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Spectral narrowing and rotational diffusion of molecular impurities in a deformable lattice
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Orientational dynamics of a single diatomic molecular impurity in a deformable lattice is investigated us-
ing the Mori technique, and results are compared to the rigid-lattice case studied by de Raedt and Michel.
The rotation-translation coupling, in addition to modifying the single-site cubic potential, suppresses libra-
‘tional motion, enhances diffusive motion, and narrows the width of the diffuse central peak.

The orientational structure and dynamics of simple dia-
tomic molecular impurities in cubic host lattices have been a
problem of considerable interest over the past several
years.!”> Typical systems are (CN)~ and O, ions in
alkali-halide crystals. Recently® these systems, in particular
(CN) ™ in KCl and NaCl, have been explored in great detail
in order to understand how the structure and dynamics
evolve from a single-impurity limit to the molecular crystal
limit, with special focus on orientational glass phase’ ob-
served in the intermediate concentration range.

A necessary starting point for understanding the dynamic
properties of the glass phase in these systems is a proper
study of the single-impurity limit. This latter problem is in-
teresting in its own right as it forms a prototype of a prob-
lem of a single molecular impurity described by its orienta-
tional degrees of freedom coupled strongly to a polarizable
medium, a problem similar to the polaron problem. There-
fore, as in the polaron case, one expects to find here effects
similar to effective-mass enhancement and self-trapping.

In this Rapid Communication, we discuss briefly the ef-
fect of rotation-translation coupling on the orientational
dynamics of a single impurity in a cubic host. The dynamics
in a rigid host was studied in great detail by de Raedt and
Michel® using the Mori projection-operator technique. We
have reexamined the physical origins of some of their in-
teresting observations and apply the same procedure to the
case of a deformable host.

The Hamiltonian H for a single diatomic molecule of mo-
ment of inertia / interacting with a cubic host is given by

H=Hg +Hr+ Hgr , 1)
where
-I-:2
Hr="7-+Vo(0,9) , (2a)
21
Hr= Yo (bebe+3) (2b)
J k
and
Her=i 3, Yo (Q)Vy(K)(bp+b,_¢) . (2¢)
a,j, k

In the above equations, L is the angular momentum opera-
tor, Vo(0, ¢) = Vo(Q) the cubic potential associated with a
rigid lattice, ;3 the phonon frequency of the pure host lat-
tice (j the branch index and K the wave vector), b, and
b;;' the phonon destruction and creation operators, and
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Y,(Q) the properly symmetrized spherical harmonic of or-
der two. The rotation-translation coupling constants Va,(l_{)
have been given in detail in Ref. 8. It should be pointed
out that since molecules undergo large amplitude motions,
(6, ) cannot be expanded about the minima with any justi-
fication (except at very low temperatures) and the proper
dynamic variables are Y,(6, ¢).

The orientational dynamics is contained in the Kubo’s re-
laxation function ®,,(Z) associated with the dynamic vari-
able Y,(Q) and can be calculated by using Mori technique’
which gives
-1

2
(0%)a , 3)

D, (Z)=X,o(T) —Z~+2.,_(Z)

zZ+

where Z is a complex frequency and Xoo(7)=p8(Y,;Y,)
the isothermal susceptibility. The memory function 2,(Z)
has been calculated in the de Raedt—Michel approximation®
which neglects the effect of Hgr on the dynamics of the
host, i.e.,

1. (o) o= (0?),
) = e ZH i (W) () T @
In Egs. (3) and (4), (w?") is the 2nth moment given by
(0™ o= (YY) /[(Yai Ya) ©)

Y™ being the nth time derivative of Y,. It should be
pointed out that Eq. (4), though not exact, has the nice
feature that the spectral function

S.(w)= —ilm¢aa(w+ie)|(_.o

satisfies desirable sum rules.!°

To have a better physical understanding of the spectral
function, we note that ¢..(Z) has three poles in the com-
plex Z plane which results in a spectral function having
three quasi-Lorentzian components. In the following we
drop X..(7) and the suffix o for the sake of convenience.
We find

r ,1Xy—-Y@+3)

1
S(w)=—14
@ 2 (@+8)*+42

wo| @2+T1?

.1 Xy+Y(@—9)
42y TINO@TO) | 6)
2 (@—8)2+y?
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where wo= (w?)? sets the frequency scale, i.e., @ =w/wg
and all other parameters appearing in Eq. (6), namely, 4, X,
Y, T, v, and & depend upon a single dimensionless variable
R, where

R =((0*)/(a))V? . @)

Equation (6) gives a diffusive central peak of weight 4 and
two librational peaks of total weight X centered around fre-
quencies * wgd. The most important parameter in the study
of orientational dynamics is R which depends upon the sym-
metry of the dynamic variable Y,({) and the nature of the
Hamiltonian H. The detailed equations relating the spectral
parameters to R are rather complicated and will be pub-
lished elsewhere.!! Instead, we show their R dependence in
Fig. 1.

From Fig. 1 we can see several important features. First,
R =1 which can be proven easily, and is a necessary condi-
tion for spectral stability. The weight of the central peak
A =1—Xis zero when R =1 (oscillator or librational limit)
and is one when R = (central peak limit). The weight of
the libration peak X is one for R =1 and zero for R =oo.
Also the width of the central peak I' decreases with increas-
ing R, indicating a narrowing of the diffusive central peak.
The parameters 8 and y which give the position and width
of the librational peak — o as R — oo, but the products
dwo and ywo remain finite.

We will now discuss our results of the calculation of dif-
ferent spectral parameters with and without the inclusion of
rotational-translation coupling, Hgr [see Eq. (1)] in the cal-
culation of (w*) and (w?). When Hzr=0, the spectra
depend primarily on the nature of V,(6,¢).> For (CN)-—
ion in KBr, an example we have studied in this paper, V)
consists of two parts, i.e.,

Vo= VE +rv¥ , ®)

where V3§ is the short-range repulsion and V¥ is the hexade-
capole moment contribution to V. For the CN~ ion, these
two contributions tend to oppose each other. Therefore,
for the calculations that follow, we use a parameter r
(0=<r =<1) which can be varied to change the location of
the minima and the height of barrier of V, (see Fig. 2).

-tan’? (Y/X)
8
v
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0.5
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X
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R
" FIG. 1. R dependence of the parameters of reduced spectral

weight oS (w/wg) where wo= (@2 /2 and R = ({(0*)/(w?)2)V/2,

T=50K
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FIG. 2. Central peak weight 4 for a rigid (Eg0 and T?g) and a de-
formable (E, and T,,) lattice as a function of the parameter r [see
Eq. (8)] which controls the strength of (CN)~ ion hexadecapole
moment (V= V). :

When r =0, the minima are along the [111] directions
and we find that at low T, spectral function associated with
E, symmetry shows librational behavior [R (E;)— 1]
whereas that associated with 75, symmetry shows diffusive
behavior [R (T )— o). If, on the other hand, we choose
r =1, which corresponds to using the full strength of the
(CN) ~-ion hexadecapole moment, the minimum shifts to-
wards the (100) directions. In this case, E; symmetry
shows diffusive and 7T, symmetry shows libration
behaviors. This point was realized by de Raedt and Michel’
who used a simple Devonshire model* for V,(9, ¢), i.e.,
Vo(0,¢)= £ KVp(0, ), K being the strength of the poten-
tial. Experimentally, similar behavior has been seen in the
Raman scattering measurements of Callender and Pershan!
for CN™ in KCl and NaCl.

The reason behind this rather remarkable behavior is the
following: At low T, the potential V¢(0, ) can be expand-
ed about its minimum (6o, ¢o) leading to terms (9— 6y)2,
(¢ — ¢0)?, and (8—69) (¢ — o) in the Hamiltonian. If the
dynamic variable Y, (6, ¢) is such that it goes to zero linear-
ly at (6o, ¢o), then it behaves like an oscillator variable and
R — 1 for this case. If, on the other hand, Y,(6, ¢) has
maximum or is finite at (6, ¢o), then R — oo for this vari-
able. Thus, depending on the direction of the potential
minima, dynamic variables of different symmetry can exhi-
bit drastically different spectral characteristics at low T.

Now we discuss how R and w¢ and, hence, S,(w) change
when we include the effect of the rotational-translational
coupling. We find that the inclusion of Hpyy changes
baa(Z) at three places, each having a different physical in-
terpretation.

First, the because

isothermal susceptibility changes
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Vo(6, ¢) gets modified to V' (6, ¢) where 10.0 r=05 T=50K
E,= SYMMETRY
V6, ¢)=Vo(0,¢)+V,(0,¢)=An+AuVp(8, )+ - -+ , 9.0f g
(C)]
o 8.0
where the self-energy contribution ¥V;(6, ¢) to the single-
site potential is given by'? 20l
- » ’
|V (k) |? =
Vs (0, ¢)=— —— |1, () s s
‘”ZE* h’wj',;' ; 6.0
«©
=A{, +A45,Vp(6,¢) . (10) :‘é 5.0F
«©
This modification of V,(8, ¢) is equivalent to a constant £ s
shift in the energy of a polaron in a translationally invariant 3 4.0 0
system. For (CN)~ in KBr, we!l find that 4%, = 820 K, @
A% =2351 K, and A4 = —4110 K. Thus, the self-energy 3.0f
contribution to V is quite important, particularly because the
repulsion and hexadecapole contributions oppose each oth- 20F
er. )
Second, the second moment (w?)=wj, which provides
the frequency scale and strength of the librational frequency 1.0
wed of the appropriate symmetry mode, changes. This
change is brought about only through the modification of 0.0 o5 1‘0 s

the single-site potential by V;(6,¢). Physically this is
equivalent to a change in effective moment of inertia of the
molecule (similar to the effective mass enhancement of a
polaron).

Third, the fourth moment and, hence, the quantity R gets
modified in two distinctly different ways. One is again a
change from ¥V, to Vo+ V;, and the second is a new contri-
bution to the torque acting on the molecule associated with
the noncubic distortion of the surrounding cage caused by
the rotational-translational coupling. We will denote this
extra contribution to the fourth moment as <(u4>nc, i.e.,

<w4>= <w4>c+<“)4>nc ’ ' an

where ¢ and nc refer to cubic and noncubic components of
the local distortion. We have found that (w*) > (w*)..
Thus, an explicit effect of Hgr is to enhance the fourth mo-
ment without changing the second moment (disregarding
the implicit effect of changing Vo to ¥). This behavior is
similar to the exchange narrowing of the spin-resonance
spectral function where the exchange interaction contributes
to the fourth moment and not to the second.’* The increase
in the fourth moment results in an enhancement of R and,
consequently, an increase in the spectral weight of the cen-
tral peak irrespective of the symmetry of the dynamic vari-
able. This is clearly seen in Fig. 2, where we plot the weight
of the central peak without (curves Eg and T%) and with
(curves E, and Ty) the inclusion of (w*), of Eq. (11).
The parameter r determines whether [111] or [100] is the
direction of minimum of V¢(6,¢). In Figs. 2 and 3, we
have used V' =V, to bring out the significance of (w")m.
This figure shows that over a large range of r values
(0.3<r <0.8), about 50% of the spectral weight is in the

(1013 sec)

FIG. 3. Frequency dependence of the reduced spectral function
for a rigid (curve S) and a deformable (curve S;) lattice; Eg sym-
metry; T=90K; r=0.5; V=V,.

diffuse central peak for both E; and 7, symmetries irrespec-
tive of the direction of potential minimum.

These results indicate that when the cubic potential is suf-
ficiently flat, the noncubic part of the lattice distortion
caused by the rotation-translation coupling has a tendency
to self-trap the molecule at low enough temperature. The
additional torque caused by the noncubic deformation in-
creases (w?) without affecting {(w?). The net result of this
is to enhance the weight of the central peak at the cost of
the librational peak. The transfer of weight from libration
to diffusive peak is shown in Fig. 3 for E;, symmetry for
r=0.5 and T=90 K. The T dependence of this spectral
weight shift will be discussed in a more detailed version of
this paper.!!

In summary, we find that coupling to a deformable lattice
strongly affects the rotational dynamics. However, for a
better understanding, one has to include the explicit dynam-
ics of translation on the calculation of memory function
3.(Z) of Eq. (4) which goes beyond the approximation used
in this paper. But we believe that the general conclusion of
our work will be valid in this case also.
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