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We have calculated the energy eigenvalues of the localized energy states arising from the interac-
tion between the composite exciton-phonon states and isotopic impurity states for 0-0 and 0-1 pho-
non transitions in molecular crystals. The exciton-phonon —impurity state interaction Hamiltonian
is derived, and the results are obtained at low temperatures where the participation of the low-

energy acoustic phonons is assumed to be dominant. A condition on the localized energy states as a
function of the trap depth is obtained. The results are found to be in good agreement with experi-
ments on doped naphthalene crystals, and with the theoretical results already established.

I. INTRODUCTION

Lattice vibrations always exist in crystalline solids, and
most solids contain some impurities. Studies of the elec-
tronic and spectral properties of doped crystalline solids
thus provide information very useful in several applica-
tions. In molecular crystals which are mostly insulators
or poor semiconductors, the exciton-phonon interaction is
an important area of investigation. In doped crystals or
crystals with defects, however, in addition to the exciton-
phonon interaction, the effect of impurities and defects on
excitons and phonons, and vice versa, must also be taken
into consideration. In other words, one has to study the
interactions among excitons, phonons, and defects or im-
purities in solids.

The problem of exciton-phonon interaction in pure
molecular crystals is usually approached through the use
of an interaction operator' linear in lattice displacement
vectors, i.e., within the single-phonon-approximation lim-
it. In crystals with defectss or structural disorders, the
theory of exciton, phonon, and defect interactions has
been worked out, including only the exciton-phonon and
exciton-defect interactions. However, the defect-phonon
interaction has usually been omitted. It is done through
diagonalization of the exciton-defect interaction Hamil-
tonian first, and then in the approximately diagonalized
Hamiltonian thus obtained the exciton-phonon interaction
is introduced. ' One obvious inconsistency in this ap-
proach is that the introduction of lattice defects or
structural disorders destroys the translational symmetry
of the crystal. As a result the wave vector k does not
remain a good quantum number which is so otherwise for
excitons, phonons, and exciton-phonon interactions in
pure crystals. Therefore, by diagonalizing the exciton-
defect Hamiltonian first one moves from the translation-
ally symmetric situation to non-translationally-symmetric
situation, but in that one again considers the exciton-
phonon interaction which is translationally symmetric, as
the defect-phonon interaction is omitted. In order to
avoid this problem of going back and forth from transla-
tionally symmetric to non-translationally-symmetric situ-

ations it may be considered more appropriate to diagonal-
ize the exciton-phonon interaction first and then introduce
the structural disorders or lattice defects. The diagonali-
zation of the exciton-phonon interaction gives rise to the
composite exciton-phonon states7' which are different
from the exciton states interacting with the localized in-
tramolecular vibrations as done by Klafter and Jortner.

In the present paper we study the mutual effects of the
composite exciton-phonon states and isolated impurities
(impurity-impurity interaction is omitted) in doped molec-
ular crystals. It is done by assuming that the impurity
concentration is so less that one impurity is infinitely
apart from the others and their mutual interactions can be
neglected. It is also assumed that the impurity molecules
differ from the host only in their energy of excitation,
otherwise they have the same molecular structure, i.e., the
impurities are like isotopic impurities. The Hamiltonian
for a molecular crystal with excitons, phonons, and an im-
purity' is presented in Sec. II. From this Hamiltonian then
the energy eigenvalues of the doped crystal are calculated
for (1) 0-0 phonon and (2) 0-1 phonon transitions in Secs.
III and IV, respectively. The diagonalized Hamilton of
the composite exciton-phonon states for 0-0 and 0-1 pho-
non transitions are used, and in these the exciton-impurity
and impurity-phonon interactions are introduced. The en-
ergy eigenvalues of the two transitions are then obtained
as functions of the Debye cutoff frequency, trap depth
(difference between the excited-state energies of the im-
purity and host molecules), and the unperturbed exciton
bandwidth of the molecular crystal. In Sec. V the results
are calculated for doped naphthalene crystals with four
types of isotopic impurities. The results derived here are
valid in the low-temperature limit in which the acoustic
phonons are anticipated to play the dominant role. From
the results obtained two very important features emerge:
(a) the actual trap depth is reduced due to the interaction
with phonons and (b) the structure of phonon spectra
changes with the change in trap depth in 0-0 phonon tran-
sitions but not in 0-1 phonon transitions. These two
characteristics agree remarkably well with the previous
theory, and experimental results obtained in doped molec-
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ular crystals. Although the theory presented here is essen-
tially worked out in the presence of acoustic phonons, the
method can easily be extended to the optical phonons as
well.

II. THEORY

For a molecular crystal with an isotopic impurity the
exciton-phonon —impurity Hamiltonian is derived in Ap-
pendix A. With the use of (A7) and (A8), the Hamiltoni-
an may preferably be written in the following form:

exciton-phonon state with wave vector K, and

represents the creation operator of a composite exciton-
phonon:

A - = Co(K, O;n)8-+ g [C&(k,K—k;n+1)8-„b
k

+C, (k, k —K;n 1)—B,b„„]IO;n&(O,„,„I.

H(k) =Ho+H, p,
where

Hp Hex+ ph +Hex-ph

HIP Hex-D +HD-ph

(2)

(3)

The annihilation operator' A- is the conjugate of (5)K
and

I
O,„~i,& represents the vacuum state of the composite

exciton-phonon particles. The eigenvalue Ao(K) is ob-
tained by solving the secular equation: '
8'(K) —Ao(K)=N ' g S (k, K—k)

III. 0-0 PHONON TRANSITION

The operator Ho in the Hamiltonian (1) represents the
unperturbed Hamiltonian and this has been diagonalized
in a form that represents the composite exciton-phonon

Hamiltonian Hp p for 0-0 phonon transition:

Hoo= g A,o(K)A A (4)

where A,o(K) is the energy eigenvalue of a composite
I

The right-hand side terms of (2) and (3) are given in (A8).
It js to be noted that the problem of lattice defects' and

structural disorders in molecular crystals has so far been
solved only with the exciton-defect interaction operator
similar to H,„Din (3), and the exciton-defect-phonon
operator Hz~q has been neglected. The importance of
HD ph is that it represents the interaction between exciton
and impurity in a vibrating lattice where as H,x D
represents the interaction only in a rigid lattice (at the lat-
tice equilibrium). In a vibrating lattice, therefore, HD ~q
has to be included. One should also note that in the in-

teraction operators H,„D(A8c) and HD &g (A8f) of Hip
(3), the wave vectors are not conserved, whereas in all the
interaction operators of Ho (2) the exciton and phonon
wave vectors remain conserved. This is a consequence of
the translational symmetry being preserved in Ho (2) but
not in Hip (3), which is obtained only due to the impurity
that destroys the translational symmetry of the crystal. In
what follows we will use the Hamiltonian (1) to solve the
eigenvalue problems for 0-0 and 0-1 phonon transitions in
doped molecular crystals.

1+8~
K —k

g (k)+fin)(K —k) —A,o

Pg ~
+

8'( k ) —fico( k —K)—A,o

where the phonon branch index s has been omitted.
%'e aim at solving the eigenvalue equation:

{Ho-o+Hrp)
I
'P&o-o= IID

I P&o-o

and we have already solved:

Ho-o I
K "&

=~o(K)
I
K'ii &

where

(7)

(8)

(9)

Therefore, we expand
I
4 &o.o in terms of

I K;n & as

I g&o o= g Do(K)
I

K'n & {10)

where Do(K) is the probability amplitude coefficient
whose Fourier transform is assumed to be"

Do(m) =N '~ g Do(K) exp( —iK.m) .

Do(m) is localized at the lattice site m. Using (8), (9),
and (10) in (7) and then multiplying (7) from the left-hand
side by an eigenvector

I
K;n &*, we obtain the following

secular equation:

[Ao(K) —WD]Do(K)+b~N ' g Do(K~)Co(K, O;n)Co(K~, O;n)exp[i(Ki —K) p]

X [Zo{K),K,Ao)+Z)(K), K,Ao)+Zp(Ki, K, Ao)] =0 . (12)

where
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Zp(ki, K,Ao) =N ' g 1+
S'(k, k—k)(l+n -„-„)

[W(k)+fico(K —k) —Ap(K)][ W(k+Ki —K)+fico(K —k) —4(Ki)l

S (k,K—k)n
„

[W(k) —fico(k —K)—Ao(K)][W(k+Ki —K)—fico(k —K)—~o(K1)l
(13)

Z, (k„K,Q)= —g P(K, k, Ki —k)
S'(k, K, —k)(1+n - -„)

W( k ) +fico(Ki —k ) —A,p

S'(k, k —Ki)n -„g
+

W(k) —%co(k —Ki) —Ap

(14)

S'(k, K—k)(1+n )
Zz(Ki, K,Ao)= —g P(k, K&, k —K) ' +

W(k )+fico(K—k ) —A,p

S'(k, k —K)n-„

W( k )—fico( k —K)—A,p

In order to solve the secular equation (12) analytically we have to make certain simplifying assumptions. We assume
that Zp, Zq, and Z2 are not very sensitive to K~ —K, and this enables us to obtain

Zo«i K ~o)-Zo(K K ~o)=[Co«0'n)]

Zi(Ki, K,Q)-Zi(K, k,g)=Z(K, Ao),

Z2(K) K Ap) Z2(K K Ap) =Z(K kp)

We use (16)—(18) in (12), multiply (12) by N 'Cp(K, O;n) exp[iK m], and then sum it over K to obtain

exp[iK (m —p)]Fp(p)
&

Cp(K 0'n) Z(K Ap)exp[iK (m —p)]Z(K, Ap)
Fo(m}+DAN 1 -+2N 1 -' ' ' ' =0,

A,p(K) —Wg) A,p(K) —WD

(16)

(17)

(18)

(19)

where

Fo(m) =N ' g Cp(K, O;n)Dp(K) exp(iK-m) . (20)

purity molecules. u is the velocity of sound in the crystal
and

For m = p the secular equation (19}becomes

1+hpN
g A,p(K) —WD

Ti N-—
K A,p(K) —WD

T2 N——
g [Eo(K}—Ao(K)]

(23a)

(23b)

+2N ' =0 . (21)~
Cp(K, O;n)

~

Z(k, kp)

A,p(K) —WD

Equation (21}is still very complicated to solve; one has
to evaluate first Cp(k, O;n) and Z(K, A,p} as explicit func-
tions of K and Ap. For this we define a low-temperature
limit in which one can assume that the phonon population
n =n -=0, and only the low-energy acoustic phonons

k —k
can take an active part. By using these assumptions,
Z(K, Ao) and Co(K, O;n) are evaluated in Appendices B
and C, respectively, and it is found that Cp(K, O;n)2. Us-
ing (B8) in (21), we obtain the secular equation as

1

g [Ep(K)—Ap(K)][Ap(K) —Wii]
(23c)

A. Evaluation of T~ (23a)

The secular equation (22) gives Wz as the energy eigen-
value obtained due to the interaction between the compos-
ite exciton-phonon states and impurity or the trap with
depth 6&. The composite exciton-phonon wave vector K
sums over all possible values. However, before one can
calculate Wz from (22) one need to evaluate T„Tq,and
T3. Here we present the evaluation of T&, and only men-
tion the results for T2 and T3 which can also be evaluated
following the same procedure.

3%coDebye1+hq Ti+ (~2 q (Ti+T2)
8(II&)'~ U

(5 WD —4ficoDegye)
T3 ——0,

5
(22)

We convert the sum over K in (23a) into an integra-
tion over the composite exciton-phonon energies as

1

f Pex ph 0-
(24). A,p

—8'g)

where I and I~ are, respectively, the mass of host and im- where p,„~h represents the density of the composite
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exciton-phonon states in 0-0 phonon transition. p ph js
obtained from the product of the density of exciton states

p,„andthat of phonon states D (fico) as

0 Debye

p,„b——f f '"'p,„(E)D(fico}5(Wp—W —fico)

where

g 3/2

v 2t (8 —WD)
(29)

&(dE 1(fico ) . Q5)

Ti (28} is derived taking the center of the unperturbed ex-
citon band, E0——0, and within the limit such that

In evaluating the integral (25) we set the initial phonon
population g fico (n + —,

'
) =0, so that

q q q

W=E+ g fico(q)(n + —,')=E .

However, this is done only to avoid the superficial com-
plications without the loss of any generality. The exciton
energy limits of integration is taken within the unper-
turbed exciton band ranging in energy from Ep —8 to
E0 +8 E0 being the center and 28 the width of the un-
perturbed exciton band. Using the Debye model for the
density of acoustic-phonon states given in (B5), we obtain
from (25)

3[(Ep—Ep) +8 /2)

(fico )Debye

(26)

where Ep represents the energy variable of the pure exci-
tonic state corresponding to

Wp=Ep+ g fico(q)(n + —,
'

) .

(8'+8W t}'~'
—1.

V 2t (2V 2tB +8)

Likewise, Tz (23b) and Ts (23c) can be evaluated, and
the expressions obtained are

42v 2tB i
2=+—

5(ftcoD,by, }

3 4V2tB 8 Wp
( ftcoD b„) 8 3

8 3 0 8 1+u

In order to evaluate T, (24), we also need to know the
eigenvalue A,p of the composite exciton-phonon state and it
is obtained as

Ap=Ep+[Ep (Ep —Ep )+8 (Ep/2 —Ep ) 1 t (27)

28'"+8+
2t

(31)

3

(ftcoD,by, )

0a ~02 B
l

1+u

2 1 —Q

B4 8 8'
8t2

where t =Iv =m Q0v with m being the mass density and
Qp the volume per unit cell of the crystal.

Using p,„~b(26) and A,p (27) in (24) we obtain Ti in the
following form:

B. SolUtlon of Olc sccQlsf cqQRt10n (22)

1+9
ln

1 —u
-0.

Usually it is expected that t »8 and
~

WD —8
~

is not
very small. This gives

~

U
~

&&1 leading to

2B5/2 2B3/2 B2
+ ~ + ~ +3WD

In this limit we substitute Ti (28), Tz (30), and T3 (31) in
the secular equation (22) which then becomes a quadratic
in 8'D, and the possible solutions are given by

+—(8'+4WDt)
2t

(28)
Wrp~ =[ b+(b 4ac )'—~2]/2a, —

where

(32)

a =+180bq(ftcoD, by, )v 2t,
b =30~~ (8t +3ftcoD,by, )(+3tB'—Btv'2tB )/tv 2t

15~p~Debyg(+48~2t +38 +68 Iv 2t )+144~2t btp(ftcoD, by, )

c = 40t(ftcoD, by, ) ~—B —5hz(8t+3ficoD, b„,)(+28 t+38 + ', 83''2tB)—
+1 6~,(f D.by. »'~2t +»~, (f D.b„.)'(+48~2t +38'"+68'Iv 2t ) .

(33)

(34)

(35)
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The eigenvalue Wz thus derived in (32) represents the
passible solutions for 0-0 phonon transition energy states
as explicit function of the trap depth b~, Debye frequency
AcoD,b„„andthe bandwidth (2B) of the unperturbed exci-
ton band.

IV. 0-1 PHONON TRANSITION

In (36)—(38) it is assumed that in a 0-1 phonon transition
only the interaction between a pure exciton state and a
state with one exciton and one particular phonon is im-
portant within the single-phonon approximation. Interac-
tion with multiphonon states is neglected here.

The eigenvector of the Hamiltonian Hp i (36) plus

Hip(3) can be constructed as

We follow the same procedure as for 0-0 phonon transi-
tion. The unperturbed Hamiltonian (2) is obtained in a di-
agonal form as

~
%&p.i ——g Di(K, k)

~
K,K—k, k;n &, (39)

Hp. i ——g A, i(K, k)A „A
K, k

where

X,(k, k) = W(k —k)+e.(k)+N-'"
~

S(k—k, k) ~,

(36)

H»
~

KK, —qq, ;n &=Xi(K,q)
~
K,K—q, q;n&, (40)

where Di(K, k) are the probability amplitude coefficient,
and

~
K,K—q; q; n & are the eigenvectors of Hp i.

(37) and

represents the energy eigenvalue of a composite exciton-

phonon state with wave vector K created by an exciton
with wave vector (K—k) and a phonon with k. The
composite exciton-phonon creation operator A - - is ob-

K, k
tained as

~

kk, —kk, ;n& =A'„„~0,„,„&. (41)

Using (36), (3), and (38)—(41), we solve the following
Schrodinger equatian for the 0-1 phonon transition as we

did for 0-0 phonon transition in the preceding section:

x i0;n&(O,„hi. (38)

„=[Ci(K—k, k;n +1)B b +Cp(K, O;n)B ] (H~, +H,p) I+&~,= WD

The secular equation thus obtained is

(42)

[Ai(K, k) —WD]Di(K, k)+b~N g D, (K', k)Ci(K —k, k;n+1)C (Ki' —k, k;n+1)e px[i(k' —K).p]

)& [Zii (K ', K, k, k)+Ziq(K ', K, k, k)+Zi3(K ', K, k, k )]=0, (43)

where

(K, K k k) (1+ ) 1+ S*(K'—k, k)S(K—k, k)
[Wi(K' —k)+irido(k) —A i][W(K—k)+iruu(k) —Ai]

(44a)

Zi2(K ', K, k, q) =—P(K,K ' —q, q )S(K—k, k)(1+n )(1+n )

Wi(K —k)+duo(k) —A, i

(44b)

Zi3(K, K, k, q)=—
P, (K—k, K', —k)S(K' —q, q)(1+n-)(1+n-)

(44c)
Wi(K' —q)+irico(q) —A i

In order to solve (43) we assume that Zii(K', K, k, k), Zi2(K', K, k, k}, and Zi3(K', K, k, k} are nat very sensitive to
k ' —K. Applying, then, the low-temperature limit (n =n =0), we obtain from (44) the following simplified forms:

k —k

Z»(K, K, k, k) = [Ci(K—k, k;n +1)]
~2 + + —1&k [Wl(K k)+iiipi(k) ~1]

Zi2(K', K, k, k) =Zi3(K ', K, k, k) -Z(K, k) =
2N(11 )'~2~(k)

Using (45) in (43), we obtain the secular equation:

(45a)

(45b)
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[Ai(K, k) —WD]Di(K, k)+BAN g Di(K', k)Ci(K —k, k;n+1)Ci(K' —k, k;n+1)exp[i(K' —K) p]
K

X [Ci(K—k, k;n + 1) +2Z(K, k)]=0 . (46)

As N is usually very large one can expect Z(K, k) « 1, and this gives a very simplified secular equation from (46) as

[Ai(K, k) —Wz]Di(K, k)Ci(K —k, k;n+1)+b&N g Di(K', k)Ci(K' —k, k;n+1)exp[i(K' —K') p]=0. (47)

As in the 0-0 phonon transition, we define here a Fi (m, k )

as

Fi(m, k)=N ' g Di(K, k)Ci(K, k;n+1)exp[iK m],

and (48) enables us to write (47) as

(48)

Fi(p, k)exp[iK (m —p)]
Fi(m, k)+ E'EN

' =0 .
K A, i(K, k) —Wg)

For m =p, we obtain from (49)

1+LAN
K A, i(K, k) —WD

(50)

p,'„„=[B (E E' ) —]- —
7r

(52)

Using (52) in (51) and taking the center of the unperturbed
exciton band at zero (Eo——0}, one obtains the energy
eigenvalue Wn from (51) as

Wj') —— B(1+6p/B )' +—%co . (53}

The energy eigenvalues WD (32} for 0-0 phonon transi-
tions and Wn (53) for 0-1 phonon transitions both are cal-
culated within the low-temperature limit. Obviously at
higher temperatures the spectra will be much more com-
plicated as will a solution to be the corresponding secular
equations.

%e convert the sum into an integration over the energy
variables in (50) to give

1

(51)
A, i —WD

where p,', ~h is the density of the composite exciton-
phonon states in the 0-1 phonon transition.

p,„~h is obtained, as shown in the preceding section,
from the product of exciton's density of states, p,„and
phonon density of states D(iru0). In the 0-1 phonon tran-

sition, however, as we consider the excitation of only one
phonon of a particular mode, the composite exciton-
phonon density of states would be the same as the exciton
density of states:

Wg ~= —B(1+hq/B )' (54)

The position of Wz x measured from Ez, and given as

Ez,„——8'D,„—Ez is also calculated and given in the
Table I for above four doped crystals. The composite
exciton-phonon energy eigenvalue for the 0-0 phonon
transition Q's (27) relative position from Ez, defined by

~0——Q—Ez, is also given in Table I. A,o.o does not de-

pend on the impurity. For results given in Table I the
positive sign in A,o (27) is used.

V. RESULTS AND DISCUSSION

The eigenvalues 8'zP (32) for the 0-0 phonon transition
are obtained as roots of a quadratic equation, and there-
fore they become imagina for b 4ac &0—. On the oth-
er hand, the eigenvalue WD (53) for 0-1 phonon transition
does not show such a behavior. This is a very interesting
difference between the eigenvalues W~ and WD and the
meaning of this will carefully be presented in what fol-
lows. However, before doing this one may like to see
some numerical values for WD and WD in order to get a
deeper insight of the problem.

Consider naphthalene crystals doped with four types of
isotopic impurities' (1) CipDs, (2) 2a-CioH6D2, (3) 2a-
CipH2D6 and (4) 4-CioH4D4. The corresponding trap
depths (hz) of the impurity levels, ' measured from the
bottom edge of the unperturbed exciton band of the host
crystal, are (1) 6~=50 cm ', (2) 5~=30 cm ', (3)
b,z ——18 cm ', and (4) 5~=8 cm '. We consider a typi-
cal value for the unperturbed exciton bandwidth in the
pure naphthalene crystal as 200 cm ', so that B=100
cm '. The eigenvalues WD(32) and WD (53) are calculat-
ed taking the center of the unperturbed band as the origin
(Eo ——0); therefore, we measure the impurity energy levels
also from the center of the unperturbed band. The above
four impurities then would appear at energies E~ such
that (1) E~ = —150 cm ', (2) E~ = —130 cm ', (3)
Ep=-118 cm-i, and (4) Ep=-108 cm-i. The bottom
edge of the unperturbed exciton band would then be at an
energy= —100 cm '. With the use of the above values,
in Table I Spp =8 gp

—E& and 8 p ~
= 8 g)

—E&, where

W~ gives the position of the energy eigenvalue for 0-0
phonon transition measured from the energy E~ of impur-
ities. One can calculate the energy eigenvalue due to the
interaction of exciton-defect interaction5' (no phonons)
as
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8'p )
——8'g) —Ep

1

(cm ')
A,p p ——A,p

—Ep
(cm-')Ep (cm ')

TABLE I. Eigenvalues 8'pp and Wpp of 0-0 phonon transition, and the corresponding energy eigenvalue of the composite
exciton-phonon states (A,p p) are calculated for naphthalene crystals doped with isotopic impurities of trap depths bp =50, 30, 18, and
8 cm '. The parameters used in the calculations are the sound velocity U=1.3)& 10 cm/s, unit-cell volume Qp ——4.74& 10 crn,
and mass density m=1.283 g/cm . Debye frequency AcoD by 90 cm '. The energy eigenvalue E,„D,and 8'p

& are also calculated.

Eex-D ~D-ex Ep ~p-p ( ~D ) Ep ~p-p ( ~D ) Ep
(cm ') (cm ') (cm-'}

—150
—130
—118
—108
—100
(pure

crystal)

'Not prominently effective.

38
26
16
6
0

22
8
3

not possible

75
49
20

not possible

281'
261'
249'
239
231

38+Pm
26+%'co
16+fico
6+fuu

A. Comparison with experiments

In the fluorescence spectra of 0-0 phonon transition in
naphthalene crystals doped with the above four impuri-
ties, Meletov et al. ' ' have observed at temperature
&4.2 K that as the trap depth bz changes from 50 to 8
cm ' the fluorescence spectra changes significantly. For
Ap 8 cm ' some emission occurs at about 120 cm
away from the impurity transition line at E~, and this
emission is identically close to the intrinsic spectra of pure
naphthalene crystal.

From Table I it is clear that we get localized energy
states (do not depend on k) with two distinct ( Wo+o and
Wo.o) eigenvalues due to interaction between the compos-
ite exciton-phonon states and impurity levels for trap
depths 50, 30, and 18 cm '. The transition can, there-
fore, be expected to take place at these energies in the 0-0
phonon fluorescence spectra. This agrees very well with
spectra by Meletov et al. ,

' ' where they observe double
peaks between 40 and 80 cm ' range from phononless im-
purity transition for trap depths 50, 30, and 18 cm
According to the present calculation these lines are due to
the localized energy states arising from the interaction be-
tween the composite exciton-phonon states and the impur-
ity.

For the trap depth 8 cm ', however, Meletov et al. ' '
have observed a change in the spectra such that one of the
peaks of the doublet changes into another peak that ap-
pears at about 120 cm ' away from the peak at E~.

From Table I we see that the trap depth 8 cm ' satis-
fies the condition of b &4ttc in (32) as result the eigen-
values due to the interaction of the impurity and compos-
ite exciton-phonons are not possible. That means the lo-
calized energy states due to the interaction between the
composite exciton-phonon states and impurity states do
not arise when trap hp ~8 cm '. However, the eigen-
value A.o of the composite exciton-phonon states are still
possible, hence a composite exciton-phonon line can be ex-
pected to appear at A,o. According to the result of Table I
this line appears at 239 cm ' away from the phononless
line. It is, therefore, conclusively convincing that the line
observed by Meletove et al. at 120 cm ' for the trap
depth 8 cm ' is due to transitions into the composite
exciton-phonon states. It is also observed by Meletov

et al. that the features of the 0-0 phonon spectra corre-
sponding to the trap depth 8 cm ' is very close to those
observed in a pure crystal. This is what one can expect
from our calculations as well because the composite
exciton-phonon states are the intrinsic characteristic of a
pure crystal. Therefore, in pure crystals the transitions
correspond to energy states at A,o. In Table'I, A,oo=231
cm ', away from the bottom edge of the unperturbed ex-
citon band in pure crystal is very close to A,o o——239 cm
corresponding to the trap depth 8 cm

Although in Table I we give the eigenvalue (Ao o) of the
composite exciton-phonon states in crystals with hz ——50,
30, and 18 cm ' as well, it is expected that for these trap
depths the interaction between the impurity and compos-
ite exciton-phonon is relatively much more prominent to
give rise to the localized energy states at Wo.o. Therefore,
the pure crystal's energy states A,oo of the composite
exciton-phonon would not play significant role in crystals
with deep trap depths, i.e., 4p ——50, 30, or 18 cm

In view of the results obtained here and those observed
by Meletov et al. , the mechanism of interaction of the
composite exciton-phon on with an impurity can be
described as follows: If the trap depth h~ is appreciably
large so that b 4ac & 0 is—satisfied the composite
exciton-phonon and impurity states interact to give rise to
new localized energy states different from the pure crystal
spectra. However, if the trap depth bz is small such that
b —4ae&0, the interaction between the impurity and
composite exciton-phonon states does not remain so
prominent. The localized energy states do not arise then.
In this case, one would observe the impurity spectral lines
and composite exciton-phonon peaks separately, as it ap-
pears in the crystal of naphthalene with trap depth 8
cm

Meletov et al. ' ' have observed the occurrence of no
emission lines in the 0-1 phonon transition as it appears in
the 0-0 phonon transition at hp ——8 cm '. It is obvious
from Table I as well as from (53) that WD exists for every
value of hz, i.e., the presence of an impurity, no matter
how small its trap depth might be, does seem to change
the intrinsic spectra of 0-1 phonon transition. Therefore,
the recurrence of the intrinsic composite exciton-phonon
lines as it happens in the 0-0 phonon transition is not pos-
sible in 0-1 phonon transition at small bz. Thus, here



7274 JAI SINGH 30

again the present theory is in perfect agreement with the
observed result.

B. Comparison with previous theory

Craig and Singh' have suggested that the participation
of phonons masks the true trap depths of impurities in
molecular crystals. From Table I one can see that the im-

purity line appearing at Ez changes to 8'D+ or 8'~ due
to interaction with the composite exciton-phonon states.
Both WD+ and WD are shallower than W& by Wo+0 and
8 p p respectively. For example, the impurity spectral
line that should occur at an energy —150 cm ' (for 50
cm ' trap depth) occurs due to the interaction with the
composite exciton-phonon states, at —128 or —75 cm
from the center of the unperturbed exciton band. Thus,
the masking effect' of impurities is demonstrated more
clearly through the present calculations.

The results obtained here are in excellent agreement
with the experimental as well as theoretical results; how-

ever, it should still be considered only as a qualitative
agreement: firstly, because the results are calculated for
crystals with one molecule per unit cell, secondly, because
the parameters such as B and RcuD are not known exactly
for naphthalene crystals, and finally, because of the ap-
proximations and assumptions involved in arriving at the
final results.

The results derived here are valid only at low tempera-
ture where one can neglect the phonon population
(n -0). This is why all the energy eigenvalues are ob-

q
tained independent of the temperature as

n = [exp(%co P) —1]

assumed to be such that only its energy of excitation is
different from the host molecules, an isotopic impurity.
The exciton Hamiltonian of such a crystal without any
lattice vibrations can be written in the real crystal space
as'

AR+
1 ~m

+ g M, BiB +AF. 8"8
1 ~m

(Al)

bE+ g D 8 8
1 m~1

where &E is the excitation energy of host and &E» is that
of the impurity molecules. It is assumed in writing the
the Hamiltonian (Al) that the intermolecular interaction
terms D - and M- between impurity and host are

equal to those between host and host molecules. This as-

sumption may be considered fully justified for isotopic
impurities which have similar molecular structures. One
does not have to use this assumption, but then one must
write these different intermolecular interaction terms

separately, which only complicates the form of (Al)
without any significant change in the final results particu-
larly for isotopic impurities.

The Hamiltonian (A 1) can be rearranged as

(P= 1 lk~,T, k~ is the Boltzmann constant) is neglected.
It is, however, obvious from the secular equations (12) for
0-0, and (43) for 0-1 phonon transitions, that their solu'.

tions are extreinely difficult to find otherwise. This also
means in other words that the spectral analysis would be
very complicated at higher temperatures for both 0-0 and
0-1 phonon transitions. Meletov et al. ' ' have observed
such complicated spectra in doped naphthalene at higher
temperatures.

The theory developed here is essentially applicable for
crystals with very low isotopic impurity concentration so
that the isolated impurity approximation can be applied.
For higher concentration, however, one has to include the
impurity-impurity interaction which has been neglected
here in the Hamiltonian (1). The problem then becomes
severely complicated, as is well known.

(A2)+ g M-, B-,B +6»8 8
1+m

where b,» =b,E» hE is usually—known as the trap depth.
The first part of the Hamiltonian (A2), without the term
b,», is the same as that for a pure crystal, and the impurity
term can be considered as a perturbation operator. For a
pure crystal with one molecule per unit cell the exciton
operators transform as

8, =N ' QB exp( ik 1).—
k

(A3)

The transformation (A3) can be considered as the zeroth-
order correct basis for the crystal with isotopic impurity,
whose excitonic Hamiltonian is given in (A2), because the
operators B are originally obtained as the product" of

1

electronic wave functions localized at individual mole-
cules. Therefore, the operator 8- in (A2) as well can be

1
expressed as (A3) up to the zeroth order.

Using (A3) in (A2), we obtain

APPENDIX A: EXCITON-PHONON-IMPURITY
HAMILTONIAN

Consider a molecular crystal with an impurity occupy-
ing one of its lattice sites at p. The impurity molecule is

I

~E+ g D- 8-8, exp[i(k ' —k) 1 ]+N ' g g M B~-„8'-„exp[i(k' m —k. 1 )]
7 7k, k' m+1 i

+b»N g B-„B-„,exp[i(k' —k) p] .
k, k'

(A4)



30 MUTUAL INFLUENCE OF THE COMPOSITE EXCITON-. . .

The lattice vibrations can be introduced now in (A4) by

considering l, rn as the instantaneous positions of the mol-
ecules during the lattice vibrations. For clarity, however,

we will replace in (A4) 1,m by 1 ', m ' such that
1'= 1+R and m'=m+R, where l,m represent the

1 m'

equilibrium positions and R, ,R the lattice displace-

ment vectors due to vibrations. We will denote the Ham-
—+

iltonian thus obtained from (A4) as H(R), meaning that
the Hamiltonian now depends on the lattice displacement

A.
vectors R. We expand H(R) in Taylor's series about the
lattice equilibrium to obtain

K(R)=H(0)+H '(R), (A5)
—+

where H(0) is the Hamiltonian at the lattice equilibrium
—+

and it is identical to (A4). H'(R) is the first-order term
of the Taylor s series and it is linear in lattice displace-

ment vectors R- as
I

H'(R)= g R,
c)R

1 R~= 0
]

(A6)

Expressing' R in terms of phonon wave vectors q, and
1

then using the translational symmetry in the unperturbed

part of the Hamiltonian H (R), we obtain from (A5)

H(R) =H,„+H,„D+H,„ph+HD ph+H ph,

where

H,„=g E(k)B',B„,
k

(A7)

is the unperturbed exciton Hamiltonian with the unper-
turbed exciton energy,

E(k)=EE+ g [D- (R=0)
m+0

+M (R= 0) exp(ik m)] .

S,(k, q) =E,(k, q )+P,{q)+I, (k, q)+J,(k, q), (ASe)

XB B-„,(b,+b, ), (ASf)

is the exciton-defect-phonon interaction due to the pertur-

bation term P.,(k, k ', q) represents the coupling function
of interaction between excitons and phonons in the pres-
ence of an impurity, and is given by

1/2

(k —k ') e, (q), (A9)P, (k, k', q)= i—
2IpNco, (q )

with Ip as the mass coefficient of the impurity, co,(q) is
the frequency of phonons with vector q, and e, (q) is the
unit polarization wave vector.

Hph is the usual phonon Hamiltonian as

Hph= g fico, (q)(b b + —,') . (A10)
q, s

It is to be noted that Hph is added in (A7) and it is not de-
rived from (A6).

APPENDIX B: EVALUATION OF Z(K A,o)
[in Eq. (21)]

From (14) or (15), and (17) and (18), we find

Z(k, AO)= —g P(K, k, K—k)

S'(k, K—k)(1+n „)
W(k)+fico(K —k )—A,o

is the exciton-phonon coupling function ' ' with s
denoting the phonon branch, and

HD ph bpN—— ' g P (k k', q)
k, k', q, s

Xexp[i(k ' —k+q). p]

Also,

(A8b) S (k, k —K)n
„

W( k ) fico( k —K)—A—,o

(B1)

H,„D=hpN ' g exp[i{k k')—p]B„B„
k, k'

(ASc)

is the exciton-defect interaction at the lattice equilibrium,

H,„ph=N ' Q Sg(k q)B B-(b +b ),
k, q, s

(A8d)

is the usual exciton-phonon interaction obtained from the
unperturbed part of H(R),

We evaluate Z ( K,A,o) at low temperatures with
n- -=n =0. Also, we consider only the term

K —k k —K

I,( k, K—k ) contributing dominantly to the coupling
function S{k, K—k) in (Bl). I, ( k, q ) is given by'

1/2

E(k)e, (q) q . (B2)I,(k, q)= i—
2Icos 9

Using (A9) and (Bl) in (B2), we obtain Z(X,AO) in the
low-temperature limit as

Ng fiE(k)(K —k)
2(IIp)' cog(k —k)[W(k)+fico(K —k) —A,o]

N fiE ( k )k ' 5l K—k —k ')

p —k. co, (k ')[W(k)+fico, {k ') —A,o]
(B3)
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Converting the summation into integration over the energy variables we obtain

o+ iuaD.b„.Efico( Wp —8' fi—co)D (fico)
Z(K, Ap)= dE d (fico )

(II )'n 2 E' —& 8'+ fico —A,p
(84)

when U is the sound velocity in the crystal, and D(fico) is
the phonon density of states given by

D (fuo) = 3(fuo } /(fuoD, b„,) (85)

coD,b„,is the Debye cutoff frequency and Ep is the center
of the unperturbed exciton band. For

8'( k)=E(k) .

Using (85) and (87) in (84), we find that

(87)

we can set the initial phonon energy to zero without any
loss of the generality, and then

8'(k)=E(k)+ g fuo, (q)(n + —, ) (86)
3(fuoD, by, )(5Ep (K)—4fuoD, by, )

Z(K, Xp)=
20(II~)'i u [Ep(K)—Ap(K)]

(88)

APPENDIX C: EVALUATION OF THE COEFFICIENT Cp(K 0 n}

Cp(K, O;n) is obtained as

(C (K,O;n)
~

=E ' g 1+
S (k, K—k)(1+n- -„)
[W'(k )+fuo(K k )—A,p]

- K —k

[8'(k )—fuo(K —k ) —Ap]

(Cl)

We intend to evaluate Cp(K, O;n) at low temperatures, where only the involvement of low-frequency acoustic phonons
can be considered significant; optical phonons can be neglected:

T

~

Cp(I|.,0;n) (
=N ' g 1+ S (k,K—k)

[8'( k ) +fuo(K k) —A—,p]2
,(C2)

The coupling function of exciton and phonon consists of four terms as given in (A8e).

F,(k, q) and X,(q) are dominant for phonons with zero wave vectors, I,(k, q) is dominant for phonons with nonzero
wave vectors, and J, ( k, q ) is usually very small and can be neglected. One can therefore write (A8e) as

S,(k, q)= ~F,(k, q)+X, (q) ~5 -+I,(k, q) .

Using (C3) in (C2) we obtain

(C3)

~
Cp(IC, O;n) (

=N ' g 1+
k

~
F,(K, O)+X, (0)

~
'8„„+

~
I,(k, K—k)

~

'

[W(k)+fuo(K —k) —Ap]2
(C4}

In (C4) the term with coupling functions F and X for acoustic phonons will become

~—1, ~
F,(K, O)+X, (0)

~

[8"(K)—Ap]
(C5)

¹is usually large and therefore this term can easily be neglected from (C4); we then obtain the resulting Cp(K, O;n) as

( Cp(K, O;n) (
=1+% I,(k,K—k)

W(K)+fico(K —k ) —A,p

The coupling function I,(k,K—k) is given by

fiE ( k )(K k )

2Ico, (K—k )

Substituting (C7) in (C6), we obtain

(C6)

(C7)
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2 2

(KO )~i 1 ~ tg fiE(k)(K k)
k 2Ico(K —k)[W(k)+ha)(K —k) —Ap]

(C8)(2m) N fez(k)k' 5-, ~

k k. W(k')[W(k)+hco(k') —Ao]

We now convert the summation over k into an integration over the energy variables and then following the steps used
in solving (83), we obtain from (C8):

Eo+a ~D.b„.E co5(Wo —W fico)p—,„dEd(fico)
~
Co(K, O;n)

~

=1+ (C9)
Iv Eo —~ (%+fun —A,o)

One can set the initial phonon population to zero, i.e., g fuu(q)(n + —,)=0.
~
Co(K, O;n)

~
is then obtained as

~
Co(K, O;n)

~

=1+ Eo i Ep(K) —Eo i
+8

i
Eo(K)/2 —Eo i

IU (Eo(K)—Ao)z

Using (27) in (C10), we obtain

Co(K, O;n) =1/V 2 .

(C10)

(Cl 1)

Therefore, at very low temperatures, the probability (
~

Cp(K, O;n)
~

) of exciting a pure excitonic state is —,'. That is

what one may expect anyway as there are only two possibilities in exciting a pure excitonic state at low temperatures.
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