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Spectral narrowing and rotational diffusion of molecular impurities in a deformable lattice
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Orientational dynamics of a single diatomic molecular impurity in a deformable lattice is investigated us-

ing the Mori technique, and results are compared to the rigid-lattice case studied by de Raedt and Michel.
The rotation-translation coupling, in addition to modifying the single-site cubic potential, suppresses libra-

' tional motion, enhances diffusive motion, and narrows the width of the diffuse central peak.

The orientational structure and dynamics of simple dia-
tomic molecular impurities in cubic host lattices have been a
problem of considerable interest over the past several
years. ' 5 Typical systems are (CN) and 02 ions in
alkali-halide crystals. Recently these systems, in particular
(CN) in KC1 and NaC1, have been explored in great detail
in order to understand how the structure and dynamics
evolve from a single-impurity limit to the molecular crystal
limit, with special focus on orientational glass phase7 ob-
served in the intermediate concentration range.

A necessary starting point for understanding the dynamic
properties of the glass phase in these systems is a proper
study of the single-impurity limit. This latter problem is in-
teresting in its own right as it forms a prototype of a prob-
lem of a single molecular impurity described by its orienta-
tional degrees of freedom coupled strongly to a polarizable
medium, a problem similar to the polaron problem. There-
fore, as in the polaron case, one expects to find here effects
similar to effective-mass enhancement and self-trapping.

In this Rapid Communication, we discuss briefly the ef-
fect of rotation-translation coupling on the orientational
dynamics of a single impurity in a cubic host. The dynamics
in a rigid host was studied in great detail by de Raedt and
Michel using the Mori projection-operator technique. We
have reexamined the physical origins of some of their in-
teresting observations and apply the same procedure to the
case of a deformable host.

The Hamiltonian H for a single diatomic molecule of mo-
ment of inertia I interacting with a cubic host is given by

H = HR +HT + HR T

where
~2

HR = + Vp(8, p)L
2I

Hr= /ho) -„(b -„b -„+ 2).1

j, k

and

(2a)

(2b)

HRr ——i x Y (II) V J(k)(b -„+bb -„) . (2c)
a,j, k

In the above equations, L is the angular momentum opera-
tor, V()(8, Q) =—Vp(Q) the cubic potential associated with a
rigid lattice, cd-k the phonon frequency of the pure host lat-
tice (j the branch index and k the wave vector), b, -„and
bj-k the phonon destruction and creation operators, and

Y (II ) the properly symmetrized spherical harmonic of or-
der two. The rotation-translation coupling constants V, (k)
have been given in detail in Ref. 8. It should be pointed
out that since molecules undergo large amplitude motions,
(8, @) cannot be expanded about the minima with any justi-
fication (except at very low temperatures) and the proper
dynamic variables are Y (8, P).

The orientational dynamics is contained in the Kubo s re-
laxation function q) (Z) associated with the dynamic vari-
able Y (0) and can be calculated by using Mori technique9
which gives

(~')-
(Z) =X. (T) Z+ Z+ X Z (3)

where Z is a complex frequency and X (T) =.P( Y; Y )
the isothermal susceptibility. The memory function X (Z)
has been calculated in the de Raedt-Michel approximation
which neglects the effect of HRT on the dynamics of the
host, i.e.,

~ (Z) 1 (~').—(~').
(o)') Z +i ((cu ) /(0)') )' '

In Eqs. (3) and (4), (cu ") is the 2n th moment given by

( 2n) (Y(n). Y(n), )j(Y . Y )

(4)

satisfies desirable sum rules. '

To have a better physical understanding of the spectral
function, we note that @ (Z) has three poles in the com-
plex Z plane which results in a spectral function having
three quasi-. Lorentzian components. In the following we
drop X (T) and the suffix n for the sake of convenience.
We find

1

1
&

I' 1 Xy —Y(co+5)
~p (p2+I 2 (ra)+5) +y

+ 1 Xy+ Y((p —8)
((p —5) '+ y'

(6)

Y "' being the n th time derivative of Y . It should be
pointed out that Eq. (4), though not exact, has the nice
feature that the spectral function

S ((p)= ——Im@ (0)+is)I, p
1
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Where top= (rp2) t/2 SetS the frequenCy SCale, i.e. , rp=tp/top

and all other parameters appearing in Eq. (6), namely, A, X,
Y, 1, y, and 5 depend upon a single dimensionless variable
R, where

R (( 4)/( 2)2)1/2 1.0

T=50 K

Equation (6) gives a diffusive central peak of weight A and
two librational peaks of total weight X centered around fre-
quencies + ~05. The most important parameter in the study
of orientational dynamics is R which depends upon the sym-
metry of the dynamic variable Y (0) and the nature of the
Hamiltonian H. The detailed equations relating the spectral
parameters to R are rather complicated and will be pub-
lished elsewhere. " Instead, we show their R dependence in
Fig. 1.

From Fig. 1 we can see several important features. First,
R ~ 1 which can be proven easily, and is a necessary condi-
tion for spectral stability. The weight of the central peak
A = 1 —X is zero when R =1 (oscillator or librational limit)
and is one when R = ~ (central peak limit). The weight of
the libration peak X is one for R =1 and zero for R =~.
Also the width of the central peak I decreases with increas-
ing R, indicating a narrowing of the diffusive central peak.
The parameters 5 and y which give the position and width
of the librational peak ~ as R ~, but the products
haoo and ymo remain finite.

We will now discuss our results of the calculation of dif-
ferent spectral parameters with and without the inclusion of
rotational-translation coupling, HRr [see Eq. (1)] in the cal-
culation of (cp ) and (rp ). When Hrtr=0, the spectra
depend primarily on the nature of Vp(8, $).5 For (CN)
ion in KBr, an example we have studied in this paper, Vo

consists of two parts, i.e.,

Vo= V +rVoH

where Vo is the short-range repulsion and Vo is the hexade-
capole moment contribution to Vo. For the CN ion, these
two contributions tend to oppose each other. Therefore,
for the calculations that follow, we use a parameter r
(0~ r ~ 1) which can be varied to change the location of
the minima and the height of barrier of Vp (see Fig. 2).
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FIG. 1. R dependence of the parameters of reduced spectral
weight cooS (cu/44p) where coo= (co2) t 2 and R = ((ru4) /(I)) /0
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FIG. 2. Central peak weight 2 for a rigid (Eg and T2g) and a de-
formable (Eg and T2g) lattice as a function of the parameter r [see
Eq. (8)] which controls the strength of (CN) ion hexadecapole
moment (V= Vo).

When r =0, the minima are along the [ill] directions
and we find that at low T, spectral function associated with
Eg symmetry shows librational behavior [R (E~) 1]
whereas that associated with T2g symmetry shows diffusive
behavior [R (T2g) ~]. If, on the other hand, we choose
r =1, which corresponds to using the full strength of the
(CN) -ion hexadecapole moment, the minimum shifts to-
wards the (100) directions. In this case, E~ symmetry
shows diffusive and T2~ symmetry shows libration
behaviors. This point was realized by de Raedt and Michel'
who used a simple Devonshire model for Vp(8, @), i.e. ,
Vo(8, @)= +KVD(8, P), K being the strength of the poten-
tial. Experimentally, similar behavior has been seen in the
Raman scattering measurements of Callender and Pershan'
for CN in KC1 and NaCl.

The reason behind this rather remarkable behavior is the
following: At low T, the potential Vp(0, $) can be expand-
ed about its minimum (Hp, Pp) leading to terms (8 —go)2,
(4 —@o), and (& —Op)(@ —$o) in the Hamiltonian. If the
dynamic variable Y (0, @) is such that it goes to zero linear-
ly at (&o, dp), then it behaves like an oscillator variable and
R 1 for this case. If, on the other hand, Y (Q, @) has
maximum or is finite at (Op, fp), then R oo for this vari-
able. Thus, depending on the direction of the potential
minima, dynamic variables of different symmetry can exhi-
bit drastically different spectral characteristics at low T.

Now we discuss how R and top and, hence, S (tp) change
when we include the effect of the rotational-translational
coupling. %'e find that the inclusion of H~T changes

(Z) at three places, each having a different physical in-
terpretation.

First, the isothermal susceptibility changes because
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Vo(e,' ~ ~ gets modified t'" "~«@)wh.„
9.0v(e,'@~= Vo(e, y)+ i, ( 2) V~ (e @)+
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D. Sahu and S. D. Mahanti, Phys. Rev. B 26, 2981 (1982); note
that the rotational variables Y (0) are not normalized to unity
in this paper.

For a detailed list of references for the application of Mori's projec-
tion operator technique to molecular solids, see Ref. 5 above.
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