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Electronic excitations in semiconductors: Variational Green's-function approach
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We develop a Green s-function method for calculating electronic excitations in semiconductors. It
is variational in character and takes full account of the local part of the correlation hole as well as

the long-ranged polarization cloud. Both contribute significantly to the quasiparticles and their en-

ergies. The method is based on the Sauermann functional, the stationary point of which is the one-

particle Green s function. For the case of a simple model, a connection is established to an earlier

method which required the computation of correlated wave functions in order to obtain the excita-

tion energies. Furthermore, we relate the present approach to the single-mode approximation of
Overhauser and others which was devised for describing electron correlations in nearly homogene-

ous systems.

I. INTRODUCTION

The effects of electron correlations are known to be im-
portant in semiconductors. For example, they lead to a
drastic reduction of the energy gap from its Hartree-Fock
value (in diamond from 15 to 7.3 eV) and to a narrowing
of the valence and conduction bands.

Recently a method for calculating the ground state' and
excited states ' (referred to hereafter as I and II, respec-
tively) of a semiconductor was demonstrated for the case
of diamond. The method takes full account of the local
nature of the correlation hole and the long-ranged polari-
zation cloud. It is variational in nature and can be ap-
plied both to molecules and solids. With this method it
is now possible to describe correctly the influence of
many-body effects on static correlation functions as well
as on the energy bands.

In this paper a new method is introduced which allows
for calculating the one-particle Green's function varia-
tionally. The method is based on the Sauermann function-
al, ' which has the property that at its stationary point it
coincides with the Green's function. This approach has
the advantage of a variational procedure but does not
suffer from the problems usually encountered with pertur-
bation expansions. At the same time it keeps the concep-
tional advantage of a Green's-function description.

Calculating the Green's function involves computation
of various expectation values with respect to the correlat-
ed ground-state wave function. Therefore, we shall
describe briefly in Sec. II the construction of the latter.
All expressions are thereby written in terms of a finite size
basis set which in practice will consist of Gaussian-type
orbitals.

In Sec. III we describe how the retarded Green's func-
tion can be computed from the Sauermann functional and
derive the equation for the variational parameters deter-
mining the self-energy and renormalization function.
This equation is an improved version of the corresponding
equation in I, since correlations in the ground state and in
the excited states are treated here more symmetrically. In
Sec. IV the connection to and the improvement on the

previous method are demonstrated by considering a sim-

ple model. Finally, we establish in Sec. V a relation be-
tween the present approach and the one-pole approxima-
tion of Toyozawa, Overhauser, and Hermanson. 9 A
brief summary is given in Sec. VI.

II. BASIS SET AND GROUND-STATE
WAVE FUNCTION

A similar expansion holds for g (r). The functions f,(r)
are generally not orthogonal and fulfill the relation,

This implies

[a;~,aIo ]+——S;J 5~ ~. .

The Hamiltonian H takes the following form in the Hil-
bert space spanned by the functions f; ( r ):

H =

ganja;

al~+ —, g Vikta; ak ato. aI (4)
lJO' ij kl

O', 0'

The matrices e,J and VJkl are defined by

ej ——f d r f,*(r) — b, + V(r) fj(r),

2

Vt kt= f d'r d'r'f;*(r)f, (r) fk(r ')ft(r '),
/

r —r'/

(5)

where V( r ) is the single-electron potential due to the nu-
clei.

We denote by f;(r ) a set of X functions centered at dif-
ferent atoms. In practice these functions are usually
groups of Gaussian-type orbitals. They define a set of an-
nihilation and creation operators a;, a; . The latter are
obtained by expanding the single-electron field operators

f ( r ) in terms of the f;( r ), i.e.,

g (r)= ga; f, (r) .
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In the following we want to assume that the index i in

a; involves a cell index i as well as an index a for dif-
ferent functions within a unit cell, i.e., i =( i,a). It is ad-
vantageous to divide H into a self-consistent field (SCF)
part Hp and a residual interaction part H„„

nmi

minim,

n

m +n ma no'
Omn aa

sms„.
H Hp +Hres ~

Then it can be seen that

Ho= gfij«oajo r

EJa

where fj is the Fock matrix

fij =eij + g ( ~ijkl ~o,o'I ilkj )& ko'alo'&
kla'

and

Hres 2 g [I jiklaicr ko'alo'ajo ( I ijkl ~o,o'~ijkl)
ij kl

o,a'

&&&ak ai & aKj ] .

(7)

We subtract the SCF or single-particle part Om„" from
the operator 0 „ to ensure that the one-particle density
matrix remains unchanged to first order in g'mn'.

The gm„' in Eq. (10) are variational parameters. They
are determined by minimizing the ground-state energy
after the latter has been expanded up to second order in
the gmn'. As has been discussed in detail in I, such a
minimization requirement does not fix all of the q'mn' but
only certain combinations of them. The ground-state en-

ergy is independent of the remaining, and therefore un-
determined, linear combinations of the g' „'. This con-
cludes the summary of the construction of the correlated
ground-state wave function.

III. ELECTRON PROPAGATOR

The notation & & stands for &PscF I I PscF& where

I PscF & is the SCF ground state.
For the correlated ground state an ansatz is made of the

form (see I),

The retarded Green's function for the electron system is
defined by

Gb (k, t) = —i6(t)&gp
I
[c-„(t),c-„(0)]+I fp&

x &go I

ep&-'
r

I
gp&=exP —grj .o I kscF&

mn

=exp(~o )
I NscF & ~ (10)

The operators e create electrons in single-electronkha
eigenstates of Ho labeled by the band index b 8(t) is t.he
Heaviside step function. The Fourier transform of the
Green's function is given by

The operators Om„' refer to local regions m and n

Such a local region can consist of, e.g., part of a bond or
part of an atomic volume. It is defined by a local func-
tion,

N

g (r)= g y jf,(r),
j=1

and different g (r )'s are generally not orthogonal to each
other. Their proper choice has been discussed at great
length elsewhere. " Related to the g (r) are operatorsb, b which create or annihilate electrons with spin o.

in the state g (r). From them one can construct density
and spin-density operators,

Gb (k c)=pc c
1

kbo co L +lg kho. (17)

(18)

Furthermore the scalar product (A
I
B) of any two opera-

tors is defined by

& Po I
[A+»]+

I fo&

The Liouville operator can be divided into a SCF part L p

and a residual part L„„

Here we have introduced the Liouville operator. It is a
superoperator which acts on other operators A through
the relation

LA =[H,A]

~ma bmabma &

L =Lp+L„, ,

where
12

(20)

m = ~ ma aabma
ao'

The matrices s ~ equal —, the Pauli matrices.
The operators Om„' are defined by

LpA =[Hp, A]

LresA = [Hres~A]—

If one neglects L„„Eq.(17) becomes

Gb "(k,cp)=

(21)

(22)
(0) SCF

Omn Omn Omn

where

(14) ci) —escF( k~b)

where escF(k, b) denotes the excitation energy in the SCF
approximation.
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In order to compute Gb (k, co) we introduce a function-
al which is due to Sauermann and has the property that
it yields the Green's function as a stationary point. It has
the form

The operators 0 „are those defined by Eq. (15). Fur-
thermore, the operator Q is a projection operator. It is de-
fined by

F-„(P,P') =(P'
I
c -„)+(c-„, I P)

—(P'
I

(co L+i—5)
I P) . (23)

P= Ic- )(c-
(27)

I 4) =&[
I c-„,.)+Q I Sc-„,.) )

[(c'„, I+(Sc'„, IQ

(24)

where S is a superoperator (like L). We define it through

Here P and P' are operators which contain variational pa-
rameters and we must search for the stationary point
F (P„,gs, ). For P and P' we make the following an-

kho
satz:

G (k ) = Z(k, b, g)b~, CO

co —escF ( k, b ) —X( k, b, 2l )

(28)

The operator
I P) can be thought of describing a quasipar-

ticle consisting of the "bare" particle
I
c ) and the po-

kbo
larization and relaxation cloud Q I

Sc- ) around it.
kho

The parameters a, a', and g „are determined by re-
quiring that F- (p, p ) is stationary. Keeping the 21mnkho
fixed and varying with respect to a and cL' leads to

SA = [S,A]

where S is assumed to be of the form

S g gnm Omn

(25)

z( k, b, 21)=((1+Qs)c-„
I
(1+Qs)c„)

is the so-called renormalization function and

(29)

((1+QS)c-
I
[L —&scF(k b)]

I
(1+QS)c-

X(k, b, ) = k bcr kho

((1+Qs)c
b I

(1+Qs)c kb )
(30)

8 lnZ ( k, b, 2) )

~'Qmn

X [co—escF(k, b) —X(k,b, ri)], (32)

and shows that the q „are generally co dependent. For co

values on the energy shell, i.e., for

co =escF( k, b) +X( k, b, 2i),

Eq. (32) simplifies to

BX(k,b, ri)
~'9mn

(33)

is the self-energy. The latter can be identified with the

correlation energy e„(k,b, ri) Both fu. nctions do not de-

pend directly on co, but only indirectly through the matrix

g, as will be seen below. Indeed, by considering the g „'s
as variables and requiring that F- (P,P') is stationary,

kho
one finds that they must obey the equations

BGs (k, co, 21) =0. (31)
~ gmn

This implies,

aX(k, b, ~)
~ Qmn

I

The O,J are defined through

OqA =[Oij,A] (35)

When Eq. (34) is used to eliminate the quadratic term in
the q „'s one can write

X(k, b) =Xo(k,b)+Xi(k, b)

with

(36)

Xo(k,b)=(c- IL„, I c-„„),
Xi(k,b)= —+21 „(Om„c-

I QL„,c- ) .

(37a)

(37b)

Xo(k, b) is Positive and nonzero, even for 21mn =0. It de-
scribes part of the changes in the ground-state correlations
due to the presence of the extra electron in state k, b, o.

What remains is a discussion of the evaluation of the
scalar products which appear in Eqs. (37a) and (37b). We
indicate in the following how this is done. It turns out to
be advantageous to express the Bloch function operators
in terms of %'annier operators w, , where again the index
t includes a cell index t as well as an index ~ within a unit
cell, i.e., t = ( t, r). It is

By making use of Eq. (30) one can derive the following
expression for qmn". c- = ge, (k, b)w, exp(ik R-) .

kbo (~ )I/2 ' t
C

(38)

2l „=—g [(oc-„ I
Q[co(k, b) —L]Q I oc-„)

X(0;, -„ IQL„, -„, ) . (34)

N, is the number of unit cells and the matrix e ( k, b) pro-
vides the link between both types of operators. Instead
of, e.g. , (0 „c-

I L„,c- ) one then evaluatesmn k bo res k bo.
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A.
(0 „w, ~t.„,wt ). Itis

wt ~ Vtjk/a' aktt'altt'[aj wt ]+
ij klcr'

c number. We set

[aj tt~wttt ]+ +j t (40)

—g (vtjki &—~, ~ Vakj)
ij klo''

)&(ak at )a; [aj,w, ]+, (39)

and one can now make use of the fact that [aj,w, ]+ is a

and the matrix can be evaluated when the Wannier states
are known. In complete analogy one can evaluate
0 „wt~ and denote the c number [b„,w;~]+ It:«——.
Then one ends up with the following expression:

tttn t'tt i res ttt ) = mn ~ [(btttttn«
~
a;ttaktt-altt ) (btttt—tn«

~
attt )( Vjki 5tt—tt Vttkj )(ako"a!tt" )+jt']

ijklo'cr"
(41)

The scalar products can be reduced to sums of expecta-
tion values of the foim, e.g., (Pp ~

n ak ai ~

~
fp).

With the help of the linked cluster theorem (see I) we can
write

&Wo I fo& &ir'to n ak "ai le"&=&«

l

where

n (i)= g a (i)a (i) (46)

is the number operator for electrons in hybrid u of bond i
It is useful to rewrite H;„, by introducing the quantities

(42)

where c indicates that only connected diagrams must be
taken when the expectation value is evaluated. This value
is calculated up to terms linear in the g's. The evaluation
of Eqs. (37a) and (37b) is then reduced to the same pro-
cedure which was discussed extensively in I.

IV. APPLICATION TO A SIMPLE MODEL

n (i)= —,
' [n2(i)+ni(i)],

p(i) =-, [n2(i) —ni(i)],

V(i) = V, (i)+ V+i(i)+2vp(i),
V'(t) = V, (i)—V+, (t),
V"(i)= V i(i)+ V+i(i) —2vp(i) .

(47)

In the following we want to apply the above formalism
to a simple one-dimensional chain model which was also
used in I. This will not only provide some insight into
how the above method works in practice, but also enable
us to discuss the differences to the approach used previ-
ously, i.e., in I and II. We discuss the model relatively
briefly and refer for more details to that reference. Con-
sider a chain of atoms forming sp bonds. Let a i (i) and
az (i) denote the creation operators for electrons with
spin o in the two orthogonalized hybrids forming bond i
Then the bonding and antibonding creation operators are
given by

B; = [a i (i)+a2 (i)],
2

(43)

A; = [ai (i)—a2 (i)] .
2

In the following we shall make the bond orbital approxi-
mation (BOA) (see Ref. 10). The SCF Hamiltonian Hp is
of the form

Hp= g [—TpB; B; + T~(B; B;+i +H.c. )

lV lV

——, g V"(v)p(i)p(i +v) .

In the BOA the state
~
PscF) is an eigenstate to the

operator n (i) with eigenvalue 1. The same holds true for
the correlated ground state

~ fo) [see Eq. (10)] provided
that Sp contains only density-density correlations between
hybrids, i.e., n (i)

~ Pp) =
~

'leap). The correlated ground-
state wave function contains polarization fluctuations
within a bond, but no charge fluctuations between bonds.
This implies that the correlation energy depends only on
V"(v).

In order to calculate the self-energy we write

Here 2n (i) and 2p (i) are the electron number and the po-
larization operator of bond i Furth. ermore, V'(i) and
V"(i) are the first- and second-order difference quotient
of the interaction potential. V(i) is the average interac-
tion potential for electrons which are i bonds apart. In
terms of those quantities H;„, takes the form

H;„,= —, g V(v)n (i)n (i+v)+ g V'(v)n(i)p(i+v)

+ ToA A ~ Tw(At~~At+i +H—c )] . (44). .

The centers of the valence and conduction band are there-
fore given by + Tp and the respective band widths are 4 Tjt
and 4Tg. Hp is supposed to contain the mean-field part
of the interaction Hamiltonian

lV

+ g tr(v)p (i)p (i +v) .

lV

S=—g q ij(i j)n~(i)n jt(j—)

ij ap

= —go(v)n (i)n(i+v) —2+ m(v)n(i)p(i+v)

(49)

H;„,= —,
' g V p(v)n (i)n p(i +v),

i vaP
(45) The ~(v), a(v), and tT(v) are the following independent

combinations of the il ji (v) Parameters
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ir(v) =g i(v) —rj+, (v),

tc(v) =g i(v)+q+i(v) —2go(v) .

cr(v)=qI i(v)+rl+i(v)+2ilo(v),

(50)

They are closely related to the corresponding quantities in
I

I and describe bond polarizations, van der Waals correla-
tions (these are the only correlations which appear in the
ground state), and charge transfer, respectively.

We are interested in calculating the Green's function
for the antibonding band. For that purpose we apply S on
the Fourier transform Ak of 2; . It takes here the place
of the c- . One finds

kho

X exp(ikj)[
I ~J p(j +v))vr(v)+

I Bl~ p(j+v))~(v)+
I ~J n (j+v))cr(v)

~
B~n(j+ v))m( v)] . (51)

The atomic distance has been set equal to unity.
Owing to the absence of charge fluctuations between

bonds in the BOA, we expect that the correlation energy
depends on ~(v) and v(v) only. The self-energy can be
calculated according to Eq. (30). Within the BOA the
scalar products can be easily evaluated. They reduce to
expressions of the form

I
and

P(P v) =—(fo ip(P, )P(v)
~
go) = ,'&„,+—0(q' ') . (53)

The final answer for X(k,m. ,ii) is conveniently expressed
in terms of the Fourier transforms m(q), a(q), Vq, and Vq".

It is n.(q) = g& m.(l) exp( iql) a—nd similarly for the other
quantities. Furthermore,

(Po
~
B;.B,.~ yo) =S,, +O((q"')2),

(P. I
~,'.~,.I 4) =o((&'")'),

(52)
P, = &&4—o l I V ~S V +I)

I fo) exp(i~I)
1

N

The following result is found:

(54)

X(k,m, ~) =D —g ~q Vq Pq+ g n~q I Pq [2T„cos9cosk+ To —~scF(k)]+ To I
q

V"P + —, (0)V"(0)—g IP [2T o q o k+. T + „(k)]+T J+ (0)T
q q

where small exchange contributions -iraq have been left out. The denominator D is given by

D = 1+ g ~qPq+ g ~qPq ——,~ (0) .
q q

The Parameter mq is determined by requiring that BX/Bn =0.

1 Vq
m (k)= ——

2
m(k) —2T~ cosq cosk —To —Top

(56)

(57)

Equations (57) and (58) can be used to rewrite X(k, m. , i~) in
the form

(59)

A comparison with I reveals that mqPq and vqPq corre-
spond to ~q and ~q

' of that reference. But in distinction
to the present approach the vq ', or better their Fourier
transforms sc' '(v), were obtained there from a separate
ground-state calculation. Here they follow directly from
Eq. (58). One can show that aq and ~q

' are related
through Pq

———,
'

[1+2m@ ' —i~ (0)], (61)

~q(k, T~ ——Tg ——0)= —
iraq

'+0((Vq") ) .

SCF(,&)+&(k,~,~) and the index a indicates that the SCF solution for the antibonding baild is considered.

Similarly one deduces from i)&/pii =0 that

iraq(k) = —1 Vq'
(58)

~(k)+2T+ cosq cosk+ To+ ToP ' g(k, ~,~)~(0)(4—p )
—'

over all occupied k states of the —a (k). fhe present for
mulation is therefore definitely an improvement over the
earlier one given in I and II. It allows for constructing a
correlation hole around an electron in the ground state of
the system which depends explicitly on its mornenturn.

——,
' g Vq'aqPq+ —,v(0) V"(0) . While the differences are unimportant as far as energy

q calculations are concerned they lead to considerable im-
provements for quantitites like the momentum distribu-
tion in the ground state n (k).

In order to compare the present form for m.
q as given by

Eq. (57) with the oiie obtained in I [see Eq. (74) of that
reference] we state without proof that Pq can be written
as

A closer inspection reveals that the aq
' are an average ToPq 2To —, Vq+ 2 V (0) (62)
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When this expression is put into the denominator of Eq.
(57) it agrees with that of Eq. (74) in I [note that
co(k) =cscp(k) +e, (k) ]. However, the numerator of
n.qPq does not quite agree with that of Eq. (74) of I and
differences occur in the v-dependent terms. This is due to
a somewhat different treatment of the ground-state corre-
lations in the two cases. For details we refer to the Ap-
pcnd1x.

Next ave geant to discuss the simple result obtained by
Eq. (S9). The first term on the right-hand side (rhs) de-
scribes the contribution from the polarization cloud
RroUIld thc clcctI'on propagating 1Il state Ak . Thc
ground-state properties enter thereby only through the
correlation function Pq which describes the polarization
fluctuations in the ground state. This is a desirable
feature since one can make a phenomenological ansatz for
Pq if one does not want or is not able to calculate the
coITclatcd glound stRtc as 1s thc cRsc ln stI'ongly coITclat-
cd systems. Thc second and th11d tcr1Tl GQ thc I'hs Gf Eq.
(59) describe the loss in gmund-state correlations due to
the presence of the additional electron Ak .

In conclusion it is seen that the Green's-function
method has the advantage of yielding not only the param-
eters mq and x.

q at the same time, but also providing for
improved ground-state calculations, through the k depen-
dence of /c.

V. SINGI.E-MODE APPROXIMATION

In 1970 it was suggested by OverhauseI that the treat-
ment of electronic correlations in metals can be simplified
by making a single-mode approximation (SMA). Related
ideas were expressed before by Toyozawa. The SMA is
made for electmn-hole excitations which appear when the
interaction of a particular electron with the remaining
electrons is considered. In the homogeneous electron gas
or metals the properties of the single mode m are strong-

ly related to density fluctuations p . More specifically it

ls

1 &401[P -, , [~P-, ]-l- lgo&

In the limit q —+0 this expression can be shown to reduce
to the plasma frequency while 1n the hmlt g~ oo 1t be-
comes equal to the single-particle excitation q /2m. A
relation of the form (63) was used first by Feynman" and
Feynman and Cohen' for the determination of the excita-
tion spectrum in He.

It is inteI'csting to notice that the pI'esent variational
Grccn s-fUQctlon approach can bc also consldcI'cd as a
SMA. However, in semi. conductors with a large energy
gap the role of the density-density correlations is taken by
thc polarization-polarization CGI'I'clRtloQs as will bc scen
below.

In order to bring out the SMA character of the present
theory It 1s best to cons1dc1 thc simple model dlscUsscd 1n
Sec. IV. Within that model the self-energy X(k,m, x) takes
the form (55) with m.

q and xq given by Eqs. (57) and (58).
In order to compare 1t %'ith tbc pcrtufbat1onal approach
of OvclhaUscI' wc Qcglcct terms 1Q && Rnd K& %'hich de-
pend on X(k,qr, ~). Then one can write

=1 (V') P
X(k,m, sc) =

4X cscF(k,a) —c'scF(k +g,a) —cgq

(Vq") Pq ——,
' V"(0)Vq"

q

4X c'scF(k~8) —cscp(k +g~b)+coq

(64)

This equation can be directly compared with Eq. (40) of
Ref. 8.

The dispersion of the single mode coq is determined by

1 &001[P-q [~Pql ] lfo&

&@0 Ip-, p, I 40&

TO

p

which replaces Eq. (63). The pq are the Fourier
transforms of the p (i) [see Eq. (47)] and describe polariza-
tion fluctuations. The product 2 Vq Pq in the numerator of
the first term in Eq. (64) plays the role of a screened in-
teraction between the extra electron and the induced di-
poles. The screening is accounted for by the po-
larization-polarization correlation function 2Pq. Similar-
ly 2Vq"Pq is the screened dipole-dipole interaction. The
term V"(0)Vq"/4 is the only contribution to the exchange.
There is no additional term when the extra electron and
the dipole are in the same bond, i.e., V'(0)=0. The in-
dices b, a in the denominator of Eq. (64) denote the bond-
ing and antibonding band, respectively. The self-energy
(64) which depends on cscF(k, b) and cscF(k,a) can be used
to define a SCF energy-dependent potential for a single-
particle Schrodinger equation in the same way as pro-
posed in Refs. 3, 13, and 14.

It has been shown that the electron Green's functjon of
semiconductors can be calculated variationally by making
use of the Sauermann functional. This method is particu-
larly convenient for calculating excitation energies which
fully include electron correlations. It is closely related to
an approach applied previously to diamond (see I and II)
Rnd this IclRt1on %@as dlscusscd 1n detail. A comparison
between the present method and the single-mode approxi-
mation of Overhauser and others was presented.

In both cases the dynamical properties of the system are
rclatcd to stat1c cxpcctRt1OQ values cvaluatcd vAth Icspcct
to the correlated ground state. Whereas in nearly homo-
gcIlcous systems, llkc thc metallic GQcs cons1dcl cd by
Overhauser, the density-density correlations aI'e the most
important ones it was demonstrated that in large-gap
semiconductors th1s I'olc 1S taken by thc polarization-
polarization correlations. %'e believe that the present ap-
proach can be extended without problems to the computa-
tion Of ICSPGQSC funct1OQS.
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Gb (0k, co) = c ~
kbo ~ II +Eo kha'

but here the scalar product of any two operators is of the

and replaces Eq. (19). The Eo in Eq. (Al) is the ground-

state energy. Gt, (k, co) is again a stationary point of the
Sauermann functional (23) but now with the definition

(A2) for the scalar product and I. replaced by (H —Eo).
For

~
P) and (P'

~
an ansatz is made of the form

i P) =a
i
exp(S)c -„),

(t))'
i
=a'(exp(S)c

(A3)

The variational form of the Green's function given
above was shown to result in almost the same equations
for the variational parameters as were derived in I. In the
following we want to indicate the changes which have to
be made in order to end up with ident]'[cal equations in

both cases. Instead of the retarded Green's function (17)
we start out from the propagator Gb (k, to) which de-

scribes the time evaluation of an electron added in sub-

band b to the system. It is
e(k, b) =escF(k, b)+X(k, b;ri, i)'") (A4}

is identical to Eq. (34}of I. Here we have indicated expli-
citly that the self-energy depends on the r)' ' parameter
matrix which follows already from a ground-state calcula-
tion and remaining g's. The further procedure is the
same as in I and is not repeated here. In particular the
determining equations for the remaining i) „are the same
as in that reference.

In summary it is seen that the difference between the
Green*s-function treatment of excited states in this paper
and the earlier treatment in I is a subtle one. Here we
work with the retarded Green's function while I corre-

+

sponds to working with Gs~(k, oi) [or Gb (k, co) for a
hole]. Working with the retarded Careen's function is
clearly preferable since, for the correlated ground state

~
tPo), it is not only c-

~
Po)&0 but also c-„„~lito)&0

when b refers to a conduction band. This implies that
electrons and holes should be treated simultaneously as is
done when the retarded Green*s function is used.

S is again defined by Eqs. (25) and (26) but now with 0 „
replaced by 0' „' [see Eq. (14)]. Furthermore, those q „
parameters which follow from a ground-state calculation
are considered as already determined and therefore are
kept fixed. They are identified with the ri' „' of Eq. (10).
When G& (k, co) is calculated by varying the Sauermann
functional with respect to a and a' it is found that the en-
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