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Luminescence line-shape ana1ysis of the electron-hole plasma in direct-gap Ga-Al-As:
Random-phase-approximation approach
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The luminescence line shapes of an electron-hole plasma in Ga-Al-As have been calculated within

the random-phase approximation (RPA}. Different models have been tested for the spectral weight
function. The fully self-consistent RPA is found to overestimate the weight of the plasmon side-

band and to underestimate the energy-gap narrowing. An approach which neglects plasmon replicas
instead yields luminescence spectra in excellent agreement with experiment over a wide range of
plasma densities and temperatures. A further model is also introduced to estimate an upper bound
for the weight of plasmon sidebands in the experimental spectra. We used both static and dynami-
cal phonon screening. We found that the former screening correctly describes luminescence up to
densities such that the plasmon energy is of the order of the longitudinal-optical-phonon energy.

I. INTRODUCTION

The experimental achievement of three-dimensional
confinement has allowed the study of a uniform electron-
hole plasma (EHP) in Ga-Al-As for a wide range of densi-
ties. ' This technique avoids the necessity of additional
models to account for the EHP expansion ' and the ensu-
ing drift phenomena.

In a previous paper, the measured luminescence spec-
tra from a uniform EHP were analyzed in terms of a
phenomenological model, similar to that used by Martin
and Stormer. Neglecting electron-hole interactions,
luminescence was treated as being due to direct, k-
conserving transitions between single-particle electron and
hole states. The broadening of these states caused by
many-body interactions was explicitly evaluated within
the random-phase approximation (RPA), while the renor-
malization of single-particle energies was assumed to be a
constant, determined at each density by fitting the experi-
mental band position. The model was found to fit rather
well the overall experimental luminescence line shapes
over a large range of EHP densities and aluminum con-
centrations. Some misfit, on the low-energy side of the
spectra, was tentatively attributed to the neglect of
plasmon replica contributions. The extracted values of
the renormalized energy gap FG were found to be in close
agreement with the values resulting from the theory of
Vashishta et al. for nonpolar materials.

In this paper we are concerned with a detailed study of
many-body interactions in the EHP luminescence at vari-
ous densities and temperatures. We shall attempt a com-
plete self-consistent RPA description of the EHP lumines-
cence, also including —besides broadening effects—the re-
normalization of single-particle energies and plasmon re-
plica contributions. A quantitative test of the theory, in
particular of the importance of "beyond-RPA" interac-
tions, will be provided by direct comparison to experi-
ment.

Assuming k conservation and a constant optical matrix
element M, we start by expressing the luminescence inten-

sity l(co) in the form

I(co)=
~

M
~

'J d'k J dco, dco1, A, (k, co, )AP, (k, coP, )

XF,(co, )F~ (cob )5(co —co, —co~ ),
(1)

where A, and A1, are the spectral weight functions for the
electrons and holes, respectively, and E, and F~ the corre-
sponding Fermi functions. Equation (1) is then interpret-
ed as follows. The electron-hole (e-h) reco1nbination pro-
cess amounts to creating an electron in the system of the
holes and a hole in the system of the electrons. A1, (k, co1, )

[A, (k, co, )] gives the probability that the hole (electron)
system is left in an excited state of momentum k and en-

ergy co~ (co, ). The luminescence intensity at energy co is
given by the convolution of the two probabilities, as given
by Eq. (1), if we assume that these are independent. In
other words, Eq. (1) accounts for the energy renormaliza-
tion and finite lifetime (self-energy corrections) of single-
particle states, but neglects the electron-hole interaction
(vertex corrections). This term was evaluated for the gain
spectrum of GaAs (Ref. 9) and Ge (Ref. 10) and found to
cause a strong reduction of the plasmon sideband with
respect to the case where only self-energy corrections were
included. Interactions with plasmons are indeed weaker
in recombination processes, which maintain charge neu-
trality. " However, the approach of Brinkman and Lee
cannot be immediately extended to the EHP densities
achieved in our experiment, because divergencies can
occur. ' In this paper we restrict ourselves to self-energy
corrections, while the importance of vertex corrections
will be evaluated indirectly.

Our discussion will be articulated in various steps, cor-
responding to different models for the spectral functions.
In all cases the self-energy X(k,co) is evaluated to lowest
order in the dynamically screened interaction (RPA). We
shall start with the fully self-consistent calculation, in
wlllch A~ 1, (k, co) ale glve11 by

A, ~(k, co) =sr 'Im[co e, q(k) X, 1, (k, co—)] ', —(2)
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where e, «(k) are the electron and hole energies in the ab-
sence of interactions (model 1). The resulting lumines-
cence line shapes are found to significantly overestimate
the plasrnon sideband. Moreover the exchange-correlation
contribution to the chemical potential (i.e., the band-gap
renormalization KEG ——EG EG—) turns out to be too small
in comparison with the values predicted by more complete
theories. The other two models —which give an alterna-
tive representation of the spectral functions —do not have
a rigorous justification: They are introduced with the
main purpose of quantitatively estimating the weight of
plasmon replicas in the experimental spectra. For the
second model we follow an early suggestion by Rice' and
evaluate the self-energy at the independent-particle energy
co=e, «(k), so that the spectral functions reduce to simple
Lorentzians and plasmon replicas are completely
suppressed. The experimental luminescence line shapes
and energy positions are fitted very well, although some
residual difficulties are left (discussed in detail in Secs. II
and III). Finally, in the third model the full co dependence
of the imaginary part of the self-energy is retained in the
spectral functions, while ReX, « is evaluated at
co=e, «(k). In this approximation, which is often em-

ployed to describe EHP gain spectra, ' the plasmon side-
bands are strongly reduced with respect to the fully self-
consistent case. Line shapes are again quite well repro-
duced, while a misfit in the energy positions is found.

The last issue of this work is to compare the static and
dynamical phonon screening. It is commonly believed

I

i

Xl'"(k, co)
f

A, «(k, co) =m.
~

co e, «(k—) Xg"(k—, co)
~

+
~

Xl'"(k, co)
~

that the dynamical screening should be used at high densi-
ties. ' ' Beni and Rice' found that in low-polar materi-
als, like GaAs, the static screening works better than the
dynamical one whenever the plasma frequency uz is much
smaller than the longitudinal-optical (LO) phonon fre-
quency coi. We found that the static approximation works
actually well up to EHP densities such that co&-su~. Re-
sults obtained in both approximations are substantially
identical. Most of our results and discussions will be re-
ferred to the static model.

This paper is organized as follows. In Sec. II we
describe the calculation of the self-energy and spectral
weight functions. The static and dynamical phonon
screening approximations are discussed in Secs. IIA and
II 8, respectively. Luminescence line shapes are compared
to experiment in Sec. III. Concluding remarks are given
in Sec. IV.

II. CALCULATIONS

A. The self-energy and the spectral
weight function static phonon screening

When a particle with wave vector k is added to an in-
teracting, uniform N-particle system, the probability den-
sity of finding the (N + 1)-particle system excited to an
energy co is given by the spectral weight function [see Eq.
(2)]

(3)

where Xq" and XI'" are the real and imaginary parts of the self-energy X and e, «(k) are the independent-particle disper-
sion relations. Since the conduction-band minimum of Ga-Al-As is isotropic and nondegenerate, we have

e, (k)=R k /2m, for electrons. Close to the top of the valence bands we approximate the hole dispersion by
e«(k)=A' k /2md«, where m~«=(mi( +mi«) is the hole density of states mass, and m«i, and mi«are the (spherical)
heavy- and light-hole mass, respectively.

Following previous work on electron-hole droplets and plasmas in covalent' and polar materials, ' ' we calculate the
self-energy to lowest order in the dynamically screened interaction V, (q, co) =(4me /Pq )E '(q, co). In this approximation
and in the limit of zero temperature the electron self-energy is given by

X,(k, co)= f den' J d q
q s(S~ ) co —co' e, (

~

k —q—~
)+ig sgn(

~

k —q ~

—k~)
(4)

where g is the dielectric constant of the host and kz is the
Fermi wave vector of the electrons [kF ——(3n n)'~ if n is
the EHP density]. The expression for the hole self-energy
X«(k, co) is slightly more complicated since the coupling
between light and heavy holes should be taken into ac-
count. This has been done in the isotropic approximation,
using the matrix elements given by Combescot and
Nozieres. ' The full expression of XI, at T =0 K is given
in Ref. 17 (see also Appendix A).

The densities and temperatures of our confined plasrnas
are such that the electrons are nearly degenerate (kT is a
few tenths of the electron Fermi energy EF ——iii k~/2m, ),

e

whereas the holes are nondegener ate {recall that
md«»m, in Gai „Al„As). The temperature dependence
of X, I, has been introduced following Ref. 14 and relevant

expressions are summarized in Appendix A. Temperature
affects strongly the imaginary part of the self-energy and
weakly affects the real part.

In polar semiconductors the dielectric function s{q,co)
can be evaluated in two different ways, according to
whether the phonon contribution is assumed to be con-
stant (eo model) or is treated dynamically (e model). In
this section we restrict ourselves to the co model. In this
case the dielectric function e(q, co) describes only the plas-
ma response and X, in Eq. (4), is set equal to the static
dielectric constant co. The carrier-phonon interaction is
accounted for by using the polaron masses in e, «(k) and
measuring the self-energy shifts from the polaron band
edges (i.e., the polaron shift is included in the definition of
the zero density gap EG). We approximate the function
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(5b)

with

N2+ r2 2 4~e'n
0 O=COp =

Xpc
(5c)

s '( co) b
dis

'
q, y a single damped plasmo 1

'
persion and broadening are given by

on poe, whose

2 2
co@

——coo+(cop/qFT )q +bq (5a)

r =r +r,q lA

C

J3
O
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Ep 46.2 m
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T= 85K

f o approx.
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This has the effect of suppressing satellite structures in
the spectral functions, which reduce then to simple
Lorentzians

(2) I, p, (k)
A, i, (k, co) =m.

[co—e, 1, (k) —6, i, (k)] +I, 1, (k)

For the calculation of luminescence spectra, however,
slightly modified spectral functions Ae P'(k, co) will be
used in Sec. III. As already noticed in Ref. 2, the func-
tions (6c) lead indeed to luminescence line shapes having
an unphysical low-energy tail extending deep into the gap.
We solve this problem by assuming

1.0

0
)

x=0.19
p =8x10 cm

T=85K

~;„"(k,~)= A, h(k, co)/N, g(k) if co) co, h(k)

0 if co&co, i, (k), (7a)
-2 ='

where for the cutoff energy co, p, (k) we take

a), p, (k)=e, i, (k)+6, h(k) —co~ . (7b)

N, h(k) is a normalization constant,

N, , (k) =f d~ ~,"„"(k,~), (7c)
co &(k)

typically equal to 0.95 for the range of investigated EHp
densities. This procedure can be justified by observing
that, unlike I, i, (k) which is co independent, the full
Xl' (k, co) decays very rapidly at energies below the
plasmon replica, as shown by Figs. 1 and 2 (see also Fig.
4). We remark that the model spectral functions defined
by Eqs. (6) and (7) are in practice quite similar to the
"electron and hole distribution functions" empirically in-
troduced in Ref. 2. Calculated values of A, i, (k) and
I, p, (k) as functions of k/kF are shown in Fig. 3. Similar
results have been previously discussed in the literature.
We just note that both b,, (k) and Ai, (k) are almost con-
stant for much of the range of k values of interest for
luminescence (k & kF), implying a very small renormali-
zation of single-particle masses. For comparison in Fig.
3(a) we also show the single-particle energy renormaliza-
tions

&ii (k&Ee, i&(k)) =&e,h(k) ee, i&(k)

obtained by self-consistent solution of Dyson's equation
(dashed-dotted lines). From the general behavior of
Xii(k, co) as a function of co at fixed k, ' it follows that

I
X~"(k,E, i, (k))

I
is always smaller than the correspond-

ing value of
I

b,, i, (k) I, as shown also in the figure.
Finally in Fig. 4 we show the electron and hole spectral

functions at k-0 for model 3, in which Xz is evaluated
at the independent particle energy, while the full co depen-
dence of Xl is retained. Two sets of values of n and T are
considered, the same used for Figs. 1 and 2. This model
has the rather undesirable feature that X~ and Xl do not
satisfy the dispersion relation

I

0.5
klki

I

1.0

I

1.5

the normalization constraint

f de A, h(k, co) =1 (10)

is not generally fulfilled. This model however will be use-

x= 0.19

Ep 46.2 +
n =Bx10 "c
T= 85K

o approx.

=0

tD

0
LL

FIG. 3. (a) Momentum dependence of the real part of the
electron and hole self-energies as obtained from models 1 and 2,
for the set of plasma parameters given in the figure. The
momentum scale is normalized to the Fermi wave vector kF. (b)
Momentum dependence of the imaginary part of the electron
and hole self-energies obtained from model 2 for the same set of
plasma parameters.

X(k,co) =Xo(k)+ f de' I
ri(k, u')

I

where Xo(k) is a real quantity and C is an appropriate
contour of the complex co plane. As a consequence also

—2.0 -1.0 1.0

(E —EG)IEF

FIG. 4. Spectral weight functions for electrons and holes as
in Fig. 1, but calculated using model 3 (see text).
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tral function should all satisfy 8'(k) = s(k), in order to be
consistent. This sum rule also provides a useful clue to
understand the relation between the position of the
single-particle peak and its weight relative to plasmon re-
plicas in 2 (k, co). ' Figure 5 shows the calculated
difference

~

8', (k) —e, (k)
~

as a function of (k/kF) for
the three models considered in this paper. For compar-
ison we also show the same quantity evaluated within the
Hartree-Fock theory. In the absence of damping,
s(k)=sk" is actually expected for our system. ' Curve
1 closely follows the Hartree-Fock dispersion within the
computational errors (a few percent for k & kz). Curves 2
and 3 do not coincide, showing that models 2 and 3 are
not consistent single-particle spectral functions. The
Hartree-Fock —like dispersion in the self-consistent calcu-
lation is due to the strong plasmon satellite at low k's,
since, as shown by Fig. 3(a), the dispersion of the single-
particle peak, Eq. (8), is actually quite similar to curve 2.

I

0.5

k /kF

FIG. 5. Difference between the first moment 8', (k) of the
electron spectral function and the independent particle energy
e, (k) vs k/k+ for the three models discussed in the text. Th|:
same quantity calculated from the Hartree-Fock theory is also
shown.

ful to estimate the weight of plasmon replicas in lumines-
cence. Comparison between Figs. I and 4 shows that the
weight of the satellite structure in the electron spectral
weight function is strongly reduced with respect to the
fully self-consistent case (about a factor of 2—3). In fact,
in the self-consistent calculation the plasmon structure in
A(k, co) is enhanced by the occurrence of a zero (or
quasizero) of Dyson's equation co —e(k) —X(k,co)=0 in
the denominator of Eq. (3). With increasing k, the spec-
tral functions calculated with model 3 become more simi-
lar to the self-consistent ones, as can be understood in
terms of the general behavior of Xii and Xl as functions
of k and co.

It is interesting to compare how the first moment of the
spectral functions

5'(k) =I dco cod (k, co) J dco A (k, co) (11)

behaves for the different models. According to a general
sum rule 8'(k) is fixed for a given Hamiltonian.
This implies that different approximate forms of the spec-

B. Dynamical phonon screening

We now consider the case where e '(q, co) includes both
the contribution of the extra carriers and the dynamical
screening of the phonons. The screening of the electron-
phonon interaction is also accounted for. The back-
ground screening P has the high-frequency value c.„,the
effective masses are the bare masses, and the self-energy
shifts are referred to the bare band edges (i.e., not includ-
ing polaron effects). Our values of Eo, s, bare, and pola-
ron masses are reported in Table I.

We approximate s '(q, co) by two damped poles '
which describe the plasmon-phonon coupled modes.
The damping of both poles is taken as in Eqs. (5) (Ref. 16)
(see Appendix B). The weight of the phonon pole is al-
ways dominant at large values of q [q &(2m*co&)'~,
where m' is the pertinent effective mass], whereas the
weight at small q depends on the ratio coi/co~ as discussed
in Appendix B. %e point out that in the low-density limit
(co~ &&coi) the phonon damping, Eq. (5b), is certainly
overestimated. As a consequence the polaron shift calcu-
lated in this limit turns out to be smaller than the value
b,~,~

——7.4 meV expected for our choice of the model pa-
rameters. ' To recover the above theoretical estimate,
I

&

——0 should be set in Eq. (5b). For the range of investi-
gated EHP densities, we did not observe any appreciable
effect of screening of the electron-phonon interaction, e.g. ,
reduction of the calculated polaron shift with increasing
EHP density.

The electron and hole spectral functions at k-0 are
shown in Fig. 6 for the same set of values of n and T used
for Figs. 1 and 2. The energy scale is referred to the bare

TABLE I. List of parameters used in the calculations. Polaron masses are reported, bare masses
differ by 1% for electrons, by 2% and 3.5% for light and heavy holes, respectively. The value of the
dynamical dielectric constant is derived from the Lyddane-Sachs-Teller relationship (see Ref. 30).

0.005
0.19

'Reference 2.
Reference 30.

0.0665
0.0785

0.0863
0.100

mhh

0.470
0.480

&o

12.60
12.10

10.68
10.25
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FIG. 6. Spectral weight functions for electrons and holes as
in Fig. 1, but calculated using dynamical phonon screening.
Electron spectral functions are expanded by a factor of 4. The
energy scale is referred to the bare band edges.

band edges. Although two poles are now present in the
screening function, the spectral functions in Fig. 6 are
qualitatively very similar to the corresponding quantities
in Fig. 1. Only one replica is present, because of the large
damping of the plasmon-phonon excitations.

III. FITTING OF THE LUMINESCENCE
LINE SHAPES

Our fitting (solid dots) of the experimental lumines-

cence spectra at low and intermediate density in

Gao 994)Alo oo4)As, and at high density in Gao 8~Alo &9As, is
shown in Figs. 7—9 for the three models discussed in the
previous section. For these figures the static phonon
screening approximation is used. The energy is referred to
the value of the gap in the low-density limit (i.e., the bare

gap plus the polaron shift). The values of n and T used
for the theoretical calculations were chosen by fitting the
overall shape of the experimental spectra. Somewhat dif-
ferent values of the EHP density are used for the different
models. The parameters I o, I i, and b have the fixed
values given in Sec. IIA.

In the experiment, the outer part of the exciting laser
spot could fall out of the sample, giving rise to radiative
recombination from the surrounding Ga-As substrate (see
Fig. 1 of Ref. 2). Ga-As luminescence due to donor-
acceptor pair recombination is indeed present as a back-
ground signal on the low-energy side of the intermediate
density EHP spectrum. In order to reduce these spurious
effects, the experiment was thus performed in
Ga~ „Al„As, which has a higher energy gap. The alumi-
num concentration x was chosen as the lowest which sen-
sibly reduced the substrate luminescence, without giving
important disorder-assisted transitions. Very high EHP

0'
-40 -20 0

E-E, (meV)

20 40

densities (like the highest in Figs. 7—9) could however be
achieved only in samples with appreciable aluminum con-
centration, where the threshold for stimulated emission is
observed at higher density. Conservation of k in Eq. (1) is
used also for x =0.19, where some disorder-assisted tran-
sitions may take place. We assume that these transitions

a 0

0

E

40200
E-E, (me@)

FIG. 8. Fitting of luminescence spectra as in Fig. 7; calculat-
ed spectra are obtained from model 2.

-40

FIG. 7. Fittings of the experimental plasma luminescence
spectra (solid line). Calculated spectra (dots) are obtained from
model 1 in the static phonon screening approximation. The en-

ergy zero is referred to the independent particle gap EG (in-
clusive of the electron and hole polaron shifts). Results for
three different sets of plasma parameters are shown.
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h 0

where EF and EF„are the Fermi energies for electrons

and holes, respectively. The values given by Eqs. (13) turn
out to be larger than those obtained with the theory of
Ref. 7 by about (0.8+0.4) effective Rydbergs for the
range of the investigated densities (0.5 & r, & 1.2). It is in-
teresting to remark that the values given by Eqs. (13) are
also noticeably larger (typically some tenths of a Rydberg)
than the values of the "spectroscopic chemical potential"
p' (Ref. 37) which are obtained from the density of one-
particle states

N, i, (co)=+A, p, (k, co) .

0

-40 -20 0
E-E, (meV)

20 40

FIG. 9. Fitting of luminescence spectra as in Fig. 7; calculat-

ed spectra are obtained from model 3.

give a negligible contribution, since in indirect Ga-Al-As
near the crossover concentration, where they dominate the
recombination, the plasma lifetime is remarkably longer
than in direct Ga-A1-As.

For all densities of interest the spectra calculated with
model 1 (Fig. 7) reproduce fairly well the experimental
ones, except for the plasmon sidebands which are signifi-
cantly too large. This feature is characteristic of the self-
consistent RPA and cannot be eliminated by different
choices of the plasmon dispersion and damping parame-
ters in the screening function. Larger values of I 0, for in-
stance, smooth out the plasmon structure but worsen the
overall fit of the line shape. The value of I i, on the other
hand, does not sensibly affect the line shape but rather in-
fluences the energy renormalization, as also discussed in
Sec. II A. The position of the luminescence band fits ex-
periment within 1 meV (a few tenths of an effective Ryd-
berg).

As a test for our theory, we can compare our calculated
values of the EHP chemical potential at T =0 K with the
"reference values" resulting from the theory of Vashishta
et al. These authors evaluated the average ground-state7

energy per e-h pair e[n ], from which the chemical poten-
tial can be derived, as

N, i, does indeed include the effect of asymmetric satellite
structures, while the definition of p in Eqs. (13) implicitly
assumes the quasiparticle density of levels

N, g(co) =g 5(co —E, 1, (k)) (15)
k

with E, i, (k) given by Eq. (8). We point out that p', not

p, was actually used for our calculation of luminescence
spectra (see also Appendix C). The experimental band po-
sitions are reproduced quite well both for this reason and
because the plasmon sidebands additionally shift the oscil-
lator strength to lower energies.

The luminescence line shapes calculated with model
2—defined by Eqs. (6) and (7)—are shown in Fig. 8 (note
that the experimental spectra are the same as in Fig. 7 as
well as in Figs. 9 and 10). The excellent agreement be-
tween the calculated and experimental spectra over a large
range of EHP densities and aluminum concentrations
does not depend much on our particular choice of the
plasmon dispersion and damping parameters I o, I ~, and
b: Indeed variations up to +30% of these parameters

CA

a 0

CL)

BFp=6+n
Bn

(12)

In our approach the T =0 K chemical potential is

p =p, +ph, with

and

v, =&F, +&9kF I ') (13a)

(13b)

-20 20-40 0 40
E-E, (meV)

FIG. 10. Fitting of luminescence spectra as in Fig. 7; calcu-
lated spectra are obtained from model 1, including dynamical
phonon screening.
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would not significantly change the fitting. The choice of
the cutoff energy for the spectral functions (6c) is, on the
other hand, more critical. In Ref. 2 indeed, where the def-
inition B,~(k)=2e, ~(k) —EF was used instead of (7b),
some misfit on the low-energy side of the spectra was left,
suggesting the presence of plasmon replicas in the experi-
ment. The results in Fig. 8 do not support that sugges-
tion, but, in view of a certain arbitrariness in the choice of
the cutoff energy, they are still not conclusive. The values
of the EHP chemical potential at T =0 K calculated us-

ing the prescription (6a), i.e.,

p=EF +Ep„+h, (kp)+ b
p, (kF) (16)

IV. CONCLUSIONS

Excitation of a uniform EHP in a confined volume of
direct Ga-Al-As has allowed us to study in detail the
relevance of many-body effects in luminescence spectra
over a wide range of densities and temperatures. We fit-
ted the experimental spectra using an approximate expres-
sion in which vertex corrections are neglected. Different
models have been tested for the electron and hole spectral
functions, so as to evaluate quantitatively the influence of
plasmon replicas on line shapes and band positions.

The luminescence spectra calculated using the rigorous,
self-consistent RPA approach (Figs. 7 and 10) exhibit

agree within a few percent with our "reference values"

given by Eq. (12). This result represents a significant im-

provement with respect to the self-consistent RPA calcu-
lation. This can be explained using an early argument
given by Rice large cancellations would in fact occur
between higher-order self-energy terms, not accounted for
by RPA, and terms involved in the iterative self-
consistent solution of Dyson's equation.

The fitting of experimental spectra obtained with model
3 is shown in Fig. 9. The spectral functions were prelim-

inarily renormalized so as to satisfy the constraint given

by Eq. (10). The line shapes are remarkably good, al-

though a slight excess of plasmon sideband is still notice-
able. From these results an upper bound can be estimated
for the weight of the plasmon replica in the experimental
spectra. Our estimate is 8% and 7% for the low

(r, -=1.2) and high density (r, —=0.5) EHP, respectively. s

Although the renormalizations of single-particle energies
are similar to those used for model 2, the fitting of the ex-

perimental band position is somewhat poor (within 2.5
meV), due to the plasmon sideband effects previously dis-

cussed for model 1.
In Fig. 10 we show the luminescence line shapes calcu-

lated taking into account the dynamical effects of phonon
screening and using the self-consistent spectral functions.
The energy scale is the same used for Figs. 7—9. The
zero-density polaron shift given by our model dielectric
function is used to plot the calculated spectra. The spec-
tra in Fig. 10 are not significantly different from the cor-
responding ones in Fig. 7, as for the spectral functions
discussed in Sec. II. Differences occur in the energy posi-
tions, but the uncertainty in the evaluation of the polaron
shift (see Sec. II) does not allow us to draw definitive con-
clusions about the relative merits of the Ez and s models.

plasmon sidebands too large with respect to the experi-
ment. This shows that electron-hole interactions, which
reduce plasmon structures, " are important also at EHP
densities and temperatures as high as n —10' cm
( r, -0.5) and T-0.2E+ ( T-80 K). This feature was ig-
nored by previous literature which was mostly concerned
with lower densities (r, ) 1.0). The self-consistent RPA
underestimates the renormalization of single-particle ener-

gies. In particular the calculated chemical potential [Eq.
(13)] is larger by about one effective Rydberg than the
value predicted by more complete theories. Higher-order
self-energy corrections, not accounted for by RPA, are
therefore also important to describe EHP properties. Sa-
tellite structures in the spectral functions can introduce
differences between the values of the "thermodynamic"
chemical potential, given by Eq. (13), and those of the
"spectroscopic" chemical potential, given by Eq. (14).

While the results of the self-consistent RPA indicate
that "beyond-RPA" interactions are important in
luminescence, we found that a simple model spectral
function, accounting only for the single-particle peak
(model 2) can successfully describe the emission spectra.
It seems reasonable to suggest that the spectral functions
calculated according to this model effectively account for
the e-h interactions occurring in luminescence. The fits
shown in Fig. 8 are as good as the best obtained for the
electron-hole liquid in Ge. ' It is worthwhile to remark
that the luminescence band position is usually treated as
an adjustable parameter, while in our approach both
single-particle energy renormalizations and lifetime
broadenings are calculated. Another advantage of this
simplified model is that the chemical potential closely
reproduces the most reliable estimates available to date.

Although the results in Fig. 8 seem to indicate that
plasmon replicas in luminescence are vanishing, some am-
biguities are still present due to a certain arbitrariness in
the choice of the low-energy cutoff for the spectral func-
tions. A further model has then been introduced to
represent spectral functions with a built-in cutoff. This
model, although formally incorrect, is useful for provid-
ing an upper bound estimate of the weight of the plasmon
sideband in the experimental spectra. This turns out to be
smaller than 10% for the range of investigated EHP den-
sities.

Both static and dynamical phonon screening have been
used, resulting in quite similar luminescence line shapes.
The static model works well up to EHP densities such
that the plasma frequency is of the order of the I.O pho-
non frequency, i.e., in a region where dynamical phonon
screening effects are in principle expected to be quite im-
portant.
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APPENDIX A: RPA SELF-ENERGY AT FINITE T

Within the RPA and for finite temperature T, the electron self-energy is given by'"

dco
X,(k, co) = —f, V(q)f, (k+ q)+2 f „™~s [g(co')+1 —f,(k+ q)],

~—e, (k+ q) —~'
(Al)

where V(q) =4me /Xq, Im V, is the imaginary part of the screened potential V, (q, co) = V(q)/e(q, co), f, (k)
=(expIP[e, (k) —]]c,]I +1) is the Fermi distribution function, g(co)=[exp(Pco) —1] is the Bose distribution, and
13=(k~T) '. Using the damped plasmon pole approximation for the screening function' (see Sec. II A), ImV, (q, co i—ri)
is given by

2

Im V, (q, co iq—) = V(q) I ~
Np

2coq (co —
coq) + I~q

Eq. (Al) can be rewritten as

X,(k,co)= —f V, (q, co e, (k—+q))f, (k+q)+2 f ' '
[g(co')+ I],d3q d3q dco' Im V, (q, co' i ri)—

(2m. )3 (2n) co —e, (k+ q) —co'

where the two terms on the right-hand side are the screened exchange potential and the Coulomb hole.
The real part of X, can be explicitly expressed as

(co+co, )'+ I',

where the plasmon dispersion and damping, co~ and I'~, are defined by Eqs. (5). Using the spectral representation

+ dco' Im V, (q, co' i')—
V, (q, co) = V(q)+2

27K N —N

(A2)

(A3)

(A4)

d3 2

ReX, (k,co)= —f, V(q) f,(k+q) 1+
(2~) 2coq (co —coq) +I~q

N+N&

(co+co@) +I'q + I(q, e, (k+ q) —co)

where
2

Np +~ dN' 1
I(q, co) = I zP

2co&
—~ 2']7 co —co (co —co& ) +I

&

1 [g(~')+1] .
(co+co~) +I ~

(A5)

(A6)

To reduce the computational effort, we approximate g (co') in (A6) with the constant value taken at the pole co'=co o—f
the integrand. VA'th this approximation the integral can be evaluated analytically; the resulting expression is similar to
that given in Ref. 17. Taking into account the isotropy of the electron effective mass, (A5) reduces to a two-dimensional

integral, which has been performed numerically.
The imaginary part of X, is most easily extracted from Eq. (Al), which yields

d
IrnX, (k,co)= f q ImV, (q, co e, (k+q) —iq)tg—[co e, (k+—q)]+1 f, (k+q)I . — (A7)

Within the damped plasmon pole approximation, Eq. (A2) is used for ImV, .
The degeneracy of the hole bands at the I point and the splitting into a heavy- and light-hole band away from the

center of the Brillouin zone have been taken into account using the approximation introduced by Combescot and
Nozieres. ' The resulting expression for the heavy-hole self-energy is

d 9' (~)
Irn V, (q, co' i')—

Xhh(k co)= —f A- V (q co —ehh(k+q))fhh(k+ q)+ 2f [g(co')+1]
k, k+q

co —
ehh ( k + q ) —co'

Im V, (q, co' ig)—
+&k k V, (q, co —e]h(k+q))f]h(k+q)+ 2 [g(co')+1]

co —e]h(k+ q) —co'

(AS)

where ehh(k)=A' k /2mhh and e]h(k)=]ri k /2m]h are the
noninteracting heavy- and light-hole dispersion relations
in the isotropic approximation, and

fhh(k) (exp IP[ehh(k) Ph ] I + 1 )

t
and

f]h(k) =(expI p[e]h(k) —]Mh]]+1)

are the corresponding Fermi distribution functions. The
coupling matrix elements A'" and A' ' are given by
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A'" = —,(1+3cos 8- - ),k, k+q 4 k, k+ q

(2) 3 2A - = 4sin t9--
k, k+q 4 k, k+q

(A9)
E '(q, co) =1+8+

CO —CO+ + l I q CO +CO+ + E I
q

(85)
is the angle between k and ( k+ q ). The

k, k+q
light-hole self-energy Xih(k, co) is simply obtained by inter-

changing hh and lh in (A8). For the calculation of the
hole spectral functions, we took Xp, -Xhh in Eqs. (3) and
(6c), in view of the much larger density of heavy versus
light holes (approximately a factor 10 in Ga-A1-As).
Moreover the difference between ReXhh and ReX~h was
found to be numerically insignificant.

The expressions (A2), (A5), and (A6) refer to the static
phonon screening approximation, in which a single
(damped) pole is present in the screening function. We
shall omit the corresponding expressions for the E„
model [double pole in e(q, co)], which are simply obtained
using Eq. (85) (see Appendix 8) in V, (q, co)
= V(q)/E(q, co). The numerical calculation of X, i, with
the c model is much heavier, requiring about twice the
computing time for the Eo model.

APPENDIX B: DYNAMICAL PLASMA
AND PHONON SCREENING

For the EHP densities of interest in our experiment, the
plasmon and optical phonon energies are comparable. In
this situation the two screening contributions should be
treated on the same footing. In the absence of damping
and approximating the RPA screening of the EHP by a
single plasmon pole, the inverse dielectric function of the
coupled plasma lattice system is'

Q+
'(q, co) = 1+A + (81)

CO —CO+
2 2

CO —CO

where

2 2
CO+ —

CO~

CO+ —CO

2 — 2 2 2Q+ =CO& —COq+CO+ ~ (83)

In (82) co, is the TO-phonon frequency, while co~ in (83)
is the plasmon dispersion relation, Eq. (5a) in Sec. IIA.
The two frequencies co+ result from coupling of the
plasmon with the LO-phonon branch

2 2 2 2
'2

COq+COq COq
—COI 2 2 2

CO+ =
2 2

+ + co~(co& —co, )

1/2

(84)

The upper branch co+ is plasmonlike either if co& ~ coI, or
when q & q, (where q, is defined by co& ——coi) if ~z &coi.

In a real EHP both the plasmon and phonon modes are
damped, mainly because their energies are in the range of
light-heavy holes interband transitions. As a simple ap-
proximation we assume that the dampings of the two
modes are the same and both given by Eq. (5a) in Sec. II.
The resulting screening function is given by'

CO —CO + l I q CO+CO +/I q

where B =A +——Q+/2co+. For co&/coi «1 the phononlike
contribution is dominant in the whole q range (8+ »8
for q&q, and 8 &8+ for q&q, ). For co&/coi —1 the
phonon and plasmon modes are strongly mixed for q & q,
and therefore their weights are comparable, while at high

q the plasmon pole becomes negligible. For co&/col & 1 the
two modes are decoupled and the plasmon dominate in a
large-q range (q & qFT).

APPENDIX C: COMPUTATIONAL DETAILS

At each n and T, evaluation of the luminescence line
shape, Eq. (1), requires computation of two "matrices"
A, (k, co) and A~(k, co), where the "indices" k and co must
range over a sufficiently large and dense interval of
values. In a typical calculation 30—40 values of k (from
k -0 to k —1.6—1.8kF ) and 80—100 values of co (from
—col —— nEF to—co~ nF.„, w——ith n =2 or 3) are used.
For the self-consistent calculation four two-dimensional
integrals (Xii" and XI'") must be computed at each k and
co, while, at each k, only one value of Xx" and XI'" is re-
quired when the model 2 spectral functions are used. This
implies that the computational time for the self-consistent
case is about 80 to 100 times larger than with model 2.
As a test for the numerical accuracy of the calculations of
X, i„we monitored the values of the integrals

~M
W, i, (k)= I dcoA, i, (k,co) . (C1)

Significant deviations of Jr, h(k) from unity can occur
either because of the finite size of the co interval (typically
when k & 1.2kF), or because structures in A, i, are too
sharp (for k -kF). Instead, they do not exceed a few per-
cent at small k's (k&0.8k~). Deviations from unity
around kp can be quite large (up to 20—30%), and can
cause remarkable noise in the calculated spectra (in partic-
ular at high densities and low temperatures). We there-
fore use the constraint XI'"(k,co) & bco, where Aco is the in-
terval between successive values of co in the matrices
A, i, (k, co). The calculated spectral functions were prelim-
inarily renormalized, before starting the calculation of the
luminescence line shapes.

The values of the chemical potentials and temperatures
used for our calculations deserve some comment. The
values of T were simply chosen by a trial-and-error fit of
the slope of the high-energy edge of the experimental
spectra. For the evaluation of the self-energies X, g we
used the zero-order chemical potentials p, and p~, i.e., the
values for noninteracting particles. Since the electrons are
quasidegenerate in the range of EHP densities and tem-
peratures of interest, we take

~i (kiiT)
Pe =EF (C2)

12 EF
e

where EF ——A'kF/2m, is the electron Fermi energy. The
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holes instead, are nondegenerate. We use then the empiri-
cal formula

d'ks, „(ru)=21,A, „(k,~),
(2m. )'

(C4)

pg ———k&T 1n0 —0.27 (C3)

where n is the EHP density and ~h =( I/v 2)
(tttdt)kttr/2sr) is the hole effective number of states.
Both p, and pt, in (C2) and (C3) are referred to the per-
tinent zero-density band edges. Once the calculation of
the spectral functions A, s (k, co) is completed, we evaluate
the density of one-particle states

where the factor 2 takes care of spin. From X, h(co) we
calculate the renormalized (spectroscopic) chemical poten-
tial p', I„by requiring

~&e, II co exp ~ pe, I1 +1 =n . C5

)Lt', h is used to calculate the luminescence intensity [Eq.
(I)], as discussed in Sec. III.
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