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Explicit solutions for the Brazovskii-Kirova continuum model of cis-polyacetylene are presented
for the following three configurations: two polarons, two bipolarons, and a polaron and a bipolaron
coexisting on a single chain. The results show that two polarons attract each other with a long-
range potential reflecting large spatial extension of the polarons and that the attracted polarons
form a bipolaron; two bipolarons repel each other; and polarons and bipolarons can freely pass
through each other without attractive or repulsive interactions.

I. INTRODUCTION

Polyacetylene (PA), particularly its trans isomer, now
attracts considerable interest because of its remarkable
electric, magnetic, and optical properties. Characteristic
twofold degeneracy of trans-PA allows domain-wall-like
excitations called solitons,"? and various striking proper-
ties of trans-PA have been understood in terms of the sol-
iton model.> The microscopic model due to Su,
Schrieffer, and Heeger! and its continuum version*> form
a basis of such a soliton model.

In addition to soliton excitations, the possibility of po-
laron excitations has been suggested theoretically.®—!!
Optical detection of polarons in trans-PA has been report-
ed very recently.!>!* A polaron is a charge carrier (elec-
tron or hole) self-trapped by the lattice distortion which
the carrier itself has generated through the electron-lattice
interaction. It is ubiquitous in comparison with a soliton,
as it does not require twofold degeneracy. In fact, pola-
rons in one-dimensional systems have recently drawn
much interest.!*

Brazovskii and Kirova’ (BK) proposed a generalization
of the trans-PA continuum model*’ that is adapted to a
general description of polarons in various types of one-
dimensional systems. Their model is particularly suited to
the cis isomer of PA,”" =17 which lacks the twofold de-
generacy of trans-PA. The BK model further indicates
the presence of a bipolaron in cis-PA, which is a single
lattice deformation containing two charges, or a bound
state of two polarons having a lower energy than two free
polarons.

In this paper we will investigate the interaction among
polaron and bipolaron excitations within the framework
of the BK continuum model of cis-PA. Since light dop-
ing of cis-PA will generate polarons and bipolarons, study
of their interactions is very interesting. To this end, expli-
cit analytic solutions will be presented for the following
three configurations: two polarons, two bipolarons, and a
polaron and a bipolaron coexisting on a single cis-PA
chain. Theoretical treatment of the problem almost paral-
lels our previous work on trans-PA, where the reaction of
two free polarons into a pair of charged solitons'® and the
free passage of a soliton through a polaron'® were studied.

In the following section we review the BK model and
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its effects on polarons and bipolarons, since the original
compact presentation of BK (Ref. 7) is not sufficiently
comprehensive to allow further understanding. In Secs.
III—V we discuss the three configurations mentioned
above. Results of the analysis of these three sections are
summarized in Sec. VI, together with its implications in
the real cis-PA system. Appendixes A and B supplement
mathematical details to Secs. III and V.

II. POLARON AND BIPOLARON IN cis-PA

In this section we review the Brazovskii-Kirova contin-
uum model’ of cis-PA and summarize their results on the
polaron and bipolaron.

Unlike trans-PA, which has two degenerate ground
states, cis-PA has no such degeneracy. Thus the theoreti-
cal model of cis-PA requires a modification to the trans-
PA continuum model* that will remove the degeneracy.
Brazovskii and Kirova’ ingeniously proposed that the gap
parameter A(x) should consist of two contributions,

Alx)=A, +A;(x) . 2.1)

The extrinsic term A, is a constant. The intrinsic part
A;(x) arises from the electron-lattice interaction; therefore
it is proportional to the displacement field of carbon
atoms.

A cis-PA chain is then described by the Hamiltonian

H= [ dx[Ajx)]/mhog

+ [ dx W) | —ivpoy >+ Aoy [¥) . (22)

ax

The first term represents the elastic deformation energy of
the chain. The parameter A denotes the dimensionless
electron-lattice coupling constant, and vy is # times the
Fermi velocity. The second term consists of electron ki-
netic energy and electron-lattice—interaction energy. The
electron-field operators ¥ W are two-component spinors;
the two components correspond to even and odd sites of
the dimerized polyene.!® o, and o, are Pauli matrices.
For simplicity, the electron-spin index will be omitted
throughout.

In the adiabatic approximation, the kinetic energy of
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the carbon atoms is omitted. We first fix the displace-
ment field A;(x) [and hence A(x) as well] and solve the
one-electron eigenvalue problem,

—up e+ ) g (0) =€ £5(5)
(2.3)
vpa%+A(x) filx)=¢;g;(x) ,

where f;(x) and g;(x) are one-electron wave functions on
even and odd sites normalized such that

JLIf0 124 | gyx) | ldx=1. (2.4)

This model has electron-hole symmetry: for a positive-
energy solution {€;,f;(x),g;(x)}, there always exists a
corresponding negative-energy solution,
{ -—Gj ,fj(X),“‘gj(X)}. ’

The total energy of the system (or adiabatic potential) is
then given by

E[A)])= [ AxPdx/mhop+ 3 [AX)]  (2.5)
J

as a functional of A(x). The summation on the right-
hand side is taken over occupied one-electron levels in-
cluding the valence band. In a stable configuration, the
above total energy should be stationary against variation
in the gap-parameter function A(x). Such a stability re-
quirement leads to the self-consistency equation,

A(x)=A, —mhvp X, Re[f;(x)*g;(x)] . (2.6)
J

The ground state of the cis-PA chain is described by
constant gap parameter A(x)=A, The electron-energy
spectrum obtained from Eq. (2.3) is then e=tE(k),
where

E(k)=(A}+vEk»)!/2. 2.7

A band gap 2A; then occurs at k =0. Corresponding
wave functions are plane waves. Substituting them into
the self-consistency equation (2.6), we obtain

Ao=A, +AAIn(W /Ay) , (2.8)

where W denotes width of the 7 band. The band gap 24,
is determined as a solution of Eq. (2.8). This model has
an important parameter, called the confinement parame-
ter,

y=A,/Al, 2.9)

which measures relative weight of the extrinsic gap pa-
rameter A,. trans-PA corresponds to the y =0 case. The
magnitude of ¥ in cis-PA is not quite known. From their
optical measurements, Etemad et al.’’® estimate that
v =0.6.

The characteristic length appearing in this model is

§0=UF /AO . (2.10)

In trans-PA, the magnitude of this length is known to be
about seven CH units.! Because of the increased band-gap
energy in cis-PA,% &, in cis-PA is considered to be about

5 CH units, which still justifies the continuum model, al-
though less favorably than in a trans isomer.

When an electron or a hole is placed on a PA chain, it
deforms the carbon-atom chain, and the chain, in turn,
traps the electron or the hole. Thus, a polaron is formed.
Furthermore, two polarons favor a lower-energy configu-
ration, namely the bipolaron, because of strong electron-
lattice interaction. Lattice-displacement patterns for the
polaron and bipolaron are commonly described by

A(x)=Ag+kor{tanh[ko(x —x()]—tanh[ko(x +x0)]} ,
(2.11)
where the parameters ky and x are related by
Kovpcoth(2koxg) =4, - (2.12)

For A(x) of Eq. (2.11), the eigenvalue problem (2.3) ad-
mits two discrete levels with energy two,

wo=(A3—kK3E)? (2.13)
and wave functions
folx)=3xd"*sech[kolx —x¢)] ,
(2.14)

go(x)=*+3kb*sech[ko(x +x)] -

The energy spectrum of the conduction and valence
bands remain unchanged, but the wave functions are dis-
torted by the presence of lattice distortion,

Fr(x)=Are™{Kstanh[ko(x —x0)]—ik} ,

(2.15)
gk (x) =t Are™{Kkotanh[ko(x +x0)] —ik }e'¢*)
where
aso) |17
A= |20k 4K QO\k)
k (k*+xp) |L + 7 ‘ ,

d(k)=tan"kvg /Bg), 8(k)=2cot™'(k/ky) .

The usual periodic boundary condition on electron wave
functions leads to

kL +8(k)=2mn , (2.16)

where L is the chain length and = is an integer.

Figure 1 shows the displacement pattern and electron
configuration for the polaron and bipolaron. (In an expli-
cit display of various curves, we shall choose y=0.6
throughout.) The self-consistency condition, as obtained
by substitution of the wave functions (2.14) and (2.15) into
(2.6),

KoVp 1

Yy =sin~ A +%(n+—n_) , 2.17)
0

@o

depends on the occupation numbers ny of the discrete
levels with energy tw,. For an electron polaron P~ and

a hole polaron P*, we have, commonly,
n,—n_=—1 (polaron) . (2.18)

As for the bipolaron, for which
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FIG. 1. Pattern of the gap parameter A(x) (top) and electron

configurations (bottom) for the polarons, P* and P, and the
bipolarons, P**, P~ ~,and P* .

N
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n, —n_=0 (bipolaron) , (2.19)

we have three kinds of electron configurations, as seen in
Fig. 1: electron bipolaron P~ ~, hole bipolaron P*,
and exciton polaron P+ —,

The formation energy of a polaron (and a bipolaron) is
obtained as a result of the calculation of Eq. (2.5),

(2.20)

(20

Ao

1

Ep= % (1—9)Kgup + 27 AgkoX g + @osin ™

+(n+—n_)w0 .

In fact, a minimization of this energy against w, leads to
the self-consistency equation (2.17). In Fig. 2 we plot the
energy wq of the localized level and the formation energy
for the polaron and bipolaron as functions of y. (For the
bipolaron, half of the formation energy is plotted.) The
bipolaron has larger dip in A(x) and stronger electron
binding than a polaron on account of the two charges con-
fined in it.

Among the three kinds of bipolaron configurations,
P+** and P~ ~ will be formed by acceptor and donor

Ay

Wy

—m—e== FORMATION
ENERGY

0 ] 1 1 J
0 1 7 2

FIG. 2. Energy w, of the discrete level (solid curves) and for-
mation energy (dashed curves) of the polaron, P, and the bipola-
ron, BP. For the bipolaron, half of the formation energy is plot-
ted.

doping. In contrast to this, the exciton polaron P+ ~ is
an excited state; it can be generated by photoexcitation.
As seen from the extreme right panel of Fig. 1, the exci-
ton polaron admits both light emission and absorption at
photon energy E=2w,. Optical measurements can there-
fore determine the magnitude of wg in the bipolaron. Ac-
cording to Lauchlan et al.,*! luminescence spectra of cis-
PA peak at 1.9 eV, tailing down to 1.3 eV. They interpret
the luminescence as hot luminescence (transient lumines-
cence before quasiequilibrium at the minimum-energy
configuration is reached) and choose!® 2wy=1.3 eV,
which, when combined with the band-gap energy
2A,=2.05 eV, gives ¥y =0.6.

In addition, transient optical absorption due to the exci-
ton polaron P* ~ has been observed by Orenstein and
Baker.?? The absorption spectra peak at 1.55 eV, tailing
down to ~1.3 €V. This tail energy may be taken as 2w, if
we again understand that the quasiequilibrium is not yet
reached in the main absorption peak.

At present we are obliged to rely on an uncertain esti-
mate disturbed by the hot process. Optical detection of
the polaron and bipolaron generated by doping would
determine ¥ more directly. In Sec. VI comments will be
given on experimental detection of polarons and bipola-
rons in doped cis-PA, which has not yet been attained, as
far as I am aware.

III. REACTION OF TWO POLARONS
INTO A BIPOLARON

Having finished describing the polaron and bipolaron,
we now consider their interaction. In this section we
study how two polarons attract each other and form a bi-
polaron. Because of the electron-hole symmetry of the
system, only the positively charged species will be con-
sidered.

When cis-PA is dilutely doped (with acceptors), pola-
rons (P %) are formed because the polaron-formation ener-
gy given by Eq. (2.20) is smaller than the energy A, of a
free carrier. Thus the elementary process of doping is po-
laron formation. When the doping level is raised, two po-
larons can appear close on a single chain. These two pola-
rons will tend to form a complex, a bipolaron, which has
a lower energy than two separated polarons.

The mechanism of such a reaction process,

Pr4Pt_ptt (3.1)

may be viewed in a similar way as in trans-PA,'® where
two polarons decay into two charged solitons. When two
polarons approach each other, the energy levels +w, are
each split into two levels (bonding and antibonding states)
owing to the overlap of electron wave functions trapped in
the two polaron dips in A(x). The system can lower its
energy by accommodating the two electrons in the lower
level, —w,, as shown in Fig. 3. Consequently, an attrac-
tive force operates between the two polarons. The system
further lowers its energy by lowering the level —w, down
until it is absorbed into the valence band. The end prod-
uct of such a reaction process is a bipolaron, where two
charges are confined in a single dip.

The above observation greatly aids in the construction
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of an explicit expression of the gap parameter A(x) for a
two-polaron system. We impose a requirement on
A(x)—it should admit four discrete levels as shown in
Fig. 3. Then A(x) can be constructed as a solution to the
inverse problem of Eq. (2.3), as detailed in Appendix A
The gap parameter A(x) describing two polarons is

(k3 —K3)vp
kicoth(kx — B1) —kjtanh(kyx — B;)

A(X)=Ao+

(ki —K3)p
- kicoth(xx + B1) —k,tanh(k,x + ;)

(3.2)

where
tanh2B; =k;vp /Ag (j=12).

We have two independent parameters, ; and k, related to
the energies o, and w, of the discrete levels by

A} (j=1,2).

(3.3)

(kjvp)?+of= (3.4)

The above expression for A(x) is the same as that for two
polarons in trans-PA.'3

Despite the appearance of Eq. (3.2), it is not the param-
eters J3; that determine the separation between two pola-
rons. Instead, the difference «;—k, determines the
separation. The configuration of two infinitely separated
polarons corresponds to k;=k,=kK;. When they ap-
proach, the difference k;—k, appears, giving rise to
bonding-antibonding splitting of the discrete levels. Ac-
cording to the analysis of Appendix B, the polaron separa-
tion d is asymptotically given by

4k 0

(3.5)

at large distances. (This expression holds for trans-PA as
well.)

For A(x) given by Eq. (3.2), the eigenvalue problem
(2.3) admits four discrete levels with energies +w; and
+w,. The dispersion relations of the conduction and
valence bands remain the same. The corresponding wave
functions are given in Appendix A. One point to be noted
here is that the phase shift 8(k) to be used in the boundary
condition (2.16) now becomes

8(k)=2cot™(k /k;)+2cot™ (k /k3) .

The physical quantity of immediate interest is the total
energy (2.5) of such a system. The elastic deformation en-

(3.6)

w2

-
-w?

P 4 b

FIG. 3. Electron configuration of two-polaron system.

ergy is readily integrated using Egs. (A7) and (A8) given
in Appendix A. Energy shift of the electrons in the

valence band is given by*>*
k
k
Ew=2| [ dE ( )S(k) “an |, (3.7)
where kp=W /2vr. The first factor 2 takes account of

twofold spin degeneracy, and 2A, is the correction term
that arises from the two bound levels branched off from
the top of the valence band. Adding both contributions,
we obtain the total energy,

E=——2 (1—7)kjvp+yAgtanh ~(k; &)

<]

relative to the ground state. The energy E depends on the
electron configuration through

i =12,

+ w;sin™! + 2 Njo;, (3.8

where n4; denotes the occupation number of the discrete
level with energy *w;. In the two-polaron system with
which we are concerned,

N,;=0 and N,=—2, (3.10)

as seen from Fig. 3.

The energy E is a function of two parameters, @, and
@,. Figure 4 shows the constant-energy curves for the
confinement parameter ¥ =0.6. The configuration of two

w/By

FIG. 4. Constant-energy contour of Eq. (3.8) for two pola-
rons (Ny=0 and N, = —2). Confinement parameter y is taken
to be 0.6. The numbers labeling the lines indicate the energy E
in units of Ao. Point A represents two infinitely separated pola-
rons with twice the polaron-formation energy. The two-polaron
configuration, starting from point A, relaxes along the steepest
descent path, touches the w,=A, line at point C, and finally
descends to the bipolaron, B. Point F represents a configuration
of two free carriers with the lattice undistorted.
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(a)W
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FIG. 5. Behavior of the gap parameter A(x) for five points
on the steepest descent path of Fig. 4. Here, (d) corresponds to
point C in Fig. 4 and (e) to the bipolaron, B. The figure, from
top to bottom, shows the reaction process (3.1).

infinitely separated polarons takes place at the point A.
The system, starting from point A4, will descend along the
steepest path, the thick solid lines in Fig. 4. It finally
reaches the stable configuration B, which is simply the bi-
polaron.

It is interesting to compare this reaction process with
that in trans-PA. In trans-PA the confinement parameter
v vanishes, and the stable point occurs at S in Fig. 4,
which represents two charged solitons infinitely separated.
Thus two polarons decay into a soliton pair by way of the
bipolaron.!® In cis-PA, breakdown of the degeneracy (or
the nonvanishing confinement parameter) confines the
two solitons to form a single complex, a bipolaron. The
term “‘confinement” refers to this situation.

To visualize this reaction process, in Fig. 5 we show the
displacement pattern on five representative points on the
steepest descent path. Values of w;, ®,, and energy E for
the five cases are given in Table I. The figure clearly
shows how two separated polarons attract each other and
form a bipolaron.

Finally, in Fig. 6 we show the energy E as a function of
the separation d between two polarons. Two polarons at-
tract each other with a long-range potential caused by
large spatial extension of the polarons. The range is on
the order of 10&.

Asymptotic expression of the attractive potential can be
obtained using Eq. (3.5). The leading term of the attrac-
tion comes from the occupation of the two electrons in

TABLE 1. Values of w; and w, for the five curves of Fig. 5.

a)l/Ao UJZ/AO E/Ao
(a) 0.8861 0.8916 1.9180
(b) 0.8686 0.9090 1.8851
(© 0.8201 0.9553 1.8110
(d) 0.7441 1.0 1.7520
(e 0.6481 1.0 1.7336

1.9F

E/A,

1.8

g 5 '
d/so 10
FIG. 6. Energy E plotted as a function of the separation d
between two polarons for ¥y =0.6. The separation d is deter-
mined numerically as the distance between the two dips of A(x)
given by Eq. (3.2). For small separations, it is meaningless to
speak of “separation between two polarons,” as the gap parame-
ter becomes considerably distorted and loses its double-dip
structure.

the bonding level —w,. Thus the asymptotic form of the
attractive potential at large d is given by

V(d)~—2(w,—wo)~—(4kiv} /wo)exp( —kod ) . (3.11)

This expression does not depend on the confinement pa-
rameter ¥, and it is valid for trans-PA as well for which it
becomes

V(d)~—2V2 Agexp(—d /V2 &) , (3.12)

since Kgvp =wo=~Ao/V 2.

IV. REPULSIVE INTERACTION
OF TWO BIPOLARONS

In this section we investigate the interaction between
two bipolarons on a single PA chain.

The two-bipolaron system may be approached by mak-
ing the same considerations as for two polarons. As two
bipolarons approach each other, the energy levels *wq are
each split into two levels. Therefore, the energy-level
structure should be the same as for the two-polaron case.
The only differences are the occupation numbers of the
electrons in the discrete levels. In the case of two bipola-
rons, we have

N,=N,=0, (4.1)

as shown in Fig. 7. Except for this single difference, the
results obtained in the preceding section apply to the
present case of two bipolarons.

To see the interaction between two bipolarons, in Fig. 8
we draw the constant-energy lines given by Eq. (3.8) with
(4.1). The cross in the figure represents two infinitely
separated bipolarons. As may be seen from this figure,
the cross point denotes the minimum-energy configura-
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FIG. 7. Electron configuration of two-bipolaron system.

tion, and a repulsive interaction operates between the two
bipolarons.

An asymptotic expression for the repulsive potential
can be obtained in a way similar to that for two polarons,
although the origin of repulsion in less clear. The separa-
tion d between two bipolarons is related to the difference
K;1—Ky by Eq. (3.5). We then expand the energy E in
powers of k;—ky and k,—k,. Linear terms vanish (when
N{=N,=0) because of bipolaron stability [Eqgs. (2.17)].
[This is the reason why we could simply obtain Eq. (3.11)
for the two-polaron system.] Hence the asymptotic poten-
tial, which is determined by second-order terms, becomes

AZ U3K3
Vid=S |14 20 | 2 exp(—260d) . 4.2)
™ (O o

This potential has a shorter range than that of polaron at-
traction, since k; of the bipolaron is larger than «, of the
polaron, in addition to the factor 2 in the exponent of Eq.
(4.2). The repulsion arises from the increase in both the
deformation energy and the electron energies in the
valence band.

7,

>
s

T T T T

—
L
w fw
Nlo
_s\

&~ a W w
o © o

0 w1/

FIG. 8. Constant-energy contour of Eq. (3.8) for two bipola-
rons (N;=N,=0). Confinement parameter ¥ is chosen to be
0.6. The numbers labeling the lines indicate the energy E in
units of A,. The cross corresponds to the configuration of two
bipolarons infinitely separated. The figure shows the stability of
such a configuration.

V. COEXISTENCE OF A POLARON
AND A BIPOLARON

In this section we study interaction between a polaron
and a bipolaron coexisting on a single chain. We can ex-
pect such a coexistence in lightly doped PA. We find that
neither attractive nor repulsive interactions work between
them. This means that a polaron and a bipolaron can
pass freely through each other.

The coexistence system is analyzed in the same way as
the two-polaron case: We focus our attention on the
energy-level structure generated by such a configuration.
When a polaron and a bipolaron are sufficiently separated
on a single chain, the system should have four discrete
levels as shown in Fig. 9, where

@1 =w, of bipolaron ,
(5.1
wy=w, of polaron .

The electron occupation numbers should be such that
N;=0 and N,=-1. (5.2)

We therefore impose a requirement on A(x) that it should
admit four discrete levels as shown in Fig. 9. Then A(x)
can be constructed by solving the inverse problem of Eq.
(2.3). We give the derivation in Appendix A and show
here the result

2 2
(Kl——Kz)l)F

Alx)=A
(x) ot choth(le —-—B])—Kztanh(l(zx ——Bz)

2
(K3 —K3)vp

" kjcoth(kx —Bs) —kytanh(kox —B,) (5.3)

where

2B;=a+tanh~ k&), 2By=a—tanh~ (k&) ,
(5.4)
232=—a+tanh_1(lc2§o), 2B4= —a—tanh_l(Kzgo) .

We have three independent parameters in all. The param-
eters «; and k, are related to the energies w; and w, of the
discrete levels by Eq. (3.4). The parameter a is new, it
was absent in the two-polaron case. In fact, the two-
polaron solution (3.2) is obtained from Eq. (5.3) by setting
a=0.

FIG. 9. Electron configuration of polaron-plus-bipolaron
coexistence system. The discrete levels with energy *w; ori-
ginate in the bipolaron P* * and those with tw, in the polaron
P+,



In spite of the close similarity of Eq. (5.3) to Eq. (3.2),
there is one important difference between the two cases:
It is now the parameter a that determines the separation
between the polaron and bipolaron. This can be seen from
the asymptotic expression of Eq. (5.3) for large x. Ac-
cording to the analysis given in Appendix B, when « is
positive and large, the bipolaron is located at

x,=(3a+0)/k;, (5.5)
and the polaron is located at

x,=—(3a+0)/k, , (5.6)
where

6=tanh~!(k,/k;) . (5.7)

Figure 10 shows the displacement pattern for various
values of the parameter a. For large positive a, we have a
polaron and a bipolaron which are separated. They ap-
proach each other as a is diminished. The pattern be-
comes considerably distorted as they pass each other, but
_ they regain their identities after the passage.

To investigate the interaction between the polaron and
bipolaron, we have to calculate the energy (2.5) of the sys-
tem. As far as the energy is concerned we can use the re-
sult of Sec. ITI, because the parameter a has no influence
on the energy-level structure [four discrete levels, *w; and
+w,, and continuum states +E(k)]. Therefore the energy
of the polaron-plus-bipolaron system is given by Eq. (3.8),
where Eq. (5.2) is understood.

Minimization of this energy with respect to the parame-
ters o, and o, leads to the self-consistency equation (2.17)
for the bipolaron (j=1, N;=0) and polaron (j=2,
N,=—1). Thus the system has lowest energy when Eq.
(5.1) is satisfied. The energy (3.8) is then simply a sum of
the bipolaron-formation energy and polaron-formation en-
ergy, irrespective of the value of the parameter a, as seen

from comparison with Eq. (2.20). |

’}/Uij

oce 2
A, —mAvp 3 Re[f }(x)g;(x)]1=A(x)+41 3, -
J J

j=1

where
Aj(x)=vpf4(x)g4;(x) (j=1,2)

is related to the wave functions (A13) of the bound states
with energy +w;. From this result and Eq. (2.17) we
know that the system is stable when Eq. (5.1) is satisfied,
irrespective of the value of a.

This stability means that the polaron and bipolaron
pass each other freely without attractive or repulsive in-
teractions. The energy levels *w; and +w, are fixed dur-
ing the entire process of passage. The free passage
guarantees that the bipolarons generated by polaron reac-
tions will not disturb any further reaction of polarons into
bipolarons.

Before concluding this section, we comment on self-
consistency in the two-polaron and two-bipolaron solu-
tions. In the case of two polarons, we have Eq. (3.10).
The second pair of terms on the right-hand side of Eq.

sin~!
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| B . . . |

X/&0

FIG. 10. Behavior of the gap parameter A(x) in the polaron-
plus-bipolaron system. The parameter a determines the separa-
tion between the polaron and bipolaron.

Stability of the solution can also be confirmed by direct
inspection of the self-consistency equation (2.6). We can
calculate the right-hand side of Eq. (2.6), using the wave
functions obtained in Egs. (A13)—(A15) of Appendix A,
and we obtain

@j

Ao

—%Nj Aj(x) , (5.8)

I
(5.8) vanish when

w1 =wy of bipolaron and w,=4,,

which exactly corresponds to the bipolaron state. Hence,
the self-consistency is satisfied only in the final, bipolaron
state. This is what we naturally anticipate; intermediate
states of chemical reaction will not satisfy such a stability
requirement.

In the case of two bipolarons, we have Eq. (4.1). The
second terms vanish only when

w=w,=awq of bipolaron .

Thus the two-bipolaron system is stable only when the bi-
polarons are infinitely separated.

V1. DISCUSSION
The results obtained in the preceding three sections may
be summarized as follows.
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Within the framework of the continuum model of cis-
PA, we have presented exact analytic solutions to three
configurations—two polarons, two bipolarons, and a pola-
ron and a bipolaron coexisting on a single chain. We have
found that two polarons attract each other with a long-
range potential, which reflects large spatial extension of
the polaron. The driving force of such attraction is attri-
buted to the electron configuration as depicted in Fig. 3,
namely bonding-antibonding splitting of the electron lev-
els and accommodation of two electrons in the lower level
constitutes the origin of the attraction. The attracted free
polarons will then form a bipolaron. We have thus ex-
plained the mechanism of reaction process (3.1).

Two bipolarons have been shown to repel each other.
The range of the repulsion is much shorter than that of
polaron attraction. The bipolaron repulsion means that
the ideal ground state of doped cis-PA is the bipolaron
lattice. )

Finally, we have found that a polaron and a bipolaron
can pass freely through each other with neither attractive
nor repulsive interactions. The displacement pattern be-
comes considerably distorted just when they pass each
other, but they keep their identities before and after the
passage (see Fig. 10). This behavior is similar to the free
passage of a soliton through a polaron in trans-PA." The
free passage implies that even when a bipolaron [which,
by itself, has been generated by the reaction (3.1)] happens
to exist between two polarons, it will not exert an influ-
ence on the reaction of those two polarons into a bipola-
ron.

Here, we would like to stress the static nature of the
above conclusion. The interaction of a polaron and a bi-
polaron shown in Fig. 10 reminds us of soliton collisions
in nonlinear evolution equations.”* However, here we
have adopted the adiabatic approximation and entirely
neglected the kinetic energy of carbon atoms. Therefore,
the free passage mentioned above cannot mean dynamical
collision of a fast polaron and a bipolaron. Our con-
clusion on the free passage refers only to the limit of slow
velocities.

In the above theoretical development, we have entirely
neglected effects of Coulomb interactions. In polarons
and bipolarons, which have electric charge, the Coulomb
attraction of ionized dopants will be substantial. Polarons
(and bipolarons) cannot be free; they are pinned onto ion-
ized dopants. In the case of charged solitons in trans-PA,
the binding energy is estimated! to be 0.3 eV using the
macroscopic dielectric constant e~10 suggested by Finch-
er et al® The binding energy of the polaron will be
smaller because of larger spatial extension, but it cannot
be neglected except at very high temperatures. If polarons
(and bipolarons) are strongly pinned on fixed ionized
dopants, they cannot move. . On the other hand, if dopant
diffusion takes place rapidly, polarons (and bipolarons)
can move together with the ionized dopants on which they
are pinned. Neglect of the pinning potential becomes then
unessential. The above-summarized theoretical results
may be understood in light of this.

Although no direct experimental data are available on
such dopant diffusion, some indirect evidence seems to ex-
ist that suggests relatively rapid dopant diffusion. First,

in optical-absorption spectra of lightly doped trans-PA,
the intensity of soliton absorption is far stronger than that
of polarons.'>!3 In trans-PA, the elementary process of
doping is considered to be polaron formation rather than
soliton formation. If the polarons are fixed and cannot
move, they cannot decay in pairs into charged solitons.
Then polaron absorption should predominate over soliton
absorption. Consequently, the above experiment suggests
that, on the contrary, dopant diffusion takes place rapidly
along chain,'®* promoting polaron reactions into charged
solitons.

In addition to this, optical measurements on cis-rich
PA showed that dopants preferentially enter trans re-
gions.?® This presumably means that a dopant that first
entered a cis region and generated a polaron on a cis-PA
chain diffuses along the chain together with the polaron
until it reaches a trans region. Hence this experiment also
suggests dopant diffusion. Furthermore, the intercalation
model of Baughman and co-workers, according to which
dopants enter PA in columns or in layers,?’ favorably ac-
counts for the ease of dopant diffusion. The light transla-
tional mass and large spatial extension of the polaron will
help in such diffusion.

The above-mentioned preferential doping on trans re-
gions entails a difficulty in the experimental detection of
polarons in cis-PA. The cis films available at present ap-
pear to have a small amount (about 10%) of trans-PA
(Ref. 20) owing to thermal isomerization. Diffusion of
dopants into the trans regions suppresses polarons in the
cis region. Polarons in cis-PA can survive only in pure-
cis samples. In addition, the overwhelming predominance
of soliton absorption over polaron absorption in trans-PA
(Refs. 12 and 13) suggests that the corresponding reaction
(3.1) in cis-PA proceeds quite efficiently owing to rapid
dopant diffusion. The amount of surviving polarons will
be small as in trans-PA.

As for bipolarons, the above inference indicates that
doping of pure cis-PA generates, finally, a large amount
of bipolarons. Therefore bipolarons will be detected in
optical measurements if they are stable.

The stability of bipolarons is quite certain in the
Brazovskii-Kirova model, as has been shown in Sec. IV.
However, further considerations, to see if the stability is
absolute or only metastable, is merited. Among the two
isomers of PA, cis-PA and trans-PA, the latter is known
to have lower energy. Isomerization from cis to trans iso-
mers occurs through two channels—by heating?® and by
doping.?® The mechanism of either isomerization process
has not yet been clarified. However, a model has been
proposed?®!7 in which a bipolaron is an important factor
in initiating isomerization by doping. In that event, bipo-
laron excitation will be metastable rather than stable exci-
tation.

In this context, it would be of much theoretical interest
to explore the possibility of a unified model that describes
both cis- and trans-PA. The Brazovskii-Kirova model
(2.2) is insufficient for this purpose. If we assume the
same electron-lattice coupling constant A for both iso-
mers, then cis-PA will have a lower ground-state energy
than trans-PA on account of its larger band-gap energy,
in contradiction to the established stability of the trans



30 POLARONS, BIPOLARONS, AND THEIR INTERACTIONS IN cis-(CH), 783

isomer. This is indicative of some missing factor to be in-
cluded in the existing theoretical model. Construction of
such a unified model and elucidation of the isomerization
process is quite a challenging problem.
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APPENDIX A: CONSTRUCTION
OF THE FUNCTION A(x)

In this appendix we derive an explicit expression for the
gap-parameter function A(x) in two-polaron (two-
bipolaron) and polaron-plus-bipolaron systems. The pro-
cedure is almost parallel to that described elsewhere!® for
soliton-polaron coexistence in trans-PA. As mentioned in
the text, we require A(x) to admit four discrete levels with
energies *w; and tw,. In addition, A(x) is taken to be
reflectionless. The “reflectionless” condition arises from
minimization of the total energy with respect to the
electron-reflection coefficients.>>® Throughout this and
the following appendixes, we take Ag=§,=1 for simplici-
ty.

The eigenvalue problem (2.3) is transformed to decou-
pled Schrodinger equations,

Fi0=2; f;x),

82
{—-?-FUJX)
(A1)

2
—a——}—U,,(x)

™ gj(x)=A;g(x),

for even- and odd-site wave functions f; and g;. The “po-
tentials” U,(x) and U,(x) are related to A(x) by

dA(x)

Ue,o(x)=[A(x)]2~?~K~—l , (A2)
and the “energy” A; is
2

From the requirement on A(x) mentioned above, both
U,(x) and U,(x) should be reflectionless potentials with
two bound states (A\=—«? and —«2). Such a potential
and corresponding wave functions are constructed by
means of the inverse scattering method’! or by
Bargmann’s direct method.> The potential, called the
Bargmann potential,?* is

2

U, o(x)= —2;—;1;71nwe,,,(x) : (Ad)
where
w, (x) =k cosh(x;x — B)cosh(x,x — ;)
—k,sinh(kx — By )sinh(k,x — ;) , (A5)
w, (x) =k cosh(kx — B3)cosh(k,x —B4)
—Kysinh(kx — B3 )sinh(k,x — ;) . (A6)

We construct A(x) from potentials U, and U, in the

following way. From Egs. (A2) we have

4 Ax)=Lv,-U.), (A7)
dx

Ax)P?=1+75(U,+U,) . (A8)

Integration of Eq. (A7) with the boundary condition
A(x)—1 asx—*

gives the expression for A(x),

d
Alx)=1+ ™ In

w, (x)
— > (A9)
w, (x)

which is the solution for polaron-plus-bipolaron system
(5.3). The other relation, (A8), leads to

w/l wll wlwl wl wl
e o e (] e [
252 2% 72 _9,

We Wo We Wy We Wo

which is satisfied for arbitrary x, if and only if
tanh(f3;—f33)=k, tanh(B,—pB;)=k, .

The translational symmetry of the system now allows
us one free choice of the parameters Bj. We therefore
choose

Bi+B,+B3+B4+=0.

To express the parameters in a symmetric form, we set

Bi+Bi=a, By+Bi=—c. (A11)

Equations (A10) and (A11) determine the parameters f3;
as shown in Eq. (5.4). Thus the A(x) of Eq. (A9) contains
three parameters, k;, k,, and . It has the symmetry

Alx,—a)=A(—x,a) ,

(A10)

(A12)

which is manifest in Fig. 10.

In two-polaron and two-bipolaron solutions, we take
a =0 because A(x) should be an even function in x. This
gives the result shown in Egs. (3.2) and (3.3).

For A(x) of Eq. (A9), the normalized wave functions
are as follows. For the bound states with energy *w,

Sf+1(x)=A cosh(kyx —B,) /w.(x) ,

(A13)
g+1(x)==% A cosh(kyx —By)/wy(x) ,
and for +w,,
fa(x)=A,sinh(k;x —B1)/w,.(x) ,
(A14)

g +2(x)==xA,sinh(kx —B3)/w,(x) ,
where the normalization constants are
A;=[k;(k]—K3) /412 (j=1,2) .

The wave functions of the continuum states with energy
e==*E(k) are

fr(x)=Are™[k*— fika,(x)+ $b.(x)],
(A15)
8k (x) =+ Are™[k>— Tika,(x)+5b,(x)]e ¥,
where
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d(k)=tan" 1 (k&) ,

—1/2

L+ dd(k)

2k +1) (k> +x3) T

A=

in terms of the phase shift 8(k) defined by Eq. (3.6). The
auxiliary functions a(x) and b (x) are*

ae,o(x)=—2—d Inw, ,(x) ,
dx ’
ol2, 2 Weo(X)
be,o(x)-—z"fl"f-l(z —“_‘wm(x)

The usual cyclic boundary condition imposed on the wave
functions (A 15) yields Eq. (2.16).

Ki—K3

APPENDIX B: ASYMPTOTIC EXPRESSION OF A(x)

In this appendix we derive the asymptotic expression of
the gap-parameter function A(x) from Eq. (A9) and con-
firm that it correctly describes two excitations coexisting
at large separation. Although the two-polaron (two-
bipolaron) and polaron-plus-bipolaron systems are
described by the same function, (A9), their asymptotic
behavior is entirely different and calls for a separate treat-

ment.
1. Two polarons (and two bipolarons)

As mentioned in the text, two polarons are infinitely
separated when k;=k,=k,. Consequently, for two pola-
rons sufficiently separated, we set k;=k,=k, and
Bi1=PB,=p in hyperbolic functions of Eq. (3.2), where

Bo= 7 tanh ™ !(kofo) =KoXo -

Then we have

Ki—K3

Alx)=

+ Kkicoth(kgx — Bo) —kytanh(kpx — Bo) " kycoth(kgx +By) — kytanh(kox +Bo)

=1 4«o[tanh(kpx — By— ) +tanh(kgx — By +1)] — ko[ tanh(kgx + By—¥) +tanh(kx + Bo+1)] .

The parameter v is defined by

tanhi = (k, /K1) /2 .

Comparing the above expression with Eq. (2.11), we find that it describes two separated polarons. Since the two polarons
are located at x, = +1//k,, the separation d is given by Eq. (3.5).

2. Polaron-plus-bipolaron system

To obtain an asymptotic expression of Eq. (5.3) at large separation, let a be positive and large. We can then set

tanh(k,x —B,) =tanh(k,x —B4)=1 for x >0,

because of the negative sign of 3, and B,;. The right-hand side of Eq. (5.3) then becomes

2 2
Ki—K3 K}—Kg

Alx)=1

=1+k tanh(kx — 3;—0) —«k tanh(k;x —3;—0) ,

where 0 is defined by Eq. (5.7). This expression indicates
that the bipolaron is located at

Bi+B;
2

1
X|1="
Ky

—1—(%a+6) )
K1

+6

kicoth(kix —B))—k,  kjcoth(kyx —B3)—k,

|
Similarly, for x <0, we may set
tanh(xix —B;)=tanh(kx —fB3)=—1,

because of the positive sign of 8, and ;. Analogous cal-
culation, as above, yields the polaron location (5.6). In the
case of negative a, one may use the symmetry (A12).
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