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Homogeneous deformation theory with three-body interaction:
Second- and third-order elastic constants of noncentrosymmetric crystals
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A general homogeneous deformation theory is developed for an arbitrary nonionic crystal struc-

ture, which lacks a center of inversion. The strain-energy density is expanded as a power series in

macroscopic and internal strains. Expressions are deriv'ed for the second- and third-order elastic

constants in terms of the coefficients of expansion, and for these coefficients in terms of the interac-

tion potential. Two types of potentials are considered —a two-body central potential and a three-

body potential that depends on two scalar distances between the interacting particles. The final, ex-

pressions obtained are much simpler than those of previous work, in terms of force-constant matrix
elements.

I. INTRODUCTION

The increasing importance of anharmonic properties of
solids necessitates a thorough study of the third-order
elastic constants. The theoretical calculation of these elas-
tic constants from a microscopic point of view becomes
complicated for those crystal structures where every lat-
tice site is not a center of inversion, since in these cases a
macroscopic strain gives rise to an internal strain. '

Srinivasan has given lattice theoretical expressions for
third-order elastic constants of such crystals in terms of
force-constant matrix elements, by using the method of
homogeneous deformation as well as that of long waves.
Unfortunately, these expressions are unusually complicat-
ed and make application in specific cases quite difficult,
particularly when one aims at obtaining elastic constants
in terms of interaction potential, and three-body interac-
tion is important. This is primarily because one has to
select the force constants in such a way that the well-

known Born-Huang rotational and translational invari-
ance conditions are satisfied. This is not at all easy when
a large number of force constants have to be used. More-
over, the equilibrium condition (vanishing isotropic pres-
sure) cannot be guaranteed, as isotropic stress cannot be

written explicitly in terms of second-order force constants.
On the other hand, in a homogeneous deformation

theory starting from a definite potential function for the
interaction between the particles, all the above conditions
are explicitly used. Hence this approach leads to much
simpler final expressions for the elastic constants. Born
and Huang' also have developed this theory for the
second-order elastic constants considering two-body cen-
tral interaction only. Our purpose in the present paper is
to extend this method to the third-order elastic constants
for any nonionic noncentrosymmetric crystal structure,
considering both two-body central interaction and a class
of three-body interaction. The theory will be applied to
three crystals with the fluorite structure in the following
paper. For centrosymmetric crystals such an extension
of homogeneous deformation theory has already been
made by Sarkar and Sengupta.

To develop the theory, we consider an infinite solid
which undergoes homogeneous deformation described by
macroscopic Lagrangian strain s and internal strain u(k)
for atoms of type k. The strain energy per unit unde-
formed volume is then expanded as a power series in these
two types of strains. Thus, up to terms third order in
strain, one obtains [see Eq. (11.15) of Ref. 1]

E= —,'A (aPye)s &s„,+A(~'Py)u (ko)spz+ —,'A( 'p')u (k|)up(k2)+ ,'B(aPyegg)s &sr,s&„—

+ ,'B( 'Pyre)u (ko—)s~zs,~+ —,'B( 'p'ye)u {k,)u~(kz)s~, +-6B( '&'r')u {k,)uii(k2)ur(k3) .

Here and below, the Greek letters a,p, etc., denote Carte-
sian components and the summation is implied over re-
peated Cartesian and and other indices. From this expres-
sion one can immediately obtain the symmetry properties
of the coefficients, which arise because the strain tensor s
is symmetric, and because the coefficients are really the
derivatives of the strain energy with respect to internal
and macroscopic strain components, where the order of

differentiation is immaterial. The detailed expressions for
the coefficients as lattice sums involving derivatives of the
two-body and the three-body potential functions will be
given in Secs. III and IV. In Sec. II we shall derive gen-
eral expressions for the second- and third-order elastic
constants in terms of these coefficients. The concluding
section is devoted to general discussions on the theory.
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II. EXPRESSIONS FOR ELASTIC CONSTANTS

R(lk) = r(lk)+v r(lk)+ u(k), (2a)

where v is the symmetric infinitesimal strain tensor, relat-
ed to the Lagrangian strain tensor s by the equation

1S=U+ 2UU

or

Under homogeneous deformation the kth particle in the
lth cell will be displaced from the original position r(lk)
to'

strain following Srinivasan, by the use of the equilibrium
condition BE/Bu (k)=0. There it has been proved that
also for third-order elastic constants, it suffices to know
internal strain up to the first order in Lagrangian strain.
Thus one has to solve the equation

A( p')up(k2)+A("Py)spr ——0,
and obtain the solution in the form

u (k)=G( Py)sp„.

We now substitute this solution in Eq. (1) and compare
the resulting expression with the equation

1U=S —2$ $+ (2c)
1E=

z c+Py&$&Psyp+ 6 c+Pypggs&PSy&sg

where . represents terms of higher order in s. The
internal strain can be expressed in terms of Lagrangian

which defines the second- and third-order Brugger elastic
constants c. The final result is

c pr, ——A(aPye)+[A(e aP)G(&'ye)] pr, ,

(3)

c~p„~g&——B(aPyegg)+3[B(e yell)G(e aP)+B(e'i'aP)G(e'ye)G(i'goal)]~p &, ~z

+B(s'i.'„')G(g'ap)G(i'y~)G(„'goal) .

Here (and below) subscripts to thick square brackets mean
that the expression within brackets is to be symmetrized
with respect to interchanges between the suffix indices, in-
cluding proper numerical factor. Thus,

[f(m, n,p)] „~—= —,
' [f(m, n,p)+f(n, m,p)+f (p, n, m)],

where m, n,p may stand either for a single index or for a
pair of indices, and f is a function involving them.

Similar expressions for elastic constants have also been
obtained by Fuller and Naimon (Ref. 6, Appendix A);
they have used, however, the quantity u (k)+v pup(k) in
place of u (k) [see Eq. (84) of Ref. 6].

E = g [4'by+ —,
' 0"(by)'+ 6

0"'(by)'1 (5)

where r stands for r(l'k', lk). The right-hand side can be
written in terms of Lagrangian and internal strain only,
by expressing v in terms of s froin Eq. (2c).

The atom-atom interaction energy per unit volume is
(1/2vo)g&&, k.g, where vo is the volume of unstrained unit
lattice cell, and P is the interaction potential between the
particles (lk) and (l'k'). The Taylor expansion of strain-
energy density (two-body part) about the initial configura-
tion gives

III. EXPRESSIONS FOR THE COEFFICIENTS
FOR TWO-BODY INTERACTION

by= 2r rps p+2r v p[up(k') —up(k)]

+2rl[u (k') —u~(k)]+[u (k') —u (k)] (4)

In this section we shall obtain expressions for the coef-
ficients in terms of two-body central interaction, follow-
ing Born and Huang. ' We switch over to a new variable

y =R, where R=R(1'k') —R(lk) =R(l'k', lk) (for exam-
ple), which, according to Eqs. (2a) and (2b), changes due
to homogeneous deformation by

where the primes over P indicate derivatives with respect
to y, evaluated at initial configuration. The self-term
(Ik)=(l'k') is to be omitted in the summation of Eq. (5)
and in every similar case hereafter.

The procedure is now straightforward, although some
lengthy calculation is necessary. Substituting for hy from
Eq. (4) in Eq. (5), one can express E in powers of s and u.
The coefficients of the first power of s and u should be
zero becauses of the equilibrium condition, and then we
obtain an expression for E of the form of Eq. (1). Com-
paring the two expressions one can immediately write
down the coefficients in terms of the potential derivat'ives.
The coefficients A are the same as those given by Born
and Huang, ' and the remaining ones are given below:
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B(aPyEgg) =(4/uo) g r~rprrr, r~rvP"',
kl'k'

B(~P y e g) = —(8/uo) g (r~rpr&r, r~P"'+ [[5~pr &r,r~P"]p &]p&,&),

B( ' p'y e)= (8/uo) 5k, k g —g (r rprrr, P"'+ , 5 p—rrr,P"+[[5 rrpr, P"]&,] p),
1'k' l'

k=ki k=ki
k'=k2

B( ' p'r')= (12/uo) 5k,k,
l'

k k3 k'=k) k), k2, k3

—]5k,k 5k k, g (2r rpr&P'"+[35p&r P"] p ) .
l'k'

k=k,

IV. CONTRIBUTION TO THE COEFFICIENTS
FROM THREE-BODY INTERACTION

Effective three-body interactions are of considerable
importance in the study of many ionic solids. Examples
of some very widely studied forms of three-body interac-
tion for the case of ionic solids, are the one due to
Lundqvist

and the one obtained from the deformable shell model

Q=Df(R, R') .

Here the notation is as follows. P is the interaction poten-
tial between the particles (I'k') and (I"k") mediated by a
third particle (lk); f is a short-range overlap function;
z',z" are ionic charges of the particles k', k", respectively;
D is a constant, characteristic of the particle k, and R' is

R(l"k",Ik). One should note that both of these interac-
tions are covered by a general form P=g(R, R'), which is
symmetric under R,R' exchange. It is this type of'three-
body interaction only, to which we shall be confined here-
after. We thus exclude, for example, the Keating poten-
tial used in covalent crystals, which is a function, also of
the angle between R and R':

g =X (R.R ' —r. r ')

where E is a constant and r '=r(1"k",Ik).
The procedure to be followed now is almost similar '..o

that of the preceding section. The contribution of thre:;:-

body interaction to the strain-energy density is

E' '= g [P(R,R') P(r, r')] . —
2Up

By Taylor-series expansion one obtains

E( ) [241~3 +4]1(~3) +4]2(~3 )(~3 )+ ] $111(~3 ) +|('112(~3)'(~3 ')]
UQ kllkllttktl

where y'=R ', and the subscripts 1 and 2 to g indicate derivatives with respect to y and y', respectively.
The equilibrium condition when both two-body interaction P and three-body interaction g are present will be

r P'+ g —g r $]=0 for all ko,a,

and

l'k'
k =ko

l'k'l" k" lkl"k"
k =ko k'=ko

g r~rpP'+ g 2r~rpg] ——0 for all a,P .
kl'k' kl'k'I "k"

We get a total of 3(n —1) independent equations from the first condition, and six from the second. These determine the
shape of the unit cell and the relative position of the n particles in the unit cell for the equilibrium conf]guration.

The final expressions for the coefficients are given below. The self-terms for which any two of (Ik), (I'k'), (I"k")are
the same should be excluded from every lattice sum, as usual. %"e have

A (aPye) =(4/uo) g (r rprrr, g»+r rprrr, 'g]2),
kl'k'l "k"

3( Py)=(4/uo) ' g — g (r rprrf]]+r rprrg]2),
lklttklt ltkllltkfl
k'=ko k=ko

k, k2
&(~ p )=(4/up)I[~]k k (5gzpy]+2r rpy]])+2r rpy]2I

where
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and

~=5k, k,
llktltlktl
k=ki

lllttktl
k =kI, k'=k2

lkl"
kr=k(
k"=k2

8(aP) egyl)=(8lvo) g Ir~rpryr, rgr71$1»+[3r~rpryr, rprttg»2]~py, g&I,
kl'k'l" k"

8(& Pi E g) =(8/Uo ) g — g t r&rpryr&rgf111+(P&r p ryr&rg+r&rpryr&r'g +r&r p ryr&rg)1(j112
lkl "k" l'k'l" k"
k'=ko k =ko

+[[5 p( ryr, rg411+ryr,'r g tt12)]p, y]py, .gI

k) k28( p ) 6)=(8/vo)([M]k k I 2r rpryr, f»1+2r rpryr, 'f»2+[[25ptr rye»] p]y,

+5 p(ryr, gI1+ryr,'$12)I+[CI2r rpryrA'112+[5ptr ryg12]y, I] k, k, ),
(~ ), (p )

5k1k2 g +
l'k'l"k"
k=ki

lkl'
k'=ki
k"=k2

— X
ilk tilt
k=ki
k"=k~

lllllkll

k=k2
k'=ki

&(.' p', ') = (24»o)(~ t
—'r. rpry'»1+-, '

[5pyr 011],pyj+[8t'(r rpry f112+ 5pyr 412)1 &
( ), (p ), (y )

where

and

5kik25k2k3
lkl"k"
k'=ki

l'k'l"k"
k=ki

+ 35kk,
lllltktt
k=ki
k'=k, k, ,k, , k,

I'= —5k, k,5k,k,
l'k'l"k"
k=k)

+5k, k, g
lllllkll

k=k)
k'=k3

+(5k,k, 5k,k, ) g +—2
ltlllkll
k=k,
k'=k2

i

5k2k3
lkl'

k'=k2
k"=k,

— X
lilt l

k=k3
k'=k2
k"=k)

V. DISCUSSIONS

Following Born and Huang, ' one can immediately ob-
tain some identities and symmetry relations that the coef-

ko
ficients satisfy. For the three-body interaction 2( Py),

ko
and B(~ Pyre) give zero when summed over ko, whereas

give zero when summed over two k; indices. For two-
body interaction, however, all the above coefficients give
zero when summed over any one of the indices k;. Furth-
ermore, although in every coefficient we have guaranteed
the symmetries mentioned just below Eq. (l) only, in the
case of two-body interaction, they are automatically sym-

metric under the exchange of any two Cartesian or k; in-
k) k2

dices. An exception is 8 (
' p' y e) which is symmetric in

ki, k2, in a,p, and in y, e, but not in a, y, etc. The three-
body coefficients, however, do not have any such extra
symmetry.

The expressions for the coefficients that we have ob-
tained here, could also be worked out from the results of
Srinivasan, by expressing the force-constant matrix ele-
ments in terms of interatomic potential and imposing the
equilibrium condition. This method will, however, be
more laborious than the one followed here. The final ex-
pressions for the elastic constants as obtained here are
quite different in form from those obtained by Srinivasan.
Therefore a direct comparison between them is not easy
for an arbitrary crystal structure.
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We have not considered Coulomb interaction so far.
For this interaction, some of the coefficients become in-
determinate' and therefore depend on the surface for a
finite crystal. To develop the theory consistently in this
case, one has to write them in terms of the macroscopic
electric field and the macroscopic strain, with surface in-
dependent coefficients. For the second-order elastic con-
stant, this has been done by Dasgupta and Sengupta. For
the convergent coefficients one can use of course, the ex-
pressions deduced in Sec. III. In order to obtain the elec-
trostatic contribution to elastic constants, one can also

tackle the problem of indeterminacy by using the Ewald
theta transformation, as has been done by Fuller and
Naimon.
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