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Theory of the current-field relation in silicon-rich silicon dioxide
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The dependence of the current on the electric field in silicon-rich silicon dioxide (Si-rich SiO2} is

studied with the use of a theoretical model based on quantum-mechanical tunneling between a ran-

dom array of small semiconducting Si islands in a large-band-gap Si02 insulator matrix. The
current J is calculated in the presence of an electric field F by a simple percolation method for vari-

ous regimes of external voltage. In the high-field limit, the current is found to obey a Fowler-

Nordheim law, ln J——F/F, but with Fweakly dependent on the field F.

I. INTRODUCTION

Mixed phase oxides have recently become of interest in
electronic-device applications. ' They have been used
for field screening in integrated circuits' and for charge
transfer in electrically alterable read-only-memories
(EAROM's). ' These SiOz/Si composites have been
shown to consist of separate Si02 and Si phases. For
(50% atomic Si in these films, Si islands are typically
& 100 A, and they are embedded in an Si02 matrix. For
films chemically vapor deposited (CVD) at 700'C, the Si
islands are amorphous whereas annealing at 1000'C in N2
converts many of the islands into crystallites, at least for
material containing 45—50% atomic Si.

The electrical characteristics of these films have recent-
ly been studied (in particular, for films with 34—40%
atomic Si), and they have shown a very strong dependence
on the average electric field F,„ for field magnitudes) 1.5 MV/cm. Here, F,„=(Vz —4~, —'P, )/lo where Vz
is the voltage applied to the gate electrode deposited on
top of the off-stoichiometric oxide film, 4, is the differ-
ence in work function (by convention expressed in volts)
between the gate material and the Si substrate onto which
the oxide film has been deposited, 4, is the surface poten-
tial for the substrate Si-oxide interface, and 10 is the oxide
thickness. The field dependence of the areal current
measured in the external circuit I,„, is observed to be ex-—K/F „ponential in the inverse field; that is, I,„,-e '" where
A is —constant. These currents are also observed to be
only weakly dependent on temperature from 77 K to
300'C for moderate to large electric field, on contact ma-
terial for Si, Al, and Au, on voltage polarity, and on oxide
thickness in the range from 240 A to 1 pm. " These exper-
imental results imply that the conduction mechanism in
these films is bulk limited by tunnehng from Si island to
Si island in the off-stoichiometric oxides. Carrier-
separation techniques and electroluminescence measure-
ments have yielded more evidence to support this con-
clusion, showing over the moderate field range that car-
riers are entering the contacts with very little excess ener-

gy. This is what would be expected for dominant island-
to-island tunneling as opposed to injection and transport
through the oxide phase which can, however, be observed
at extremely high average electric fields. Furthermore,

carrier-separation measurements imply that the dominant
carriers transported between the contacts in these films
are electrons and not holes, although some hole injection
into these films takes place.

In a previous publication, a very simplistic model based
on tunneling through a trapezoidal energy barrier was
used to relate I to I'„, and it was deduced that a—K/FI-e "dependence could be obtained with K a weak-

ly dependent function of F,„. In this publication, it was
assumed that the local electric field F in the Si02 regions
between the Si islands would be larger than the average
field due to the finite volume of material containing the Si
islands and their higher effective dielectric constant, both
of which force most of the applied voltage to be dropped
across the Si02 regions. It is the purpose of this theoreti-
cal study to extend this simplistic model over all voltage
regions, and to take into account quantum effects arising
from Si-island size variations similar to that done by
Brodsky for a-Si:H.

II. MODEL CALCULATION

A. Model

The excess silicon in the Si02 matrix is formed into
spherical islands with a probability distribution P(a) to
find an island of radius a. We assume that the distribu-
tion is sharply peaked around some average radius ao,
with a small rms deviation ha &&ao. The silicon islands
are being treated as spherical potential wells, with sharp
boundaries. Electrons and holes can be bound by these
potential wells (see Fig. 1). The "local" conduction band
is the effective potential for electrons, and the local
valence band plays the same role for the holes. We denote
by U, and U~ the depths of the potential wells, respec-
tively. Using the standard derivation for the energy lev-

els, we find for the ground state of the electrons
3

Eg U, 1—1

(1+y)' 3m 1+y

where, with m,* the electron effective mass, and the fi
Planek's constant,
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ELECTRONS
Xs; N——~ f dV f dEg W(r, Eg)=E~ aono,

where no is the density of silicon atoms in the island. no
is of the order of silicon atomic density in a pure silicon
sample; i.e., nz-5&10 cm .

B. Current density
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FIG. 1. Schematic potentials of a Si island.

P(Eg) =P(&) (3)

for the energies E~. This distribution is thus peaked at
some Eg, with standard deviation EEL, which can be ob-
tained from P(a).

We assume that the potential ~elis are randomly distri-
buted in the Si02 medium, and the probability of finding
a potential well in a volume element d V at a point r with
GSE between Eg and Es+dEs is

W ( r, Eg )d V dEg P(Eg )d V dEg .—— (4)

If the average number of excess silicon atoms per unit
volume, Xs;, is given then the average number of islands
(potential wells) per unit volume, X, can be calculated
from

1/2
2 pl~

U, a
$2

0

is the order of 5 for U, -3 eV and a —10 A, and the ap-
proximation is good up to 1%. A similar expression can
be written for the holes. Above the ground state, we have
many bound excited states, which will be approximated as
a continuum. Since the depth of the wells is the same i.e.,
U„ the ground-state energies (GSE) depend only on the
radius a, and thus we get a distribution

We consider a slab of nonstoichiometric oxide with

electrons injected into it, so that an electric field F per-
pendicular to the slab surface is present. The dimensions
of the slab are assumed to be large enough so that we can
consider the conductivity as a bulk problem. In the pres-
ence of the applied field, the injected electrons tunnel
from one island to another. Since the current is very
small, and thus the number of electrons per unit volume is
small, the electrons hop individually from one potential
well to another. Most of the time, the potential wells are
empty, and we can neglect the correlation between the
electrons. We further assume that the presence of an elec-
tron in an island causes very small polarization of the
medium, and thus the "charging energy"' is very small.
The reason is that the Si islands in Si02 differ consider-
ably from the metallic grains in granular metal films of
Ref. 10. While the latter are charged electronic Fermi-
liquid drops, the Si islands more closely resemble empty
potential wells in the Si02 matrix. We discuss here only
the conductivity associated with electrons.

Since the current consists of hopping between two
wells, we first consider two islands of silicon at positions

r& and r2 with radii a& and a2 and GSE Eg and Eg in
g2

the presence of a strong electric field F. The probability
of tunneling from the potential well at r, to the one at r2
is written as (see Ref. 11)

g12+g12
&2=

The exponent g&2 is given in the WKB approximation

1/2
$2

gi2 ——2 f ds[V(s) Es,]'i—
where s is integrated along the straight line connecting the
two potential wells, s~ and s2 are the two ends of this line,
and V(s) is the effective potential for the electron along
the line. In our simple model, we find with
b, V =qFs cos8 & ( U, Eg ), —

g j.2 =2
1/2

[(U, Eg, ) ~ —(U, Eg qFs co—s8—)
~ ]/ ,'qF—cos5, —

where s is the shortest distance between the walls of the
two islands, 5 is the angle between the field F and the
vector r2 —r ~, and q is the electronic charge.

The second term in the tunneling probability exponen-

tial, g&2, represents the activation-energy effect. As seen
in Fig. 2, it depends on the potential difference (in the
presence of the field) between the ground-energy states of
the neighboring islands and the temperature T. We ap-
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FIG. 2. Schematic potentials and positions of two Si islands.

proximate it as a thermal activation factor, i.e.,

(9a)

if &z, & (&~, +qFs cos8), i.e., when the electron has to

overcome a positive energy difference by thermal activa-
tion, and

(9b)

when Es, &(Eg, +qFscosN, i.e., when the second island

ground-state energy is favorable along the field gradient.
In Eq. (9a), k is the Boltzmann constant. Notice that all
states above the GSE Es of the second potential well are

available, but there are no states below it. We have also
tacitly assumed that after an electron has tunneled to a
potential well it will fall into the local ground state on a
time scale much faster than the "tunneling time. " Actu-
ally, the electron is reaching thermal equilibrium with its
new environment, but for simplicity we neglect this and
put the electron in the local ground state. This thermal
dependence can be considered separately.

The preexponential A is more weakly dependent on the
parameters of the problem, and we approximate it as

i.e., the average inverse time an electron spends in a poten-
tial well.

%e now turn to express the total bulk current in the
medium. Consider inside the sample an imaginary plane
of unit area perpendicular to the field (see Fig. 3). The
current density J is equal to the sum of electronic charges
which cross the plane per unit time, i.e.,

CONTROL PLANE

FIG. 3. Schematic presentation of Si island and currents.

where I is an average typical length, and the j summation
is now over the proper right-hand side "neighbors" of the
ith island on the left-hand side.

C. Percolation treatment

Since the relevant dependence of the current on the pa-
rameters of the system is in terms of the exponentials, we
find it convenient to relate current flow to the percolation
studies of disordered systems. "' In particular, we
should compare our calculation with the results of high-
field conduction in disordered systems. ' ' We present
here a simplified version of the high-field hopping current
calculation following arguments similar to Ambegaokar,
Halperin, and Langer" (AHL) and Shklovskii. ' In our
case, the field affects the tunneling probability both
through the effective potential in g &z and the activation in

b
8 12.

The essence of the percolation approach is to determine
how a set of potential wells, randomly distributed in
space, and with random energy distribution, is intercon-
nected by currents flowing from one another. From Eq.
(11), we see that the current linking two islands i and j is
proportional to

where i is summed over all potential wells on the left-
hand side of the unit plane and j over wells on the right-
hand side provided that the line s,j that connects the two
wells crosses the plane. In our system of randomly distri-
buted islands, the current density can be cast into the
form

g g,j+8',J ~
jV

8

and thus varies over many orders of magnitude, depend-
ing on the relative positions and energies of this pair of
sites. The total current is then obtained by a summation
of many terms, TJ-, which are extremely different in mag-
nitud. It is clear that the "weak" links, i.e., the small
current connections are unimportant in this summation,
and may be neglected. Effectively only current links with
a "strength" above some critical size, 7",J ~ T„are
relevant for the total current. ; that is, only the islands i
and j with g =g J+g;J less than a critical magnitude g,
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play a role in the current flow. The basic assertion of the
percolation treatment is that the effective current link TJ
can be replaced by T,-e, since the links with g «g
are extremely rare, and those with g »g are not effective.
The essential proposition of the percolation method is that
the value of the critical percolation exponent, g, can be es-
timated by geometrical arguments as will follow. Using
the percolation prescription, we can now write the
current, Eq. (11),as

2$c
2m,"(U, E—g, )

(15)

which yields the AHL result s, =R,„=g/2a where
1/2

2m,*
(U, Eg—) (16)

is the inverse length of the tunneling. In the general case,
with

J=qN 1* e
r1 = qF/( U, Eg )—, (17)

where all numerical factors of the preexponential are
lumped into a "typical length" 1*, which is of order of the
interwell distance. Thus we are left with the task of es-
timating the critical exponent g.

The outline of the procedure is as follows: The first
step is to calculate the average number of neighbors con-
nected to the ith well, so that their T~ is larger than e
without yet knowing g. For a specified model, when the
g;J's of Eq. (11) are given in terms of the positions and en-
ergies of the sites, and the probability distribution
W(r, Eg) of the potential wells is prescribed, the number
of "proper" links is

we find

1 3 9s, =—1 — 1 ——
'g 2 2'

' 2/3

(18)

S

n(Ee)=4irN„J dEgP(Fg ) j dss

= —,~X s, . (19)

If we now neglect the effect of g on the current (i.e., as-
sume that the activation by the thermal bath is negligible),
we find from Eq. (13) in the present approximation

n (Es ) =N~ I d r) I dEs 8'(r J
—r;,EsEg ),—

xe(g —g, —gi~j) (13)

In a more exact treatment of this integration, the size of
the potential well a would come into play, but this is
neglected here. The percolation prescription gives

averaged over the ground-state energies Eg . In Eq. (13),
f

B(x)=0 for x &0 and e(x)=1 for x &0. The second
step is to appeal to a percolation estimate (by geometrical
arguments) of the number of relevant neighbors. This
number v, was found to be in the range of 3—5.

In order to calculate n(E~ ), we can use g' of Eq. (8),

g of Eq. (9), and W of Eq. (4). However, the integration
is very involved and tedious, so we perform it approxi-
mately in the spirit of AHL. " First, we will disregard the
effect of thermal activation, i.e., concentrate on high
fields. Then we will estimate the effect of the activation
component g,&.

b

Ignoring g;J, we find the critical distance s, so that

gJ &g. We note that, effectively, only jumps forward
(against the field direction) should count, since the high
field almost blocks the backward motion. Only angles
8 & ~/2 are of interest, and actually small angles are more
favorable; therefore, we can avoid the 8 integration, and
set cos8-1. Now to find s„we write

n (Eg ) = , eras, =—v,

or, the critical length
1/3

3&c
C

and thus from Eq. (18),

g= ——[1—(1—vis, ) ] .3n

The current density of Eq. (12) is given by

J=CqX s, ' e-F'",

where C is a numerical factor of order one, and with

1/2

(U —E)'2m~
3 2

3 2g2

(20)

(21)

(23)

(24)

the Fowler-Nordheim (FN) field, we write
2

$2 ~qF

(14)

qsc F
1 — 1—

' 3/2

(25)

where s, is assumed to be less than ( U, Eg )/qF, i.e., the—
field F is not strong enough to carry the tunneling elec-
trons into the conduction band of the Si02 which
separates the islands. In a very small field, where
qFs, && U, —Eg, we find

At high fields, F depends weakly on F and the current
displays a Fowler-Nordheim exponential dependency on
the field. However, if the field is moderate, qs, F
& U, —E, the current should deviate from the FN ex-
pression. We notice that the effect of percolation, in the
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present approximation, is only to replace the average in-

terwell distance
of AHL, we find the famous Mott result

1/4
To

T
(30)

by s, =so(v, )'~. Since this factor appears in the ex-
ponential it may be significant. We wish to remark that,
since experimentally only the average field F,„ is mea-
sured, while the local field F appears in Eq. (25), it would
be difficult to differentiate between the high-field FN re-
gime and the moderate-field percolation regime.

We now turn to a more complete treatment of hopping
current, and reconsider the effect of the activation com-
ponent g . We shall provide here only a rough estimate
of Eq. (13). For simplicity, we take the bandwidth of the
ground-state energies to be b,Es [or we assume a square
GSE distribution, 8'(Es) = I/b, Ez in the EEs band and
&=0 otherwise]. From Fig. 2, we see that if Ez is less

than Es +qFs cos5, then g =0, otherwise the tunneling

must be activated thermally, g is positive, and n (Es) of
Eq. (13) is reduced. We wish to estimate here the reduc-
tion factor. If we concentrate on "forward" tunneling
(backward tunneling is not effective), we can replace cos8
by 1, and estimate the average potential drop between two
sites by qEs„where again s, is the new critical distance.
Thus, a reduction of n(Es) would occur only when

Ez &Es +qFs, . From the 8 function of Eq. (13), Ez is

limited by the condition that 0 &g & g; i.e.,

(31)

which is similar to the Pollak and Riess' result.
(c) Moderate fields at low temperatures. Here qFs,

«(U, Ez) and—also kTg «qFs„and we find

4a I
N qF sc=v,

and with s, =g/2a, we find similar to Pollak and Riess, '4

' 1/4

(32)

FPR

F
where

3v, AE

4 X q
(33)

(d) If the field is higher and qFs, is not much smaller
than U, Ez b—ut still qFs, &b,Ez, we use Eq. (28) for s,
to obtain

(b) Stronger fields at low temperatures. Here qFs,
«(U, Ez),—but not so small compared to kTg. To first
order in qFs, /kTg, we find

' 1/4

1—To qF
T 8akT

Ez —E —qFs
(26) 4 3vc AEg

C (34)

and from bandwidth arguments Ez Ez & EEL Now—w. e2
can distinguish two cases: (i) If (kTg+qFs, ) & AEz, the
activation factor does not play any role, and we return to
the previous case of Eq. (19). (ii) However, if kTg
+qFs, &AEz, the thermal activation would reduce the
Ez integration of Eq. (13) by a factor of the order of

F=Fo[1—(1 PF i
) ],—

where

(35)

and g is found from Eq. (22). This yields again a FN
dependence of the current as in Eq. (24), but instead of
Eq. (25) we have a stronger dependence of F on F, i.e.,

4~ 3 (kT(+qFs, )
=&c

kT(+qFs,
AEg

and the percolation prescription is now

(27)

(28)

I3=
U, —Eg

(e) At still-higher fields when qFs, & b,Ez, we return to
Eq. (25).

This equation with Eq. (18) can now be solved for g and
the percolation current is expressed by Eq. (12).

We consider a few limiting cases of Eq. (28):

(a) A small field at low temperatures. From Eq. (18)
for qFs, «(U, Ez), s, ~(1/2a)g; an—d if further
qFs, «kT(, we find

(29)

or, with

3v, EEg
Tp —— (2a)'

4m%

III. CONCLUSIONS

A theoreticaI model based on quantum-mechanical tun-
neling between an array of small semiconducting Si is-
lands in a large-band-gap SiOz insulator matrix to predict
current-field dependence over a wide range of applied
voltage conditions has been developed. The model was
broken up into three distinct voltage regions using a per-
colation treatment in the low-field range, and the WKB
approximation in the moderate-to-high electric field
range. The form of the derived J Fresults in the-
moderate-to-high field regime and the predicted tempera-
ture dependence is in agreement with the observed experi-
mental results for Si-rich Si02 films with 34—40% atom-
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ic Si. No experimental test of the low-field predictions
has been performed. Future experiments will be in this
direction swee the low-field J-F results and thej. r tempera-
ture dependence will control the ultimate information

storage agllltp over 1OIlg periods of time of certain
EAROM's which will use these films. This model can be
used for any other separate phase semiconductor-insulator
system or for cermets (metal-insulator systems).
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