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Chain model of Si(111)2&(1surface: Optical properties and surface-state excitons
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The optical properties of the chain model of Si(111)2&&1 are computed both within a single-

particle picture and with the inclusion of excitonic and local-field effects. The presence of bound ex-

citon states depends on the magnitude of the screening of electrons in surface states. For weak

screening the singlet exciton is strongly bound (-0.3 eV) and gives rise to a narrow Lorentzian peak
which dominates the absorption spectrum. For strong screening, bound excitons are not present.
The resulting absorption line shape is asymmetrical, in qualitative agreement with experiment, but
almost twice as broad. Polarization-dependent reflectance measurements are suggested as an impor-
tant test for the various models.

I. INTRODUCTION

The atomic and electronic structure of Si(111)2&&1 is
still an open question though it has been extensively stud-
ied for many years. The buckling model originally pro-
posed by Hanemann, ' and for a long time believed to be
correct, has been strongly questioned after angle-resolved
photoemission measurements ' on single-domain samples
showed large discrepancies with respect to the calculat-
ed ' surface-state dispersion. On the other hand, the ~
bonded chain model proposed by Pandey yields electron
states in agreement with photoemission data and is ener-
getically favored, ' but it does not seem to agree with the
dynamical low-energy electron diffraction (LEED) mea-
surements. Other models have been proposed, such as
the antiferromagnetic and the molecular' models, but at
present none of them seem capable to account for all the
experimental results.

The optical properties of the Si(111)2X1 surface mea-
sured with unpolarized light"' show that transition be-
tween surface states are strongly peaked at about 0.45 eV,
with an asymmetric line shape broader on the high-energy
side. The random-phase-approximation —(RPA-) calcu-
lated reflectivity for the buckling model '"' is in qualita-
tive agreement with experiment. One of the purposes of
this paper is to extend these calculations to the chain
model, in order to check its ability to describe the ob-
served optical properties in the frequency range of the for-
bidden energy gap of bulk Si. We also compare the polar-
ization dependence of the reflectance for the various
models —chain, buckling, and molecular —and find clear-
cut differences between the first one and the others. We
suggest that reflectivity experiments performed with po-
larized radiation may bring strong evidence in favor of
some of these models.

The microscopic theory of optical properties of crystal
surfaces is still developing. ' ' Recently, a method has
been proposed to compute the reflectivity of semiconduct-
or and insulator surfaces, including local-field and exci-

tonic effects within the framework of the many-body per-
turbation technique. ' We apply it here for the first time
to a realistic problem, namely the chain model of
Si(ill)2&&1. The method is formally similar to the one

developed by Hanke and Sham for the study of the optical
properties of bulk materials. ' These authors also demon-
strated the importance of including local-field and exci-
tonic effects in a consistent manner in order to adequately
describe optical spectra. Although we shall attempt a de-

tailed comparison between theory and experiment, we
shall be mainly concerned with the study of the influence
of these effects on surface optical properties.

An essential ingredient of our calculation is the screen-

ing of the electron-hole interaction at the surface, of
which, however, very little is known to date. For this
reason various screening models are considered, which
may or may not yield bound-exciton states. Very dif-
ferent absorption line shapes and strengths are obtained
for the two cases, while the polarization dependence is to
a large extent independent of many-body effects. If the
screening of electrons in surface states is neglected, a
strongly bound exciton is found ( -0.3 eV). A significant
contribution to the binding energy is due in this case to
correlation effects, which are not included in the conven-
tional exciton theory. ' The absorption basically consists
of a narrow Lorentzian peak, in disagreement with experi-
ment. If, on the contrary, a strong screening contribution
from surface states is assumed, no bound state exists; the
calculated absorption line shape is qualitatively simi1ar to
the experiment, but almost twice as broad.

This paper is organized as follows. In Sec. II we sum-
marize the theoretical framework underlying the calcula-
tion of the surface optical properties. In Sec. III we
describe our model band structure and compute the RPA
reflectivity. (We shall conventionally refer to the RPA as
the approximation in which local-field as well as excitonic
effects are neglected. ) The calculation of optical proper-
ties including local-field and excitonic effects is described
in Sec. IV. A simple molecular model is considered in

30 883 1984 The American Physical Society



884 R. Del SOLE AND ANNABELLA SELLONI 30

Sec. V, to study in detail some features of the electron-
hole interaction. Results are presented and compared to
reflectivity experiments with unpolarized light in Sec. VI.
Finally, in Sec. VII the polarization dependence of the re-

flectivity for various surface reconstruction models is dis-
cussed.

II. THEORETICAL FRAMEWORK

direction of light polarization by a. The surface contribu-
tion to the external reflectivity at frequency co is given
by15

4co b,e (co)
Im

c Fb(co) 1—

We consider light normally incident on a semi-infinite

crystal occupying the half-space z&0 and denote the
where eb(co) is the bulk dielectric function anti be~ is de-
fined as

(2)

with

he p(z, z', co) =e ~(z,z', co) 5p5—(z —z')e p(z; co) . (3)

Here, e ~ is a component of the macroscopic dielectric
tensor' of the semi-infinite crystal E

' being the inverse
of its (zz) component —and ep(z;co) is the dielectric func-
tion of the sharp (ideal) vacuuin-crystal interface,

E'p(z co) =eb(co)e(z)+8( —z) (4)
I
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&Z~ (co) = dz dz' be (z,z', co) —dz" f dz"'b, e (z,z co)E '(z" z'" co)ge'(z"' z'~)

I

which gives rise to the classical Fresnel formulas of reflec-
tivity. Therefore, 4e p(z, z'; co) represents the surface con-
tribution to the macroscopic dielectric tensor.

We obtain e &(z,z';co) through Fourier transformation

'~&(qll k~ k', co) in the 1~~it qll qll denoting the
surface component of the light wave vector. Using a
localized-orbital representation for the electronic states, '

we have'

qll" k,'; )co=5 p 5(k, —k
2e2

pp(k, —k,' )
moN

(5)

where

i(k —k' )z
pp(k, —k,

'
) =As d r pp(r )e

pp(r) is the electron density, As ——XsAp the surface area,
and Ap the surface unit-cell area. The label s i—and simi-
larly s2—in Eq. (5) denotes an ordered pair of one con-
duction, a, and one valence, a, , Wannier functions, lo-

1 V)

cated in the cells (Rill, Ri, ) and (R'ill, R &, ), respectively.
The momentum matrix element between these Wannier
functions is denoted by p, . The matrix S,', is a modi-

1 $1$2

fied two-particle Greens function which is obtained by
solving the Bethe-Salpeter equation'

S'=X [1—(V' ——, V')X ]

where all quantities are matrices in the Wannier function
representation. The matrix N is the RPA polarizability,
V' is the Coulomb electron-electron interaction (electron-
hole exchange) without long-range part, and V' is the
electron-electron screened exchange (electron-hole
Coulomb interaction). The matrix S' describes both
single-particle and collective excitations of the semi-
infinite crystal; in particular, det(S') =0 determines the
(singlet) bound-exciton states. ' Note that triplet exciton
energies can be obtained in a similar way, by simply set-
ting V'=0 in (7).

The macroscopic character of the dielectric tensor (5) is

for the allowed range of values of k, and k,'. ' Here, k,
is a cutoff wave vector —the same used to define V' in
Sec. IV—satisfying

co/c «k, «d (8b)

where d is the interlayer spacing in the z direction.
In the limit q~~ 0, the diagonal components e satis-
16

lim lim e ( q ll, k„k,';co)
q

(~

—+Ok, k' ~0

= lim lim e ~(q, k„k,' co) (8c)
qa k, k' ~Q

where 6 denotes the longitudinal component of the mac-
roscopic dielectric tensor. Because of the nonanalyticity
of e, it is important that the limit q ~0 follows the
one for k, and k,

'
in the right-hand side of (8c). When

the off-diagonal elements Ae, appearing in the second
term on the right-hand side of (2) vanish, Eq. (8c) enables
us to treat optical properties simply in terms of the 1ongi-
tudinal response, as is usual in the case of cubic crystals. '

In the formalism in Eq. (5), e is given by

I

related to the use of the truncated Coulomb interaction
V' and to the restriction

2 I

6 (qll, k„k,';co)=5(k, —k,') — g p, (qll+k, )e ' "S,',, (qll, co)p, (qll+k,')e
$)$2
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«e p~ ( q li+ k ) is the component ~long qll+ k, of the

dipole matrix element p, , between the Wannier functions

of t'he pall s i.
A complication arising in the calculation of Eqs.

(1)—(5) is that a large number of electron states is, in gen-
eral, required to represent the matrix S'. However, in our
case the frequency interval of interest for the evaluation
of hR (co)/R (co) is small (0.2 (fico ( 1 eV), so that a sim-
ple approximation —effectively involving a small number
of states —is likely to work rather well. We assume that
e~p is the sum of the unperturbed bulk dielectric function
plus the contribution of the dangling-bond (DB) states.
This assumption amounts to treating the back bonds as
unperturbed bulk bonds and to neglecting transitions be-
tween back-bond and DB states. Although the first ap-
proximation is usually not well justified, transitions in-
volving back-bond-like surface states correspond to ener-
gies of a few electron volts, ' and therefore their contri-

bution to the imaginary part of e ~ is vanishing for co

values in the forbidden energy gap of bulk Si (unless un-

likely strong excitonic effects occur). With the above as-
sumption the off-diagonal elements e of the dielectric
tensor vanish for the reconstructed surface models con-
sidered in this paper (see Sec. III), and Imhe (co) in Eq.
(1) reduces to

Iml&~~(~ )=—4me
Im g p, S,', (0;~)p, (1())

0 sls2

where the sum over s, and sz is now restricted to filled
and empty DB states only.

Calculations can be further simplified when working
within RPA (and neglecting local fields). In this case the
two-particle propagator matrix S,', (q ~~,

co) reduces to

N, , ( q ~~, co), as shown by Eq. (7). This is given by'

N. ..,(q(( ~)=Ns g g c;,, (k(()c„.„(k((+q(()c'. , (k)(+ q(()c„„(k(()e'
nn'

k((

where n, n' are band indices and the c„„(k~~)'s are coeffi-
cients of the expansion of the Bloch function 1t „(k~~, r )

into Wannier functions. Since we are restricted to
dangling-bond states, there is only one filled (U) and one
empty (c) band which enter the sum in (11). From (2) and
(5) we obtain

K

1mbÃ (co)= I ~p (k)
~

z8me dk
fi moco sBz (2m. )

f'("ll+ qll)

E»' k
I I

+ q
I I

) E„k
I [

) fin) is-
t

bands are almost flat along the perpendicular direction,
I J' and JE . These features are related to strong DB in-
teractions within a chain, interchain interactions being, on
the other hand, negligible. A small gap is obtained along

X 5(fico —E,„(k )), (12)
4 I(

a

where the integral is over the surface Brillouin zone
(SBZ), E,„(k)=E,(k) —E„(k) is the direct gap between
DB bands at k, and

(a)
(b)

is the a component of the momentum matrix elements be-
tween the Bloch states g, (k) and g„(k). (From now on
we shall assume k—:k~~). Within the RPA, Eq. (12) is
simpler since it does not require calculation of the Wan-
nier functions.

III. RPA ABSORPTION SPECTRUM

The geometry of the chain model for the (2&& 1)-
reconstructed (111) surface of silicon is characterized by
the surface atoms being close as bulk nearest neighbors
(d-2. 35 A) and forming "chains" along the [110]direc-
tion, while interchain distances are rather large (see Fig.
1). The DB bands resulting from slab calculations are
characterized by a large dispersion along the I J direction
of the SBZ, parallel to the chain direction, whereas the

(c) (d)
FIG. 1. Atomic arrangement in the surface plane for the m-

bonded chain model of Si(111)2&1. Solid circles denote atomic
positions, and dashed lines represent bonds in the surface plane.
(a) The symmetric chain model. (b) The surface Brillouin Zone.
(c) The dimerized-chain model (for better visualization, the di-
merization has been strongly magnified). (d) The buckled-chain
model, where open circles indicate downward relaxed atoms.

0
The lattice constant along the y (chain) direction is a =3.85 A.
The bond length of the symmetric chain model is taken d =2.35
A, with bond angles 0=109.5 .
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A. Buckled chain

We denote the on-site energies of the two nonequivalent
DB's within the surface unit cell by ei and e2 and the
nearest-neighbor hopping integral by t. The single-
particle dispersion relations are

2

2
6') —E2

1/2
kya

+4t cos
2

(13)

0

where y is the chain direction and a =3.85 A is the lattice
constant along y. Using requirements (i) and (ii) above,
we take E~=e~ —e2 ——0.45 eV and t = —0.4 eV, where E
is the constant gap along JE. The gap along I J ' is also
constant and is given by E~ =(Es2+16t )'~ =1.66 eV.
We calculate the matrix element of the momentum opera-
tor between Bloch functions using the commutation prop-
erty

Jlc., resulting from the nonequivalence of the two top-
layer atoms within a surface unit cell with respect to the
fourth-layer atoms.

The relevant features of these surface bands can be
reasonably well reproduced by a nearest-neighbor tight-
binding model including DB states only. Within this ap-
proach, however, degenerate bands along JE are obtained
for the symmetric chain model which was originally pro-
posed for Si(ill)2&&1, unless the nonequivalence of the
two DB states within the surface unit cell is assumed a
priori. In our approach such nonequivalence can result,
for instance, from some buckling, leading to charge
transfers and, hence, to a partially ionic surface. We shall
refer to this model as to "the buckled chain. " An alterna-
tive choice, also leading to a gap along JE, is "the
dimerized-chain model, " which consists of chains with al-
ternating short (contracted) and long (stretched) bonds. '

For this second model, which is strictly covalent, the
opening of the gap along J Ic can be related to the break-
ing of the reflection symmetry through the (110) (which
we shall also refer to as the xz) plane, as shown in Fig.
1(c). We shall discuss the RPA optical spectrum for both
of these models. The tight-binding parameters will be
determined by the following requirements: (i) the valence
bandwidth is -0.6 eV, as observed in angle-resolved
photoemission, and (ii) the peak of the absorption spec-
trum for unpolarized light occurs at 0.45 eV, as observed
experimentally. "' This peak is associated with the
single-particle gap along JE, which therefore should be
taken to be 0.45 eV if excitonic effects are excluded.

(P, (k, r)
~ p ~ P, (k, r)) =i t[c,„(k )+c,', (k„)]

X [(Rzp —R&p) —(Ri &

—Rzp)

4~e' 2 1 (~) E, —1/2

Imhe„„(co)= 2 XpV'3a ~ Eg (%co)—

4ire 2 Es E~ —(iruo)
1mb'»» (co) = I'p

v 3a (fico ) (irico ) —Eg

(17)

(18)

where Xp and Fp denote the x and y components of
R2p —Rip respectively. From Fig. 1(c), we see that
Yp=a/2 and Xp=a/2V2 (taking

~
R2p —R~p

~

to be ap-
proximately equal to the first-neighbor distance in bulk
Si). Equations (17) and (18) are plotted in Fig. 2 together
with the analogous results for the dimerized-chain model.
For polarized light parallel to the chain direction (y) a
sharp peak in the absorption spectrum is found at
fm-E~; the absorption decreases quickly with increasing
frequency and is strictly zero at the upper edge Aco=E~.
Just the opposite trend is predicted for x-polarized light:
Here, Ae~ is zero at Ez, increases with increasing x and
has a singularity at Ae -Ez. The typical one-dimensional

Im (dsa„)
(A)

)& 2 cos(k»a )],
(16)

where c;„(k» ) ( n =v, c; i = 1,2) are expansion coefficients
of the Bloch eigenstates into Bloch sums of DB orbitals.
Equation (16) shows that p'(k) is not vanishing if some
buckling is present. The y-z coupling —in the sense of Eq.
(2)—is, however, forbidden since p' and p» belong to dif-
ferent irreducible representations of the surface-lattice
point group. The x-y coupling is, in principle, present;
since this is quadratic in the buckling, it is, however,
about 2 orders of magnitude smaller than the first term in
(2). This justifies the use of Eq. (12) to calculate the ab-
sorption spectrum of both x- and y-polarized light. We
obtain

le Op= [H r], (14)

with H and r being the effective DB Hamiltonian and po-
sition operator, respectively. We assume that

(y;(r —R ) g~~, (r —R )&=&J5 R;

where R; denotes the position of the ith atom (i = 1,2)
in the mth surface unit cell (R ). This approximation
turns out to be correct up to second order in the nearest-
neighbor DB overlap, which we estimate to be of the or-
der 0.1. The momentum matrix element is

50-
r,

x/1
/ [

I
/

I

II

/(
g (

I

x
I

I

I

L50.5 1 1.5 0.5 1
fuu[ev)

FIG. 2. Imaginary part of the RPA surface dielectric func-
tion for light polarized along (y) or perpendicular (x) to the
chain. (a) Dimerized-chain model with t ~

———0.5 eV and

t2 ———0.3 eV. (b) Buckled-chain model with e~ —e2 ——0.4 eV
and t = —0.4 eV.
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character, (fico E—s) '~, of the singularities is the result
of the bonding topology of the chain model and is not sig-
nificantly altered by interaction with back-bond states.
Since x and y are principal axes for the present model, the
absorption spectrum for any polarization direction a in
the surface plane is simply given by

Imb. e (co) =Imbg„„(co)cos 8+1mB,e~~(co)sin 8, (19)

where 0 is the angle between the a and the x directions.
In particular, the spectrum for unpolarized light, which is
obtained by angular averaging of (19),

1mb'(co) = i [Imhe (co)+Im&eyy(co)] (20)

can be used to evaluate the absolute value of the peak in
the surface reflectivity occurring at Ra) -Es,

' 1/2
g

2Eg

(21)

FIG. 3. Angular plot of the DB optical absorption at
%co=0.45 eV. The directions x and y are as in Fig. 1(c). The
curve labeled DC is for the dimerized-chain model, with the
same parameters as in Fig. 2(a). The curve 8 is for the buckling
model, computed according to Ref. 9.

B. Dimerized chain

We denote e the DB on-site energy, t] the hopping in-
tegral between DB's along the contracted bond, and t2 the
hopping along the stretched bond. Our model band struc-
ture is now

E„(k)=e+[ti+tz +t2&t c2so(
&
k)a]' (23)

resulting in Es =21ti+t21 (gap along I J') an

Es ——2
~
ti tz ~. We choose ti ————0.5 eV and tz ———0.3

eV, which approximately satisfy both photoemission and
optical-absorption data. The momentum matrix element
1s

(f„(k,r)
~ p ~ f, (k, r)) = i(moti/fi)(R, O

—Rzo)cos8k

with

+ i (motz/fi)(R» —R2O)

)&cos(8k+k&a), (24)

8k =tan '[tocsin(kza)/[ti+tzcos(kza)]] .

Assuming a Lorentzian broadening of half-width y=20
meV we find (bR/R)„„i,-2%, to be compared with the
experimental value (b,R/R)~„i, -3% of Ref. 12. A fur-
ther and more useful comparison with experiment —not
dependent of y—is obtained by evaluating the effective
number Neff(coM) of electrons per atom contributing to
optical transitions up to a given energy Ace~. The experi-
mental N, tt(co~), which is proportional to the integrated
reflectivity, is given in Ref. 21, where the definition

M 4mef dco co Imhe(co) =— N, tt(co~) (22)
0 2 moAg

is used, An being the area per surface atom. Using (20)
and coM ——1 eV, we find Nerf(coM }-0.14: this is approxi-
mately the effective number of electrons per atom partici-
pating to the transitions peaked at 0.45 eV, to be corn-
pared with the experimental value Niff 0.2. '

Equation (24) has a zero z component since we are assum-
ing that no buckling is present. Hence, Ae„, and Ae„,
vanish and the use of (12) to calculate optical properties is
justified. For x- and y-polarized light we find

2

Ae~(co) =
2 Xofico[(Es fi co )(fi co— Es)]-

3a

(25)

3a (fico)

The spectra above are very similar to those of the buckled
chain, as shown in Fig. 2. The only difference is that now
he and Ae~„have singularities at both E and Eg . The
y-x intensity ratio is, however, 2(Eg /Es) at co=Eg and
2(Eg /Eg ) at co =Eg, with (Es /Eg )z-16.

For the dimerized-chain model, x and y are not princi-
pal axes, and thus the simple formula (19) does not hold.
However, Eq. (20) for unpolarized light is still valid. In
Fig. 3 we show a plot of the intensity of the peak at 0.45
eV as a function of the azimuthal angle of the light-
polarized vector (angle formed with x axis). It is interest-
ing to note that the maximum intensity occurs somewhat
midway between the y direction and the direction of the
contracted bond. In the extreme dim erization limit
( t2~0, i.e., Es Es },the spectra —(25) and (26) reduce to a
5 function peak at Es and the maximum intensity occurs
along the "molecule" direction.

The absolute peak intensity and the integrated reflec-
tivity have values almost equal to those of the buckled-
chain model, as it is evident from the similarity of Figs.
2(a) and 2(b).

IV. EXCITONIC AND LOCAL-FIELD EFFECTS:
CALCULATIONS

The passibility of interpreting the observed optical
spectrum of Si(111)2&&1 as due to a surface-state exciton
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was first suggested by Del Sole and Tosatti. Their es-

timated binding energy —within effective-mass theory-
was -0.32 eV. In this and the next two sections we in-

vestigate excitonic effects iri the absorption spectrum of
the dimerized-chain model of Si(111)2X1. From the gen-

eral discussion of Ref. 6, it seems indeed reasonable to
infer that the dimerized model, which is purely covalent,
should be energetically more favorable than the buckled-
chain model, in which charge transfers between surface
atoms occur.

Our study is based on the many-body perturbation tech-
nique (MBPT), proposed by Hanke and Sham, ' leading to
Eqs. (5) and (10). By this approach both many-body
final-state interactions and local-field effects —intended
as those related to charge distribution inhomogeneities-
are accounted for. The relevance of these effects in the
absorption spectrum of bulk Si was demonstrated in Ref.
17.

In this section we describe the calculations needed for
the determination of the optical response function in Eq.
(10). In Sec. IVA we calculate the Wannier functions
which are needed as the basis set for the construction of
the matrices X, V', and V' from which S' is obtained
through Eq. (7). The matrix N, as given by (11), is also
calculated in Sec. IV A, while the Coulomb- and
exchange-interaction matrices V' and V' are evaluated in

Sec. IV B.

(a„~a„~) =5„„5 (31)

to the second order in o,'. The Wannier state energies are

e„=(a„~H ~a, )=e+t, ,

e, =—(a, ~H ~a, )=e t, , —

while

(32a)

(32b)

(a, ~H ~a, )=0, (32c)

(33a)

the notation y;—:y;( r —R ). Equation (30) shows that
the lower (upper) Wannier function a, o (a,o) in the refer-
ence cell "0" is made up of the bonding (antibonding)
combination of DB orbitals in the same cell in addition to
an antibonding (bonding) contribution from the adjacent
cells along the chain (cells labelled + I and —1). With
the parameters of Sec. III B we find a=0. 15, which justi-
fies our linearization procedure (other choices of the pa-
rameters accounting also for the exciton binding can only
reduce this value). For example, from successive terms in
the expansion, we have found the contribution of second-
neighbor cells to have an amplitude of 5t2/32t1.

The approximate Wannier functions (30) satisfy the
condition

A. Wannier functions ~

H
~
a, +1)= ——,

'
t2 . (33b)

For nondegenerate bands we can apply the straightfor-
ward definition

With the above relations, we find the approximate band
structure

a„(r—R )=Vs pe g„(k,r) (n =U,c), (27)

k

E„(k)=e+ t1+ t2cos(k~a ),
E, (k) =E—t1 t2cos(kya—),

(34a)

(34b)

where the Bloch functions are

g(kr)=Vs ' ge g (ck)qr(r —R~), ( 8)
Nl i =1,2

with coefficients c;„(k)= +exp(+i Ok l2). This choice

makes f„(k,r) real at the center of the contracted bond

of our origin unit cell. The calculation of (27) reduces to
evaluating the integrals (R2 R1 ) (35a)

which can also be obtained from (23) by a first-order ex-
pansion in t2lt1. Equations (34) and (23) have the same
value along JEand I J'.

To calculate Imb. e~ (co) [Eq. (10)] we require the dipole
matrix elements between lower and upper Wannier func-
tions. To first order in t2lt, the only nonvanishing ele-
ments are

+i8k/2 —i k ~ R
s

k

(29) and

(a„~ r
~
a, +, )= —ctay". (35b)

where I is an integer labeling the unit cell along a given

chain. We approximate exp(i 9k /2) by its first-order

series expansion in the ratio t2/t j, leading to

aUo—:aU( r —Ro)

1
[ 0 1T+V21 +(V 10+%20) ~( 'Pll+V21)l

2
(30)

a,o=a, (r —Ro)

1
(%1T+'P21)+( 9 10+0 20) ~(V 11++21)]V2

where a=t2/4t&, and for simplicity we have introduced

(a,o,a, 1), (a,o,a, o), (a„o,a, 1),
(a, o, aU 1), (a,o, a„o), (a, o, a„1) . (36b)

In this way we neglect the long-range part of the
electron-hole interaction V', retaining only central-cell
and nearest-neighbor Wannier-function interactions. This
approximation works well for strongly bound excitons-
as expected at surfaces, ' and for excitonic effects in the
continuum spectrum, ' but it fails to describe large-radius
exciton states.

As the basis set for the calculation of the matrix N, and
similarly for V', V', and S', we choose the following (or-
dered) pairs of Wannier functions:
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2sgn(2
~
t,

~

—co)
N)(co) = —2 2 1/2[(2

i
t, i

—co) 4t2—]
(37)8' 1 8'

8' 8' 1

where co =co+i y, y being the broadening, and

IV= (2
~

t2
~

)-)

X I (co —2 t,
~
)+ sgn(2

~

t,
~

—cu)

&& [(2
~
t,

~

—cv)' —4t,']'"I . (38)

The factor 2 in front of (37) is due to spin. Projection
I

Using expression (11), it appears that the RPA polariza-
bility N has vanishing matrix elements between the two
groups of pairs in (36a) and (36b). For the 3&(3 matrix
corresponding to set (36a) we obtain

1 8' 8'

onto set (36b) gives rise to the antiresonant part, N2, of
~0

N2(cv) =[Ni( —cv)]* .

Only minor differences are present between the linearized
RPA spectrum (37) and the "exact result" of Sec. IIIB.
Coupling between the two sets (36a) and (36b) is provided
by the Coulomb and exchange interactions within the
MBPT approach, while it vanishes in the conventional ex-
citonic model. '

B. Coulomb- and exchange-interaction matrices

The matrix elements of the Coulomb- and exchange-
interaction operators between pairs of Wannier functions
are defined by '

V,', (q~()=Ns 'ge " f d rd r'a*, (r —R'i —R )a„(r—R )u'(r —r')a'„(r')a, (r' —R2)
Nl

(39)

V,', (q~~)=Ns
' pe " f d r d r'a*, (r —Ri —R )a„(r ' —R~)u'(r, r ')a"„(r ')a, (r —R'q),

Y( m v& m v2 (40)

respectively. Here q~~ is a vector in the SBZ—the limit

q(~~0 is taken in our calculation —the R's are surface
translation vectors, while v'( r —r ') and v'( r, r ') are
Coulomb, without long-range tails, and exchange poten-
tials. We take

u'( r, r ') =e /e,
~

r —r '
~

(41)

where e, is the surface screening function, including the
contribution of DB's. The cutoff Coulomb potential is
best defined in terms of its Fourier transform, '

if q~~ is in the first SBZ and
~
k, &k„u'

q~~, k, )= (42)
4me /ebs(q((+k, )/ otherwise,

where E'bg is the background dielectric constant,
ebg = (eb + 1 )/2, describing (bulk) polarization effects not
directly included in our treatment.

We now consider the exchange matrix V'. We keep
only terms up to second order in a so that the sum over
R must be restricted to m (2. By using the expansion
(30) of the Wannier functions in terms of DB orbitals, and
restricting ourselves to one- and two-center integrals, a11

matrix elements (40) can be expressed in terms of the fol-
lowing interaction integrals:

U—= f d rd r'~ q)(~(r)
~

~q);~(r ')
~

u'(r, r '),

V~J(R)—= f d r d r'(q);(r)
( [(pj(r ' —R)

(

u'(r, r '),

charge distribution on nearest-neighbor sites (in principle,
we should distinguish sites connected by a short or long
bond, but here we shall ignore this small difference). In
view of the well-known difficulties of a direct calculation
of U, we shall treat this term as an adjustable parame-
ter. The Coulomb integrals VJ(R) are calculated using
a screened point-charge approximation, which is an exact
result for large enough R's. However, this can also be
justified for nearest neighbors because of the lateral locali-
zation of DB states. Finally, Vd;~ is estimated to be
given by the self-interaction of the overlap charge between
nearest-neighbor DB's: taking S-O. I we find Vd,~-0.2
eV.

We next turn to the matrix V'. In this case there is no
restriction on the values of R in the sum (39). For the
term V(„, )(„, ) we have to evaluate a lattice sum of
dipole-dipole —type interactions, similar to the one giving
rise to the classical Lorentz field. In three dimensions and
with the full Coulomb potential u, instead of u', this term
is nonanalytic for q —+0. This leads to the longitudinal-
transverse splitting of singlet excitons. ' In contrast,
when u' is used, the result is independent of the orienta-
tion of q and equal to the (full u) tranverse sum. In two
dimensions, on the other hand, the longitudinal-transverse
splitting vanishes as q~~~0, so that the distinction be-
tween u' and u is irrelevant in our calculation. With ex-
pression (30) for the Wannier functions and the two-center
and point-charge approximations for the integrals between
DB orbitals, our result is

(43)

Vd& —=f d'«'r'q)~(r)qz (r)v'(r r ')q i~(r ')q~~(r ') V(„, )(, , )
———, U —0.54(e /ebga), (44)

Here U is the intrasite Coulomb repulsion, VJ(R) is the
interaction between DB charge distributions at different
sites, and Vd;~ is a dipole-type self-interaction between

where the value ( —0.54) results from the sum of the in-
terchain contribution ( —0.99) and the intrachain contri-
bution (+ 0.45).



890 R. Del SOLE AND ANNABELLA SELLONI 30

V. EXCITON BINDING ENERGY IN THE EXTREME
DIMERIZATION LIMIT

In this section we treat the extreme dirnerization limit,
namely t2/t]~0. Dangling bonds are coupled in pairs
(molecules) and optical excitations are of the Frenkel-
exciton type, with only the dipole-dipole interaction sur-
viving between different pairs. Although this model does
not reproduce the Si(ill)2&&1 DB bandwidth, it is suffi-
ciently simple to allow a better understanding of the
electron-hole interaction given by the many-body pertur-
bation technique. We can also derive from it the polariza-
tion dependence of the optical absorption of other molecu-
lar models, such as the one proposed by Chadi. '

In the molecular limit, the only nonvanishing dipole
moment is between lower and upper Wannier functions in
the same cell, as given by (35a), and it is directed along
the molecular axis. Therefore, a general feature of molec-
ular DB models is the cos 0 dependence of light absorp-
tion, where 0 is the angle between the electric field direc-
tion and the molecular axis.

The matrix S', to be inverted, factorizes into three 2 && 2
matrices, with only one being related to optically allowed
transitions,

~—2
I

&i
I + Voo

Voo

Voo

—co —2
I

t ) I + Voo
(45)

Here the first row (or column) refers to the pair of Wan-
nier functions (a, o, a, o), while the second refers to
(a,o,a,o). A resonant RPA polarizability (co —2

I
t&

I
)

is associated to the former, and a nonresonant polarizabil-
ity ( —co —2

I
t~

I
)

' to the latter, 2
I

r&
I

being the single-
particle gap. The coupling between them,

Voo ————, U+2E~ ——, V, (r), (46)

is introduced within the framework of the MBPT, ' ' and
is due to correlation, as discussed below. Here EM is a
Madelung-like term accounting for dipole-dipole interac-
tions, and V, (r) =e /e, r, r being the molecular distance.

The energy of the Frenkel exciton is given by the zero
of the determinant of (S')

(47)

If the usual excitonic model is used, Voo ——0 and the exci-
ton binding energy is

Voo ————,
' U+2EM+ —, V, (r) —Vd;p . (4&)

This is the electron-hole central-cell interaction, that is,
the e-e exchange [—,

' U+ —,
'

V, (r)] subtracted, of twice the
e-e Coulomb interaction ( —,

' U+ —, Vd;„—Ez). The in-
clusion of the coupling Voo between resonant and non-
resonant terms decreases the excitation energy, so that the
exciton binding energy increases. This effect has been dis-
cussed by Anderson ' for the case of interatomic correla-
tion, assuming ab initio correlated atomic levels. In (46),
in addition to the term 2EM accounting for intercell
dipole-dipole correlation similar to Anderson's, we have
also an intramolecular contribution,

The origin of this term can be studied by considering, for
simplicity, a single molecule with one bonding and one
antibonding oribital. Let E& (N =2) be the energy of the
Hartree-Fock ground state, which is decreased by correla-
tion to the value (we use asterisks to indicate quantities in-
cluding correlation) Ez Ez——E„—„„.

The correlation energy can be easily computed in this
simple model, and is found to be due to the interaction
with the double excited state. It turns out that such in-
teraction is just V;„„,. The exciton state, of energy E,„,
has no correlation energy, since it couples neither to the
ground state (Brillouin's theorem ) nor to the double ex-
cited state. Though this is a characteristic of the two-
level model, it is also qualitatively correct, in general,
since electron correlation is less effective in an excited
state, where the excited and valence electrons are in dif-
ferent orbitals.

The optical excitation energy

~ex =Eex EN =Eex —E~ +Ecorr (49)

Eg~p =E~+ ) +E~ )
—2E~ +2Ecorr

since E~+& and Ez &
are not affected by correlation.

The result is that the gap Eg,~ is increased by twice the
ground-state correlation energy, while the excitation ener-

gy co*,„ is increased only by E„„The in. crease of
exciton-binding energy previously derived from the
MBPT is then recovered.

We note that the e-h interaction ( V' and V') alters the
energy of the transition and thus its oscillator strength.
This is not in contrast with the f-sum rule, since we con-
sider only transitions between two levels, which do not ex-
haust the entire spectrum.

If we consider again the dimerized chain with t2&0 the
Voo term survives as central-cell correlation tending to in-
crease the exciton binding energy. It may play an impor-
tant role in cases with a small gap, as it is evident from
Eq. (45). In our calculations the effect of Voo is found to
be quantitatively relevant ( -20%) for the weak screening
model reported below.

VI. EXCITONIC AND LOCAL-FIELD EFFECTS:
RESULTS AND DISCUSSION

In order to calculate the reflectivity of the dimerized-
chain model, including excitonic and local-field effects,
we have to specify the screening of the e-e exchange in-
teraction [Eq. (41)]. For this we shall use two rather ex-
treme models.

is increased by intramolecular correlation, in apparent
contrast with our finding based on Eq. (47). However,
Eq. (47) is referred to the gap in the single-particle spec-
trum Eg,p

——2
I
t, I, which by definition is already affect-

ed by correlation. The single-particle gap is the difference
between the conduction-electron level and the hole level,

Egap Ec EU (EN+1 N) (EN EN —1) ~

where E~+I denotes the ground-state energy of the system
with %+1 electrons. In our case,
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CCThe first model, hereafter referred to as the weak-
model" completely neglects the screening oscreening mo e,

mi-infinite semicon-DB electrons and approximates the semi-in ini e
ductor as a classical dielectric, using the image-charge

h d The resulting surface-screening constant ismet o. e r
=6.5. Strong excitonic effects result fro

model. To fit the experimental peak position we''n we take

U=1.5 eV. The exciton binding energy turns out to e
0.32 eV, in substantial agreement with the effective-mass

sorption is s own in ig.h
'

Fig. 4 for polarizations parallel (y)
and perpen icu ar xd' 1 ( ) to the chains. The high-energy

F-' =2 t t +t
~

=2 eV within the RPA—
is shifted to lower energies by about 0.6 eV. The e ect o
Voo is mainly on this peak, which originates from e-h
airs more localized in the central cell. The low-energypairs more oca ize

peak (the bound exciton) is weakly dependen on
of U, because the electron and hole are mainly localized
on first-neighbor cells. However, the triplet exciton be-
comes unstable as U increases beyond U-1.5 eV. The
line shape does no s owd t how the experimentally observed
asymmetry an ed th inclusion of higher exciton states
should not mo i y i .d'f 't. Higher exciton states (independent-
1 1 1 t d including -200 Wannier states) indeed ap-
pear close to the unperturbed band edge, i.e., about . e

The effective number of electrons participatmg o e
transitions up to coM ——1 eV [see q.see E . (22)] turns out to be

=0.042 about a factor of 5 smaller than the experi-
mental value21 Exciton-phonon coupling can a.tera.ter the

1' hape and make it more similar to experi-
ment, but it does not change the oscillator strengt . e

describe the optical properties of Si(ill)2X1 within the
chain model.

model we account for the screening generated by DB

electrons. T e e ec ron-h 1 t -hole interaction at large distances
~ ~

is not affected by DB screening, because the dielectnc
of a two-dimensional (2D) semiconductor tends

to unity at small wave vectors. Simi ar y, e ec
holes interact via t e areth b e Coulomb potential as their dis-

zero. However, it is reasonable to assume
f o ofth t t some intermediate distance, of t e or er oa a

a
'' lareinvolved in vir uat al transitions between DB states, g

r tois roduced because of the small gap. We try oscreening is pro uce
the e-h interactiond 'b this situation by neglecting the e-escri e

and third neigh-V (8) at the distances of first, second, and
' 'g-

bors but retaining the intra-DB UU term and the
me a roximation has

been employed in describing excitons within the antifer-
of Si(111)2X1, resulting in

very small excitonic and local-field effects on optica
Here the total e- h interaction becomesproperties. ere e

r tionrepulsive w en is p'h th' icture is used. To fit the absorp
'

pea po' '
k sition we use the parameters t& ———

~ e an
=0.4 eV —and U=1t = —0.3 eV corresponding to E~=0.4 eV—t2 ———.e

eV. The results are shown in Fig. 5.5. As in the previous
e the dependence on polarization is(weak-screening case e

t to the RPA. Thenot substantially changed with respect to the . e
effective number of electrons upu to 1 eV is 0.13, quite
smaller than the experimental value o eff —~ ~ h=0.2. In the
spectrum for x-po arize1

'
d light an exciton is found above

U d E' due to the repulsive e-h interac-the upper ban e ge
tion. This peak is not expected to be significant or t e
purpose of comparison with experimental data since many
other transitions can occur at this energy. However, it
might partially account for the high-energy structure ob-
served in external reflectivity. ' The line shape of the y

1 t' is now more similar to the experimental one.
ld beHowever, the width is larger (about twice), which cou e

due to the extreme character of the "strong-screening"
model.

theIn order to check this possibility, we further used t e
"intermediate-screening" function given by e ys orKld h f
the macroscopic three-layer model. Here the three layers
are bulk silicon, the DB layer of thickness d„and the

150-

I md F..
100

50

2.00

~ ~FIG. 4. Imaginary part of the surface dielectric function for
h d' '

d-chain model including excitonic an o
fects, computed using, t& ———0.7 eV, t2 ———0.3 eV, = . e
and the "weak-screening" assumption. The broadening is 50
meV.

150 q~(eV)

FIG. 5. Imaginary part of the surface dielectric function for
t e imerize -cn d' ' d- hain model including excitonic an

eV ——. V, U=1 VeV t = —03eV, U= efects computed using t& ———. eV, 2 ——. V, U=
and the "strong-screening" assumption. e roa
meV.
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—10

0 5 %co(eV) 1 1.5

FIG. 6. Surface reflectivity of the dimerized-chain model in-

cluding excitonic and local-field effects (solid line) and within
the RPA (dashed line). The parameters of the calculation are
t1 ———0.5 eV, t2 ———0.3 eV, and U=1 eV. The "strong-
screening model" is used to describe the screening of electrons in
surface states. To improve the fitting to experiment an energy-
dependent broadening has been used (y=20 meV below 1 eV
and y =50 meV above it).

vacuum. Large screening occurs for electron-hole dis-
tance p in the range d, «p «ed, /(eb+ 1), where the in-
teraction depends logarithmically on p. e is the static
dielectric constant of the surface layer. Taking d, =1.5
A, we estimate a=94 from the experimental optical spec-
trum. ' This leads to e, =15, 12, and 9 for first, second,
and third neighbor e-e exchange screening, respectively.
This screening model yields a weakly-bound-exciton state
( Eb;„d -0.1 eV), but the absorption line shape and
strength (we find N, rf=0.073) are similar to those of the
strongly bound exciton in Fig. 4, apart from a slightly
larger high-energy tail due to band-to-band transitions.

Summarizing, our results show that the line shape and
strength of the surface optical absorption are very sensi-
tive to the details of the screening of. electrons in surface
states. Surface-state screening is still very poorly
known, ' and for this reason, rather crude models have
been used. Our "best fit" to experimental data, "' is that
of Fig. 5, based on the strong-screening approximation.
For a more direct comparison with experiment, in Fig. 6
we show the calculated surface reflectivity b,R /R -co@(co)
for unpolarized radiation. In order to provide a quantita-
tive estimate of many-body effects in the strong-screening
model, the RPA reflectivity is also shown. Incidentally,
we note that the latter is in better agreement with experi-
ment than the one including many-body effects. For this
the agreement with experiment is only qualitative since, as
mentioned earlier, the line shape is 2—3 times too broad
and the oscillator strength 40% too small. Also, the peak
height is about 3 times too small. We stress, however,
that these results should not be taken as a "proof" that
the chain model is inconsistent with optical experiments
on Si(111)2&&1. The above discrepancies —although quan-

titatively large —may probably be overcome by an im-
proved treatment of both band-structure and e-h interac-
tion effects. In addition, electron-phonon coupling also
influences surface optical properties. In particular, as
shown in Ref. 33, the observed absorption spectrum can
be described fairly well assuming a weakly bound exciton
coupled to the lattice. A more stringent test for the chain
model, as well as for other models of surface reconstruc-
tion, is discussed in Sec. VII.

VII. POLARIZATION DEPENDENCE
OF REFLECTANCE

An important test for surface-reconstruction models
may be provided by polarization-dependent reflectance
measurements. Clear-cut differences between the various
models, not depending on the details of the exciton states,
are in fact present.

In order to establish a unique notation for the various
models, we call x the direction where the periodicity is
doubled, and y the perpendicular direction, in agreement
with the notations used in the preceding sections.

For the chain model the optical absorption at the 0.45-
eV peak is substantially due to y-polarized light, the ratio
between y and x polarization being 1:0 for the buckled
chain and of the order 10:1 for the dimerized chain.

The optical properties of the buckled model of
Si(111)2&&1 have been computed by Chadi and Del Sole.
The calculation was for the antiferromagnetic buckling
model, but it holds also for the usual nonmagnetic config-
uration. Excitonic and local-field effects on optical prop-
erties are found to be small in the "strong-screening" ap-
proximation. The y:x polarization ratio turns out to be
1:3 (see Fig. 3), reflecting the geometry of this model.

For Chadi's molecular model' the absorption is expect-
ed to be maximum for light polarized along the molecular
axis at a small angle with the x direction. Interactions be-
tween different molecules, of the same order of those con-
sidered in the buckling model, i.e., 0.1 eV, which are
neglected here, should not alter this result considerably.

In conclusion, reflectance measurements using polar-
ized light should provide a large amount of information
about the Si(111)2)&1 (and also Ge) structure. Previous
measurements, performed not at the main peak energy
but at a metastable lower-energy peak, seem to favor the
buckling model, but are certainly incomplete. Measure-
ments at the peak frequency —or better, the polarization
dependence of the whole spectrum —can, on the other
hand discriminate well between the chain and the buck-
ling or molecular models. Smaller differences between the
two latter models, as well as between the buckled and
dimerized chains, may probably be detected as well.

Tote added. After submission of this paper,
polarization-dependent reflectivity measurements were
performed on Si(111)2)&1 by P. Chiaradia et al.4 The
observed y:x polarization ratio at the 0.45-eV peak is l:0
within experimental errors. Similar results have been ob-
tained by Olmstead and Amer ' by photothermal dis-
placement spectroscopy. Therefore, these results —besides
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ruling out the buckling and molecular models —favor the
symmetric (slightly buckled) chain model over the dimer-
ized one. Discrimination between the two versions of the
chain model is, however, almost at the limit of experimen-
tal error. A detailed interpretation of the polarization-
dependent reflectlvlty data will be pubhshed elsewhere.
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