 1

~o' &O"' 10" )00
ne (cm )

FIG. 2. 81ndlng cnelgy of a sclccncd hydrogcn1c iIIlpurity 1n
an ideally two-dimensional electron gas vs carrier concentration.
Three different values of the three-dimensional Bohr radius ao
are considered. The arrows indicate the concentrations for
which the equality 2kgao ——1 is fulfilled.

10l2

y(x) =1 if x & arctan(tkFao),
(17)

y(x) = 1 [1—(kF—act /tanx ) ]', if x )arctan(tank~),

where Ro is the three-dimensional effective rydberg. For
large carrier concentration (kFao))1), one recovers the
Thomas-FcriTli limit and thc scIccn1ng becomes o~ 1n-

dependent. Therefore the binding energy saturates to a
nonzero value (-0.56Ro). This contrasts with the three-
dimcnslonal result whcI'c thc b1ndlng encl gy vRn1shcs
when the Thomas-Fermi wave vector becomes comparable
to 1/ao. When n, goes to 0 ( k~ao && 1), E(t~;„) goes to
—4Ro, which is the binding energy of the two-
dimensional, unscreened, hydrogenic potential. As shown
in Fig. 2 the transition between the two regimes is rather
smooth, extending over approximately three decades.

In the realistic case of QW of finite size, the results are
qualitatively but not quantitatively similar to the ones ob-
tained Ill R pllI'cly bldlmcnslonal sltllatioll (Fig. 3): Tllc
impurity binding energy decreases with increasing n, and
reaches a saturation value at large carrier concentration.
This saturation value is smaller than found for Vt, ——ao

and I. =0: The finite extension of XI(z) along the growth
axis leads to a decrease of the binding energy. This de-
CIcasc ovclbalRnccs thc lncI'cased binding assoclatcd w1th
the weakened screening due to the screening form factor
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FIG. 3. The binding energy of a screened hydrogenic donor
impurity p1aced at the center of a GRAs QW containing free
carriers is plotted vs 2k~ao for three different well thicknesses:
I. =50, 100, 200 A. The material parameters used in the calcu-
lat1ons are Vb ——0.2 CV, m =0.06'7rno, ao ——103 A. T =0

0
10

[f,(qi ) & 1 j. The saturation value at large n, is I. depen-
dent and decreases with increasing I,: Increasing thc well
thickness tends to restore a bulk situation where we know
that the binding energy of a screened impurity vanishes at
large carrier concentration. Note, however, that for actual
well thicknesses (I. & 200 A) the remaining binding is still
sizable (-0.3Ro) and should allow for the observation of
Impurity-associated fcatlllcs ill doped QW s Rf, low tem-
perature. In fact, the participation of impurity to some
luminescence lines in antimodulation-doped' ' or even
modulation-doped" GaAs QW's has recently been report-
ed (however, no detailed study of these impurity lines"'
is available at the moment).

The transition region between low and high n, corre-
spoIlds to 2kFao 1, I.c., to ne 3.8+ 10 clll lf GRAs
parameters are used (m'=0. 067mo, 17=13.1). Hence,
according to our calculations, one may expect to observe
in low-doped QW samples ( n, & 2 X 10" cm ) some
variation of the impurity binding energy with the carrier
concentration.

Finally the persistence of a sizable binding energy at
large n, for actual QW thicknesses makes the freeze-out
of carrier at low temperature a likely phenomenon in
some doped QW samples. With respect to freeze-out,
modulation-doped Rnd antimodulation-doped samples
should behave differently. In modulation-doped QW's
ionized impurities are in cladding barriers and can be fur-
ther separated from the QW itself by a spacer layer. They
have rclcascd thc11" carr1crs~ wh1ch Rrc mostly local1zcd 1n
the well. Although our calculations do not apply to this
situation, we infer from previous studies that the impuri-
ty binding cIMlgy will bc ncgllglbic (sillcc lt ls already vcly
small for an unscreened potential ). Correspondingly, the
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impurity wave function will be quite extended in the layer
plane (several ao). Band tailing will take place, adding a
small impurity band tail on the low-energy side of the
free-carrier density of states. In antimodulation-doped
samples the carriers and their parent impurities are both
in the well. Our calculations, although done only for on-
ccntcx" IIDpurltlcs~ sho%v that 0.3RO blndlng can bc ex-
pected for actual L. This is —1.6 meV, i.e., -20 K in
GaAs QW's. Hence for T &20 K appreciable freeze-out
on isolated impurities should bc expected. Many-impurity
effects may again ruin the single-impurity behavior.
However, for L & 200 A and n, & 10' cm the extension
of the impurity wave function in the layer plane is
A, ;„&1.3ao, i.e., A, ;„&130A in n-doped GaAs QW's.
To continue to observe isolated-impurity effects when
most of the carriers are unbound, the mean distance be-
tween impurities should be )2 A, ;„. For a QW of width
L, uniformly doped with Xd donors per cubic centimeter,
thc mean dlstancc bet%'ccn donols IQ thc lager plRQC Is
(NdL) '~ . Hence isolated impurity behavior is not unex-
pected if N~ & Nz

'" where Nd '"=(4LA, ;„) '. %'ith
I. =100 A, Xd '"-1.5& IO' cm . 1n some recent ex-
pcriIDcIlts thc nct doIloI' conccntIRtIOIl wRs IDRrgina11$
smaller' or much smaller. ' In Ref. 14 photolumines-
ccncc cxpc11mcnts %'cx'c done at, liquid-heliUIIl tcIDpcIRtUIc
and the freeze-out was probably complete. Hence the
binding energies should have been close to the ones found
in nominally undoped QW's of the same thickness. This
is indeed what was observed. ' In Ref. 13 the donor con-
centration was larger than in (14) ( —10' cm ) and the
temperature was var1cd bctwccn 5 Rnd 20 K. At T =20
K some donors may have released their carriers. Howev-

c1, SIncc Rt IDost 10 CID electrons wcx'c Rvailablc, thc
satUrat1on rcglIDc wRs Ilot reached. Note f1nally that thc
analysis of thermal detrapping of the carriers in doped
QW's can be intricate since the variation of the donor
binding energy with n, is substantial, and its rate of
change ls not smooth when 2k~00 1.

CONCLUSIQN

We have calculated the binding energy of a single
screened Coulombic impurity placed at the center of a
doped quantum well. Our calculatIons show that the
quasi-two-dimensional behavior of carriers in QW leads to
binding energies which behave with the carrier concentra-
tion in a completely different way than is found in bulk
IDRtcrials. NRIDely, thc bindIng cQclgy docs not valllsh Rt

large electron concentration but saturates to a finite (and
sizable) value. Our calculations have taken into account
finite barrier height but are valid only in the electric quan-
tum limit. We believe that our results, derived for the im-
purity problem, are also qualitatively valid for the exciton
problcID. F1nally, scvcI'Rl RssuIDptioIls IHRdc 1n the
present calculatIons can bc 1-claxcd: One can study thc
binding energy versus the impurity position and include
finite temperature or broadening in the dielectric function.
These extensions are planned to be published elsewhere.
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