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Hartree-Fock energy bands in 'molecular crystals: Solid hydrogen in the cubic phase
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We calculate the Hartree-Fock energy bands of solid hydrogen in the cubic phase, using a plane-
wave-basis set. The novelty of our approach is that, by the expression of the crystal density matrix
in terms of localized Gaussian functions, all the matrix elements necessary to calculate the energy
bands (including those of the nonlocal exchange operator) can be computed in closed analytical
form. This is achieved by the extension to molecular crystals of a technique previously applied to
solid rare gases. We compare our results with previous theoretical work, and with available experi-
mental data. In particular, we provide a new interpretation of recent photoemission measurements
on thick H2 films deposited on noble metals. The effects of the molecular steric order on the elec-
tron states are also briefly discussed.

I. INTRODUCTION

Recently, the availability of sychrotron radiation for
spectroscopic purposes has offered new possibilities of in-
vestigating the optical properties of molecules and molec-
ular crystals over a wide spectral range. ' On the theoreti-
cal side, not much is known about the electronic states of
molecular crystals, and the current understanding of ex-
perimental data mainly relies on a critical comparison be-
tween the spectra in the gaseous and in the solid phases.
The availability of a simple and reliable technique to cal-
culate the energy-band structure of these crystals would be
therefore of great interest.

The highly insulating character of molecular crystals
makes local-density techniques unsuitable for studying
their quasiparticle spectra, and the Hartree-Fock (HF)
method is a better starting approximation in this case. It
is known, in fact, that any local approximation to the ex-
change potential leads to a severe underestimate of the op-
tical gap, and no assessed method to improve the local-
density results is presently at hand. The Hartree-Fock
approximation, on the contrary, systematically overesti-
mates the optical gap. In wide-gap insulators, however,
the correlation effects omitted by the HF approximation
are comparatively small and can be managed to a reason-
able degree of reliability by a variety of methods.

In molecular crystals, the density matrix necessary to
set up the Fock operator is conveniently expressed in
terms of free molecular orbitals. On the other hand,
while occupied orbitals can be satisfactorily described by a
basis of a few localized functions per atom, the proper
description of virtual orbitals requires a much more flexi-
ble basis set. The joint use of a local-orbital expression
for the crystal density matrix and of an orthogonalized-
plane-wave (OPW) set for describing both valence and
conduction bands, has proved to be a valuable tool for HF
calculations in rare-gas solids. ' One major difficulty of

OPW-HF calculations in solids is due to the nonlocal
character of the exchange potential which can make the
computation of its matrix elements rather cumbersome. 6

In a series of recent papers, it has been shown that when-
ever the crystal, potential can be satisfactorily expressed as
a sum of atomic potentials, these difficulties can be over-
come by expressing the atomic density matrix in terms of
Gaussian-type orbitals (GTO). When this is done, all the
matrix elements occurring in the OPW calculation can be
computed in closed analytical form. This technique has
been also successfully applied to correlated energy-band
calculations in the Coulomb-hole —plus —screened-
exchange (COHSEX) approximation.

In this paper we consider the case where the crystal
density matrix cannot be expressed any longer as a sum of
atomic terms, and interatomic contributions to the Fock
operator play an important role. In the case of molecular
crystals, such contributions from atoms within the same
molecule (intramolecular contributions) are of course very
important, while those coming from atoms belonging to
different molecules (intermolecular terms) are far smaller.
The latter, however, are known to affect the valence bands
of these crystals in a non-negligible way. ' We propose a
technique to deal with these interatomic contributions to
the crystal potential within the OPW method, and we ap-
ply it to solid hydrogen in the cubic phase. In this case,
no core states are present, and we use a plane-wave-basis
set. For the purposes of the present paper, we have found
it convenient to apply this technique to intramolecular
terms only, while intermolecular ones are accounted for
by a simple perturbation formula based on the work by
Gilbert and Kunz. " The simplicity of solid H2 and the
existence of other theoretical works on the electronic
states of this crystal make it possible to compare our ap-
proach with the others found in the literature. The effects
of the molecular steric order on the electron states will be
briefly discussed and the results compared with available
absorption and photoemission data.
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II. HARTREE-FOCK APPROXIMATION IN MOLECULAR CRYSTALS

A. General consideration

The Hartree-Pock equation for a crystal reads:

FP(k, r) = f2 + f

V +V„„,((r)+e f dr ' p(k, r) — f ' p(k, r ')dr '=e(k)p(k, r),

p(r, r ')=2+(S );Jip;(r)ip" (r '), (2)

where the indices i and j label molecular quantum num-
bers and positions, and S ' is the inverse of the overlap
matrix:

where V„„,) is the nuclear potential, p(r, r ') the spin-
independent (Dirac) density matrix, and F the Fock
operator of the crystal. According to Lowdin, the densi-
ty matrix of a system made up of closed-shell units (which
will be referred to as "molecules, "but could also be atoms
or ions) can be approximately expressed in terms of free
molecular orbitals tip; I:

where g indicates a sum running over couples of
nearest-neighbor molecules. Accordingly, we define an
"intramolecular" Pock operator Fo as the sum of the ki-
netic operator plus free-molecular potentials [cf. first term
of the density matrix (3)]. The contribution to F of the
second term in Eq. (3) will be denoted by b.F ("intermolec-
ular" contribution).

The only nontrivial step in the evaluation of the matrix
elements between plane waves of the Fock operator corre-
sponding to the density matrix (2) is the calculation of
bielectronic integrals of the type

In molecular crystals, the overlap between neighboring
molecular orbitals is small ( -0.01); in this case, S ' can
be evaluated to first order in 6, and one obtains

(S '),1—5,J
—b,,q .

0

J=f dr&drqe ' 'i(()*;(r2) e ' 'i6(r2),
r12

E=f dr)dr2e
' ' ''i(o*;(r2) e' ' "'i'(r&) .

r12

(4a)

(4b)

In most cases of interest 6;~ is non-negligible only for
nearest-neighbor molecules, and 'the following approxi-
mate expression for p( r, r ') holds:

p( r, r ')= 2 g ip; ( r )(p*; ( r ')

(3)

In Ref. 7, a technique for evaluating the above integrals
was provided, in the case where both the cp's were atomic
functions centered on a same site. In the following we ex-
tend these results to the general case of functions centered
on different sites.

B. Calculation of matrix elements

Restricting ourself to localized orbitals of s-like symmetry, we define

and

J,(k),a), 5), k2, a2, 52)—:f dr)dr2e
+—&k1 r1 ~1 r2 ~1 l &k2 I'1 2 2 ~2

e e e
r12

—+ —+i k& r( ——a2(r& —S&) I i k& r2 —a((r( —5&)

r12

(Sa)

(5b)

The product of two GTO's centered on different sites may be expressed as a single GTO centered on a third site. ' J,
is thus simply the Fourier transform of the electrostatic potential generated by a Gaussian charge distribution. The final
result is

12 12 12 12 4~J~=e e
Q'1+ CX2

3/2 —k12/4(a1+a2)
e 7

where

CX1(X2

~12 ~ I ~2 ~12 ~12
CX1+CX2

F161+a262
A'1+ A2
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A technique to evaluate analytically the exchange integral K, is presented in Ref. 7, in the case where 5&
——52.

Proceeding along lines similar to those of Refs. 7 and 13, we examine now the general case 5»52. We first decouple r,
and r2 by Fourier analyzing 1/r~2, and then integrate with respect to r& and r2.

r

K, (k(,a), 5), kq, a2, 52) = 3/2 e
2(a~a2) /

i—i(k& 5& —k&. 52) iq
e exp

(q —k()
4n) 2 dqq

2(asap)'

2 2 2—i( k
&

6
&

—k&. &2) —(k&/4aj) —(k2/4a&) —(q /4a„) - „1e e e'q'" dq,
q

where

k) k2K= A(2 —I +
2(X 1 2CX2

is a complex vector. To perform the angular integration, we observe that, if z were real, the spherical average of e' q '
would be sin( qa)/qv. By analyticity, the same result must hold for complex v. We have then

2~ —i(k~ 5&—k2. 52) —(kf/4a&) t, k&/4a&—) ~ —(p /4a&2) Sin(qx)
(a a )3/2 0 qv

where a.=(K K)'/ . The above integral can be expressed in terms of the error function of complex argument, ' and the
final result is

m' i( k &—.s
&

—k2 5z) —(kf/4a&) —(kj/4az) erf[+a12) ]
(7)

With the help of a standard computer routine for the
complex error function, ' the numerical evaluation of K,
is straightforward. The method presented here for s-like
localized functions can be easily extended by differentia-
tion to the general case of higher angular momentum, and
it is therefore applicable to more complex molecular crys-
tals than solid H2.

C. Evaluation of Intermolecular terms

The technique revealed above applies to intramolecular
as well as to intermolecular contributions to the Fock
operator. However, the effects of the latter are compara-
tively small, and their computation is time consuming.
For this reason, we give here a simple prescription, based
on an approximation by Gilbert and Kunz, " to treat their
effects separately. To this end, we direct attention for a
moment to a local-orbital description of the energy bands.
Retaining only terms which are linear in the overlap, we
neglect all the matrix elements of ~ between molecular
orbitals on the same site, and between orbitals which are
not both occupied in the free molecule. For occupied or-
bitals pz(r —dz ), and yz(r —dz), one has"

2

For the sake of simplicity, we consider a crystal with one
molecule per unit cell, giving rise to an s-like valence
band. This is the case of solid H2, when the relative orien-
tations of the molecules are disregarded. The extension to
more complicated cases is straightforward. According to
Eq. (8), the correction to the linear-combination-of-
molecular-orbitals (LCMO) valence band is given, to first
order in S, by

2

b,e„(k)=S g e

where ~q's are nearest-neighbor translation vectors. In
the same approximation, conduction bands are unaffected
by AI'.

A similar conclusion could also be obtained in the
plane-wave formalism. We neglect the Coulomb integrals
J due to molecular orbitals on different sites (whose effect
is second order in S), and treat the corresponding ex-
change integrals by the following approximation:

7T3 1
K,(k ),a), 5 ), kp, a2, 5p)= 3/2

2 2—i( k
1 5 (

—k ~- 52) —(k ) /4al) —(k2/4a2)
e (10)
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B. Numerical results and discussion

We display in Fig. 1 the calculated energy bands of
solid hydrogen. Solid lines refer to energy bands obtained
taking into account the steric order of the molecules,
while dashed lines are the results of a calculation in which
the molecular potential has been averaged with respect to
the four possible orientations of the molecule in the unit
cell. We will refer to the former as Pa3, and to the latter
as fcc results. The energy cutoff for the construction of
the plane-wave-basis set has been set to 24(2+6/ao) . At
point I, this amounts to including plane waves up to
wave vectors of the type (4,2,2). The maximum number
of such plane waves is 485 and 137 in the Pa3 and fcc
cases, respectively. Intermolecular contributions to the
crystal potential have been accounted for by Eq. (9), as ex-
plained in Sec. II C. In the fcc case, we have also calculat-
ed the energy bands with an energy cutoff of
43(2vrfi/ao), and verified that all the eigenvalues of Fig.
1 were converged better than 0.1 eV. In Table I we report
the results of such fcc calculations.

A comparison of the Pa3 and fcc results shows that the
effect of the molecular steric order on the electronic ener-

gy levels is practically negligible for conduction bands,
while it shifts almost rigidly the valence bands by 0.5 eV
downwards. As optical experiments are performed at
temperatures near the onset of an order-disorder transi-
tion, ' ' the fluctuations in the orientational ordering
may be very important. We suggest, therefore, that exper-
imental data should be compared with fcc calculations,
which better describe an average disordered situation and
which are by far less time consuming than Pa3 ones.

The absorption spectrum of solid H2 for fico(20 eV
schematically consists of two broad structures peaking at
about 12.5 and 17 eV, ' the first of which has been inter-
preted as due to excitonic effects. ' The HF fundamen-
tal gap corresponds to an L &+ +L2 transiti—on (in the no-
tation appropriate to the fcc "average" crystal) and is of
17.3 eV. The effect of electronic correlation on the energy
bands of an insulating crystal is to shift almost rigidly the
valence bands upwards and the conduction bands down-
wards. ' The reduction of the energy gap E due to
correlation effects (Eg

" Eg"~' b,Eg ) c—an be d=ivided in a
first approximation into a free-molecule contribution AI
and a host contribution P. The former is the difference
between the experimental ionization potential of the free
molecule and the corresponding calculated orbital energy;

the latter is due to the polarization of the neighboring
molecules, and is of the order of the Mott-Littleton energy

.23, 24
ML'

1 6.3346
I'=EM'. =e 1——

&s +do

where e, is the static dielectric constant of the crystal. In
solid rare gases, EM& is found to account for 60—70% of
P. The static dielectric constant of solid H2 at zero
temperature has been calculated by extrapolating the
known value for liquid hydrogen at T =20 K (Ref. 25) by
means of the Clausius-Mossotti formula, and found to be
e, =1.3: The corresponding value of EML is 1.3 eV. The
ionization potential of the free molecule is 15.5 eV,
which, together with the calculated lo.

g orbital energy
previously mentioned, gives a value of 0.7 eV for dd; The
resulting EEg(-2.0—2.5 eV) lowers the gap to —15 eV,
in substantial agreement with previous estimates based on
experimental data. " ' "' Further information about the
static dielectric function of solid Hz would be valuable in
order to better account for correlation effects on the ener-

gy bands, e.g., in the COHSEX approximation. Accord-
ing to our results, ee conclude that the absorption band at
12.5 eV is due to excitonic effects, while the one at 17 eV
is due to density-of-states effects in the band-to-band tran-
sitions. Our conclusions differ from previous theoretical
investigations based on the local-density approximation
on an intermediate-neglect-of-differential-overlap
(INDO)-type cluster approximation, or on the "dielectric
approach" to the crystal potential. The energy gap
predicted by these calculations ranges from 9 to 11 eV,
ruhng out the interpretation of the first absorption band
of solid H2 as due to excitonic effects. The absence of ex-

citonic effects in the absorption spectrum of such a highly
insulating crystal as solid H2 would be rather surprising,
and a comparison of the spectra in the gaseous and solid
phases further confirms the excitonic nature of the first
absorption band of this crystal. "'. These considerations
confirm that an accurate treatment of the exchange opera-
tor is essential in order to obtain band gaps in good agree-
ment with experiments. The comparatively better value
of the band gap obtained in Ref. 10 is due to the use of
the X~ method. The a value was fixed in such a way to
reproduce the exact exchange matrix element between two

plane waves at k=0.

TABLE I. Hartree-Fock energy bands of cubic solid H2 in the fcc approximation (see text). Units
are eV.
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As concerns the valence band, we predict a bandwidth
of 1.2 eV, while the top of the band is at —14.4 eV (Xt ).
Previous experience has shown that, at least for narrow
bands, the valence-band width is well predicted in the HF
approximation. According to our results, the ionization
potential of solid H2 should be located at
It — E(—X~ ) —dd ——,'EM& ——13.0 eV. Here again, our
results disagree from those obtained in the local-density or
"dielectric" schemes which predict a smaller bandwidth
and a much smaller binding energy. The bandwidths ob-
tained by the LCMO method' ' are also sensibly smaller
than our own. This is probably due to the lack of flexibil-
ity of the LCMO basis set and to the fact that, in molecu-
lar crystals, the hopping integrals responsible for the
spread in the valence-band energies are very sensitive to
the tails of the molecular orbitals, which are poorly
described by approximate wave functions.

Unfortunately, there are no photoemission data on bulk
solid Hz to which compare our predictions for the valence
band. Our results, however, are compatible with the
photoemission measurements on thick H2 layers deposited
on Cu or Au, by Eberhardt et al. ' In the case of Cu, the
photoemission spectrum reported by these authors con-
sists of a typical photoemission band of the substrate fol-
lowed by a second structure characterized by a binding en-

ergy Eb ——10.4 eV, and a width b,,=2. 1 eV, which has
been interpreted as due to bandlike states of the deposited
layers. Assuming a work function W =4.4 eV, this inter-
pretation implies a width of the valence band of solid H2
equal to A„and an ionization potential
II ——EI, + 8' ——,6„=13.7 eV. Similar conclusions may
be drawn in the case of Au. These values are in fair

agreement with those calculated in the present paper
(5„=1.2, It ——13.0 eV). The larger value of the observed
"valence-band width" is probably due to broadening in-
teractions with the substrate, while the larger "ionization
potential" could be the consequence of a less efficient
screening of the hole state, with respect to bulk solid H2.
Eberhardt et aI., who according to previous calculations
assumed a band gap of 10 eV, were rather surprised to
find the Fermi level coinciding just about with the bottom
of the conduction band of solid H2, and had to invoke a
charge transfer from the substrate into the Hz film in or-
der to account for such a situation. According to our re-
sults, no such mechanism should be invoked since the en-
ergy gap obtained ( —15 eV) allows the location of the
Fermi level at midgap, as one expects.

IV. CONCLUSIONS

In the present paper, we have shown that reliable infor-
mation about the electronic states of molecular crystals
can be obtained by means of HF calculations within the
(orthogonalized) plane-wave method. The combined use
of GTO's for describing the crystal density matrix and of
plane waves (orthogonalized to core states, if necessary)
for describing valence and conduction bands makes the
problem numerically tractable.
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