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Effect of inelastic processes on localization in one dimension
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The transition of noninteracting electrons through an array of random potentials is studied. The electron

wave packet contains an incoherent component, which builds up as a result of inelastic processes. The
latter are represented by a random time-dependent potential which oscillates incoherently. An inelastic

length is determined, beyond which a transition to Ohm's law is found. On small length scales inelastic

correction to the exponential resistance is calculated, The generalization of Ohm's law and the Landauer

formula to the multichannel case are discussed.

It is well known that a system of noninteracting electrons
in a random one-dimensional (1D) potential at a zero tem-
perature ( T = 0) has a conductance 6, which is exponential-
ly small with the size of the system. ' A convenient way of
treating this problem is to use the Landauer formula'
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where t. and r are the transmission and reflection ampli-
tudes, respectively. To calculate these quantities, one con-
siders a product of 2X2 transfer matrices, which connect
the incoming and outgoing wave-function amplitudes at the
Nth "site," to the amplitudes at the first site. Possible gen-
eralizations of this formula to the multichannel case have
been discussed in the literature, and it has been conclud-
ed that the Landauer formula does not apply in general,
since G depends on the current distribution in the various
incoming channels.

It is also commonly realized that inelastic processes (e.g. ,
finite temperature effects) destroy the phase coherence and
hence the effect of localization. More specifically, any in-
elastic process defines a certain characteristic length (or
time) scale. It is believed that the system behaves according
to the T = 0 localization theory on. smaller scales. G is then
matched smoothly to the Ohmic behavior which is assumed
to be found on larger scales, The crossover scale depends
on the temperature.

In this Rapid Communication we revisit the problem of
localization-to-Ohmic-behavior crossover. We show explic-
itly (without assuming Ohm's law a priori) how the initially
coherent electron wave function develops phase incoherent
components, a process which eventually leads to an Ohmic
behavior. Furthermore, we determine, on scales smaller
than the inelastic length, the incoherent contributions to the
T =0 localization behavior, and calculate the resulting lead-
ing corrections to G. When these contributions are suffi-
ciently large, we find that the conditions for Ohm's law to
be valid are satisfied. We also emphasize that the existence
of inelastic processes implies nonconservation of energy.
Thus, in contrast to the original Landauer picture, we have
to deal here with a multichannel process in the energy
space. The conductance obtained from the Landauer for-
malism is, therefore, a tensor in that space rather than a
scalar. Different eigenmodes of this tensor (i.e., different
voltage configurations in the various channels) correspond
to different eigenvalues (i.e., different values of the conduc-
tance). In simple cases it is possible to obtain explicitly the
(bound) spectrum of these values.

If we further assume a Debye spectrum for the distribution
of frequencies and T « Oo, we find ( V~" ) —T .

It has been pointed out in Ref. 10 that each harmonic
component of V~" creates an infinite discrete set of side
bands. In general, an absorption (emission) of n phonons
of frequency co is associated with a factor

5 « 1, and a phase factor e'"~(e '"~). The following 'ex-

pansion in 5 is justified when the density of the harmonic
modes vanishes fast enough in the infrared limit (as is the
case for the Debye spectrum) implying that the thermal
average of V(co)/tee is not large. To order 52 we have to
consider the following processes: (a) static transmission and
reflection without emission or absorption of a phonon with
amplitudes
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(here and throughout we assume. ~a && 1); (b) transmis-
sion and reflection with emission or absorption of one pho-
non
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We generalize a model introduced recently by Buttiker
and Landauer' and consider a random one-dimensional ar-
ray of rectangular barriers. The jth barrier represented by
the potential Vo (x) has a height Vo' and a width a ' .
We assume almost completely reflecting barriers, i.e.,
K" a" » I, where K" = (2m/t)(Vo —E)', and m and
E =it'k'/2m are the mass and energy of the electron,
respectively (E & V, ). We now couple to each barrier a
time-dependent perturbation such that the height of the bar-
riers oscillates as Vo' + Vt (cu)cos(~t+QI„l), where @I'&
are random phases. V~' represents a coupling to a classical
reservoir with finite temperature. Hence, up to a constant
we expect

( V(j) ) g 1 ted
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(c) emission (absorption) of a phonon followed by absorp-
tion (emission) of a phonon of the same frequency. These
processes renormalized the static amplitudes tp= top+At and
fp = fpp+ 4r by

and
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(d) two-phonon absorption or emission. These processes
can be neglected. " Furthermore, we notice that for
~a &) 1 the inelastic reflection processes are less important
than inelastic transmission processes r+„/rp « t+ /tp,
which simplifies the explicit expressions in the following.
The last inequality means that the reflected wave is more
coherent than the transmitted wave, a fact that can be veri-
fied experimenta11y using various interference circuits.

To the order considered the transfer matrix connecting
the in and outgoing amplitudes on the left of the jth barrier
at different energies E,E+p), . . . (IE and lE,IE+„) to
those on the right is

We assumed here that the band of relevant energies is nar-
row in comparison with the height of the barriers which al-
lowed us to neglect the energy dependence of tp, t+, and
ro. Also for the sake of simplicity, we included in Eq. (5)
explicitly only one frequency component. Additional com-
ponents are accounted for by further linearly independent
channels. Furthermore, since to2/ro « 1 in our model, Yp

and Y+„have approximately the same matrix structure,
differing only in a scalar factor. Ypp is the standard 2X2
static transfer matrix. ' Notice that in our model no dissi-
pative mechanism (i.e., spontaneous emission) of the elec-
tronic system exists. Thus, the electrons on the average will

gain energy from the classical phonon field. However, for
the questions discussed here, we expect no serious conse-
quences.

The corresponding matrix for X barriers is Y)v = ff& Y"),
and to second order in 5 has the same structure as Y~,
with diagonal 2&& 2 block of the form
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and off-diagonal blocks

where Yp, Y+„are given by
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We next go to a representation where the scattering ma-
trix connects incoming and outgoing waves. The structure
of this matrix is
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Of particular interest are the diagonal blocks Xp
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where Yj are the matrix elements of Yop.
One can easily obtain the relation between the incoming

and outgoing intensities. This relation will include, in gen-
eral, cross terms that mix different incoming amplitudes.
For a sufficiently large number of barriers, each, cross term
consists of a large fluctuations part (that depends on the
random phases) and a smaller, phase-independent part.
Within our approximation the effect of the many frequen-
cies will be additive in the structure of the X matrix. The
condition that the ensemble average of the cross terms van-

ishes (we now consider again the effect of the many fre-
quencies) is

xx (, ()( ((()( )

where ( ) denotes an averaging over the random barriers.
When this condition is satisfied, the magnitude of the fluc-
tuating part becomes larger than the phase-independent part
of the cross terms. The fluctuating part is then ensemble
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~here d is the characteristic interbarrier distance. In the last

step of Eq. (12) we used Eqs. (1) and (3) and assumed a

Debye spectrum. In fact, in order to achieve incoherence
and a crossover to Ohmic behavior, it would be sufficient to
assume a single harmonic component with random phases,
though the expression for/T in that case should be different. »

Notice that IT was defined such that the interference of
the cross terms averages to zero, and therefore Ohm's law

is satisfied on larger scales. In the absence of multichannel
inelastic processes (but with a phase averaging) one can go
back to the left versus right intensities and reproduce the
classical matrix of Thouless, for which Ohm's law may be
explicitly verified by considering the product of two such
matrices. This remains true to the lowest order of our cal-
culations.

One should realize, however, what is meant by Ohm's law

in the multichannel case. We write an infinite matrix con-
necting a vector whose entries are the particle densities (i.e.,
the voltage) in the various energy channels, both on the left
and on the right to the corresponding current vector. " This
defines the dimensionless conductance matrix G. In the
one-channel case this matrix is simply

t

g-g
where the scalar g is the standard conductance. However,
in our case, G has the structure

G —G',G -G.
in the right-left space, ' where G and G are commuting ma-
trices in the energy space. Insensitivity of the currents to a
uniform shift of the voltages and current conservation imply

QJ. G„"= 0 and g; GJ = 0, respectively.
The matrix structure of G implies that different modes of

the voltage, i.e., different densities in the various energy
channels, correspond to different (eigen)values of the con-

averaged to zero. Also, the phase-independent terms
(~) (0~t~ t

zr (1 (i) )2

are of order 1 and approximately cancel the 1 in the diago-
nal elements of X. From Eq. (11) we may define the analog
of the Thouless length

ductance. This is a generalization of the result obtained by
Langreth and Abrahams. ' Furthermore, the rules for com-
bining different elements, characterized by different G;, lead
to a generalization of Ohm's law. For example, for two ele-
ments G] and G2 in series we have

Gtot.= Gl Gl (Gl+ G2) Gl~ Gtot = G2(G1+ G2) Gl

(13)

For the case where the oscillations of the barrier are
characterized by one frequency only, the linear order in

T„/Tp and R„/Rp, G and G are tridiagonal matrices given

by

G;,; = (1+ Tp —R11 )/[(1+Rp) —Tii ]

Gii+1= [T+~(l Rp ) R+~(l+Rp )]
0

Git=2Tp/[(1+Rp) Tp ]

Gitgt= [T+„(1+Rii) —R+„(1—Rti )]
4R

Thus, in the case where the voltages in all channels on the
right (left) are equal the conductance is

1

2 (Gi i —1 + Gi i + Gi i +1 + Gii —1+ Gi i+ Gi i+ 1)

On scales l, much smaller, than lT, we can calculate correc-
tions to the conductance, resulting from the incipient in-
coherent behavior. The zero-temperature localization result
for the conductance is enhanced by a factor 1+ l/Ir. This is
one of our main results, and it would be interesting to veri-
fy it in experiment. Though our model is oversimplified, it
reflects some features characteristic of the electron-phonon
interactions. Our picture is that of phonons incoherently
modulating the local potential felt by the electrons. For the
case where a Debye spectrum is assumed for the phonons
[Eq. (1)] we find r,„—(ksT) 2. The corrections to the
conductance, as well as the multichannel Ohmic behavior,
are independent of the details of our model.

We acknowledge stimulating discussions with E. Abra-
hams, V. Ambegaokar, M. Azbel, R. Landauer, J. Langer,
T. V. Ramakrishnan, and J. Sethna. One of us (Y.G.) ac-
knowledges financial support from the Weizmann Founda-
tion. This material is based upon research supported by the
National Science Foundation under Grant No. PHY77-
27084, supplemented by funds from the National Aeronau-
tics and Space Administration.

R. Landauer, Philos. Mag. 21, 863 (1970).
2P. W. Anderson, D. J. Thouless, E. Abraharns, and D. S. Fisher,

Phys. Rev, B 22, 3519 (1980).
M. Ya Azbel, Phys. Rev. B 22, 4045 (1980).

"Sce a review by P. Erdos and R. C. Herndon, Adv. Phys. 31, 65
(1982).

5D. J. Thouless, Phys. Rev. Lett. 47, 972 (1981).
6D. J.. Thouless, in Physics in One Dimension, edited by J. Bernasconi

and T. Schneider (Springer-Verlag, Berlin, 1981).
7D. C. Langreth and E. Abrahams, Phys. Rev. B 24, 2978 (1981).
In fact, one has to distinguish between t, r (amplitudes from the

right) and t', r' (amplitudes from the left}, sec, c.g. , Ref. 2.
D. J. Thouless, Phys. Rev. Lett. 39, 1167 (1977).
M. Biittiker and R. Landauer, Phys. Rev. Lett. 49, 1739 (1982).

~~This is correct because the term Se —'& in (b) is more important.

Alternatively, when the intensity is calculated, and the random
phase is averaged, the contribution of (d) vanishes in the con-
sidered order.
Here we do not consider higher-order processes as an absorption
of a phonon at a frequency co~ and an emission of two phonons
co2 and ~3, ~~=~2+co3. Notice also that the relation lT —T —S/2

coincides with experimental results in the weak localization re-
gime in one dimension.
The vectors are arranged as (. . . , VE+„, VE, VE

I t IVE+„, VE, VE „, . . . ),
'4The explicit form of G given in the text reflects a left-right sym-

metry of thc problem. General forms, which break this sym-

metry and with noncommuting subblocks of G may occur in gen-
eral. In such cases, the value of Gtp[ for a system combined of
different individual elements in general depends on their order.


