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Three-body interaction and fluorite structure: Elastic properties of CaF2, SrF2, and BaFz
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In spite of the fact that second-order elastic constants of some ionic crystals with fluorite struc-
ture can be fitted quite well by the shell model using the two-body interaction only, the situation is
still unsatisfactory. In our previous work, it was therefore attempted to provide a satisfactory pic-
ture by introducing the three-body interaction. The importance of this interaction was estimated
from a study of second-order elastic constants by using mainly the results of a first-principles calcu-
lation. In this paper, this investigation is extended to third-order elastic constants. In order to ob-
tain explicit expressions for elastic constants, the terms arising from the Coulomb interaction and
shell structure are determined from the work of Srinivasan and those arising from non-Coulomb
two- and three-body interactions by the homogeneous deformation theory developed in the preceding
paper. The results confirm the importance of the three-body interaction in the study of the elastic
properties of CaF2, SrF2, and BaF2.

I. INTRODUCTION

Ionic crystals with fluorite structure have been studied
widely for a long time, primarily because they have one of
the simplest crystal structures among those which lack a
center of symmetry. It has been shown' that, although
the elastic properties of some such crystals can be fitted
quite well by the shell model without introducing the
three-body interaction, the situation is still unclear. The
contradictory conclusions of different authors while ap-
plying similar models to this class of materia. s and abnor-
mally large estimates of some of the parameters of well-
known interactions, are examples of the problems in the
present state of our understanding. Regarding the role of
the three-body interaction, the lack of clarification is am-

ply described by Hayes and Stoneham, who observe that
the difference ci2 —c44 in Axe's calculation may be ex-
plained by a shell model without the three-body forces
"although these contributions may be present. " In this
context we have previously tried to investigate the impor-
tance of the three-body interaction, in the cohesion and
the second-order elastic constants of these materials
through a simple model, namely, the deforinable shell
model. The parameters of the model for calcium fluoride
crystal were determined from the free-ion wave functions,
so that an independent estimate of different interactions
was possible. A detailed discussion of this point is given
in the earlier work, which will be referred to as BSB. En-
couraged by the results obtained therein, we thought it
would be worthwhile to extend the calculations to the
third-order elastic constants of these crystals. It is expect-
ed that since these constants involve still higher-order
derivatives of the potential function, three-body interac-
tion may play a more dominant role here.

The model to be used is the same as that in BSB. Each
ion is polarizable; the shells interact among themselves

through a two-body interaction (short-range and Cou-
lomb) and a three-body interaction that arises due to their
deformability; each core interacts through the usual
spring-type and Coulomb interaction. In order to work
out the explicit expressions for the third-order elastic con-
stants, the non-Coulomb (two- and three-body) terms will
be derived from the theory developed in the preceding pa-
per (called I hereafter), and the contributions of Coulomb
interaction and polarizability of the ions will be taken
from the work of Srinivasan. The final agreement of the
theoretical values with experiment and the fact that the
inclusion of the three-body term improves the agreement
in almost every case indicate the importance of three-body
interaction for the anharmonic elastic properties of the
materials under study.

In Sec. II we shall derive expressions for the elastic con-
stants. First, they will be written (Sec. IIA) in terms of
the coefficients introduced in paper I; then the contribu-
tions of the non-Coulomb (Sec. II 8) and Coulomb (Sec.
IIC) interactions will be obtained; finally, complete ex-
pressions will be written (Sec. IID) with a few words on
their verification. In Sec. III we shall apply the theory to
CaFz, SrF2, and BaF2.

II. DERIVATION OF THE EXPRESSIONS
FOR ELASTIC CONSTANTS

FOR FLOURITE STRUCTURE

A. Expressions for elastic constants
in terms of the coefficients

In the next section, we shall evaluate the contribution of
non-Coulomb two-body and three-body interactions to the
coefficients of I for the special case of fluorite structure
using the general results obtained in I; the terms arising
from Coulomb interaction and shell structure will not be
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derived explicitly. For our purpose, there'fore, it is suffi-
cient to work in the rigid-ion model; Thus the particles in
a unit cell are Ca ( k = 1), Fi (k =2), and Fz ( k =3), with
the convention that Ca-F~ sublattice has cubic ZnS struc-
ture. Also, we choose the internal strain of calcium ion to
be zero, u(1)=0.

Now, for fluorite structure, the surrounding of any par-
ticle has at least the point-group symmetry Td. Hence all

second-rank tensors reduce to scalars, and third-rank ten-

sors have only one independent element for which all the
three Cartesian suffixes are different. In particular, we

have

A (~' p') =5~pA (ki, kz),

ko A (ko) if a,P, y are unequal
A(N' P). ')= .

0 otherwise,

and similarly for the coefficient G. Furthermore, since
the surroundings of Fi and Fz ions are related by the
operation of inversion, we have A(2)= —A(3). Using
these properties, one can solve easily Eq. (3) of I (where
ki, kz run over 2,3) and obtain

6(j3y)= —6(+y)=A (i23)/[A (ii) —A (ii)],
where a,P, y are unequal. Substituting for these two 6
coefficients in Eq. (3) of I and applying the symmetry
operations for the fluorite structure, one obtains the fol-
lowing results:

cii ——A (1111), ciz ——A (1122), c~ ——A (2323)+2GA (i23),

c» i
——8 (111111), c»z ——8 (111122), c iz3 B(—112233),

ci~ B(1123——23)+4GB (i1123)+26 [8(i i 11}—8 (i i 11)],
ci55 ——8(111313)+4GB(z1113)+26[8(zzl 1)—8(zz11}],

c&56 ——8(231312)+668(i1312)+66[8(iz12}—B(iz12)]+2G [B(izz)—8(ized)] .

(2)

Here, Voigt contracted notation has been used in the suf-
fix of c and 6 (i23) is abbreviated as G.

B. Coefficients for the non-Coulomb interaction

In the rigid-ion model, the (scalar) potential functions
for the non-Coulomb two-body interaction are Pi(R) be-

tween nearest-neighbor calcium and fluorine ions, and

Pz(R) between nearest-neighbor fluorine ions, where R is
the separation between the interacting ions. Using the ex-
pressions given in Sec. III of paper I, one can obtain the
coefficients that appear in Eq. (2) above, in terms of the
derivatives of Pi and Pz.

As for the three-body interaction, the particles (l'k')
and (I"k") interact via a third particle (Ik) through the
potential

R+R'P= Ak-exp
P

provided that ( lk) is a common nearest neighbor of (l'k')
and (l"k"). Here Ak is a parameter, characteristic of the
deformability of the electron cloud of the k ion, p is range
parameter of overlap interaction between the nearest

neighbors, R stands for R(l'k') —R(lk) and R' for
R(l"k")—R(lk). One can obtain the contribution of this
interaction towards the coefficients of Eq. (2) by using the
expressions of Sec. IV, paper I, through a laborious calcu-
lation, which can be simplified, however, by using the fol-
lowing observations.

(i) The equilibrium value of P and its derivatives de-

pend on the index k only (through the term Ak ).
k) k2 k3

(ii) The coefficients 8 (~ p r } appears always in such a
way that a,P,y are all unequal and no two among

l

( li ki ),(lzkz), (l3k3) are nearest neighbors for any li, lz, l3.
This implies that the summations where only one among
ki, kz, k3 is k will fall off.

k)k~
(iii) For the coefficient 8 ( & ye) also, ( I

& k, ) and

( lzkz ) are never nearest neighbors of each other.

C. Coefficients for the Coulomb interaction

As mentioned in I (Sec. V), for the Coulomb interaction
some of the coefficients become indeterminate and the
expressions of Sec. III of I cannot, be used. In particular,

kI k2 k) &2
each coefficient of the types A ( p ) and 8( & ye) that
enters in Eq. (2) is indeterminate. However, the fluorite
structure has the striking feature that, despite the indeter-
minacy, the combinations of the coefficients [e.g.,
A (ii) —A (ii)] which appear in Eq. (2) do converge, due
to a cancellation of the parts which involve macroscopic
electric field. Another feature of the fluorite structure is
that although it is ionic and lacks in inversion symmetry
at every particle position, it is not piezoelectric —the inter-
nal strain of the Fi ions with respect to Ca ions is equal
and opposite to that of the F2 ions, so that the dipole mo-
ment of the —,

' Ca-F~ sublattice exactly balances that of the
—,
' Ca-F2 sublattice.

To obtain the terms arising from Coulomb interaction
in the expressions for elastic constants, we use the results
of Srinivasan, who has calculated the second- and third-
order elastic constants assuming non-Coulomb interac-
tions P i and Pz, in the framework of a both-
ions —polarizable simple-shell model. However, since the
calcium ions in the initial configuration occupy a position
which is a center of symmetry, under a homogeneous de-
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formation of the solid, this symmetry is maintained and
these ions do not develop any dipole moment. Hence the
only contribution to elastic constants comes from the po-
larizability of the fiuorine ions. For infinitely large values
of the spring constant kz for fluorine ions, his results
reduce to those of a rigid-ion model. We compare these
reduced results with our expressions applied to the special
case when only two-body interaction is present. During
comparison, however, care must be taken to make the
first-order derivatives of Pi and $2 in Srinivasan's expres-
sions identical with those in ours. This is because by the
use of equilibrium condition [Eq. (3) below] one can ex-
press a combination of the two first-order derivatives in
terms of a Coulomb term. Obtaining in this way the
Coulomb contribution to each of the coefficients, we add
the contribution of three-body interaction as computed in
Sec. IIB. This is possible because in each coefficient the
contributions from different interactions are linearly addi-
tive. Now, since Srinivasan s expressions for finite values
of k2 show that the terms arising from shell structure in

I

the expression for elastic constants come in additive form
over the rigid ion values, we retain his evaluation of the
contribution of the shell structure to the different elastic
constants.

D. Final expressions for elastic constants

We give below the final expressions for Brugger elastic
constants as obtained from above. New notations intro-
duced are as follows: —e is the total charge of the ion at
fiuorine site, F2e the shell charge of that ion, kz the
spring constant of that ion, a is half the lattice constant,

e 1+Y2Si =
7 (1+F2), S2 ——

k2a a'

tii ——(1/a)P' i, tip ——aPi', tip ——a Pi", and similarly, t2i
=(1/a)Pz, etc. , where the primes indicate derivatives
with respect to R evaluated at equilibrium. In addition,

Bi ——2 i exp( —~3a/p), B2——A2exp( —V 3a/p),

2 2
M) —— +

V 3pa' p'a
7—S)+B2
3

14 2 2 2
2+ 2 &+ 2+3v3pa pa v3pa 3pa

2 2 2
M,=,+, +

V3pa p a ~3p
7—&i+&2
3

3W3pa 9p a v 3p W3pa 9p a 3v 3p

2

g =G/a = — t,2+M2 —2.5144
a4

The final expressions are
2

c~~ —t~2+4t22+M~ +P.5559 a' '

56 4 8 42t i2+ 8ti2+ 4t i i + 12t2i —
2

—
2

Bi—
3 3pa p a 3pa 3p a

2
c )2 =t )2+M) —1.7325—a' '

e 2
c44 ——t~2+M2 —1.7325

4 +2g t&2+M2 —2.5144 —25.29+&a4

1 ec $ ]$
—T t ]3+8t23 —M3 —5.9627

a4 '

1 e
2 t$3 —M3 + 1~ 5917

a4 '

1 ec ]23 —
2 t g3 M3 +5 479 1

a
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2

c ]44 —
2 t 13

—i@4+5.479 1
a4

+2g t13+2t12—
16 4 8 4

91— + 82+3.3526 4
e

9p a V3p 9p a 3~3p a

+g 2ti3+32t23+12ti2+48t22+8M4 — (Bi+—,B2)—36.33622 8V3 e

p' ' a4

+Si (33.7191—365.4555g —918.9000S2 —3000.9143F2S2 ),
r

2 2

c155 2 t]3 &4+ 1.5917 +2g t13 —2&4+8.3814a' a4

+g 2t13+4t12+ 16t22+2 64

9p a
32

~3p' ' 9p'a
8 2

B2+ 18.1681
3 3p 0

+Si (84.2968+ 152.5547g +459.4500S2+ 150.4584F2S2 ),

2 e 4 e
C45$ —

2 ti3 Mg 3 Bi +5.4791 4 +3g t»+2t, 2
—

3 Bi +3.3526
3 3p 0 3 3p 8

+ 3g 2t, 3+4ti2+16t22 —
3 Bi ~18.1681

4 +g 4ti3 —8M2 — Bi+38.40582 8 e 3 ]6 e
13 2 ~ 3 i ~ 4

+Si (50.5787+ 548. 1824g +579.4045g + 1378.3499S2+451.3727F2S2+ 2913.7094gS2+ 4884. 1539S2 ) .

The cohesive energy per unit cell is

V3a
U=8$, +6/~+(282, +123,)exp

P

2
—5.8182

The equilibrium condition which ensures the vanishing of
isotropic pressure in initial configuration is

2 1tii+t2i+0. 4848 4
— i ( —,'Bi+Bi)=0 . (3)

0 3 3pQ

We have verified that the expressions for the second-
order elastic constants given above agree with those ob-

tained otherwise in BSB, after using the equilibrium con-
dition. As a partial check of the expressions for the
third-order elastic constants, we have verified the follow-

ing equations, which in fact describe the change of
second-order elastic constants under bulk stress:

dC11
a =c11+c111+2c112,

da

dC12
C12+C123 +2C112

dQ

dC44,
c44 +c144+2c

da

TABLE I. Values of parameters.

Q b P
Material (10 ' nm} (10 ' J) (10 nm)

k2
(103 N/m)

A2
(10-" J)

b~a ~a a

(10 ' J/m) (10 ' nm) (10 nm ')

CaF,
SrF2
BaFg

2 717
2.885b

3.088

5.7919
2.5222
4.1266

2.535
3.000
3.000

—2.35
—2.35
—2.35

1.230
1.228
1.232

2.38
0.28
0.71

—1.577 2.883 1.988

'Same for all materials.
Harmonic value.
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III. APPLICATION TO SPECIFIC MATERIALS

In this section, the model developed so far will be ap-
plied to the single crystals CaF2, SrF2, and BaF2. The

specific forms of nearest-neighbor and second-nearest-
neighbor interaction that will be used here are the same as
those in BSB:

P,(r) =b exp( r /p—),
$2(r) =b'(r o)ex—p(crt rg) —.

Since the strongly bound valence-electron cloud of the ca-
tion will be deformed much less than the loosely bound
one of the anion, the parameter A

&
has been neglected in

comparison to Az. The values of all the parameters
(Table I) are taken from BSB. Cohesive energy and elastic
constants calculated by using these values are displayed in
Table II.'

The results for the ten properties (cohesive energy and
the nine elastic constants) of the three materials show up
the prominent feature that, in each case (except c, ~ for
CaFz) inclusion of three-body interaction introduces a
correction in the right direction. This striking observation
indicates strongly that three-body interaction is indeed
important for the study of elastic properties of the materi-

als concerned. For CaFq the result is more impressive, be-
cause all the parameters (except Y"2 and k2) are fixed
without using any crystal property (see BSB). For SrF2
and. BaF2, however, two parameters were fixed otherwise.
Table II shows furthermore that, for each of the ten prop-
erties calculated there, the relative contribution of three-
body interaction is of the same order of magnitude for the
three crystals, as one would expect normally. The relative
contribution of three-body interaction to second- and
third-order elastic constants range up to 38% and 46%,
respectively. Lastly, despite the rather crude way of fix-
ing the parameters, the agreement between the theory and
experiment is quite well.

The objective of the present investigation has been to
estimate the importance of three-body interaction. In this
preliminary application„no scope remains for an emphasis
on the agreement between the theoretical and experimen-
tal values and we have not allowed the parameter values
to vary arbitrarily for obtaining a best fit with the experi-
ment.
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