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Calculation of the cyclotron-resonance spectrum in the quantum limit
for semiconductors (lowest-order Born approximation)
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Starting from the Kubo formula, the quantum-limit cyclotron-resonance spectrum is calculated
for free carriers in a semiconductor. Ionized-impurity and LO-phonon scattering are investigated in
the lowest-order Born approximation. For T & 15 K, excellent agreement is obtained with
cyclotron-resonance linewidth measurements of Matsuda et al. in InSb. Cyclotron-resonance har-
monics and phonon-assisted harmonics are also discussed. No adjustable parameters are introduced.

I. INTRODUCTION

For more than a decade there has been interest in the
experimental and theoretical study of the cyclotron-
resonance linewidth in semiconductors at low tempera-
tures. ' However, as it has been stated before, "a large
number of investigations, both experimental and theoreti-
cal, have produced a bewildering variety of (sometimes
contradictory) results. " ' The situation remains un-
clear.

The present calculation was stimulated by measure-
ments of Matsuda and Otsuka, who investigated the
cyclotron-resonance linewidth in indium antimonide in a
temperature range from 4.2 up to 160 K. Earlier mea-
surements in InSb had concentrated on the T=4 K re-
gion, where ionized-impurity scattering is considered to be
dominant. ""' The observations of different
groups at this temperature, however, do not agree. It is
possible to explain this result by assuming that the effec-
tive electron-impurity potential in InSb at T=4 K is
strongly dependent on the specific properties of each sam-
ple. Theoretically, the problem has been treated by intro-
ducing adjustable parameters. ' For low temperatures,
however, there exists no theoretical understanding of the
conditions governing the variation of the effective
electron-impurity interaction, as a function of different
sample properties. For higher temperatures there are
reasons to believe that the situation is less complicated: A
Debye-screened Coulomb potential is considered to be a
reasonable first approximation. ' ' . Yet, as we will il-
lustrate in Sec. V, various sophisticated calculations, all
starting from a bare or Debye-screened Coulomb poten-
tial, lead to very different results. ' ' ' ' This is due
to the introduction of a large variety of approximations,
the validity of which is difficult to judge. We will also
show that the agreement of these calculations with experi-
ment is poor. In view of this situation we have decided to
start from an elementary model and to make as simple ap-
proximations as possible. A parabolic band electron is
considered in a constant external magnetic field. Spin ef-
fects are neglected. Electron-electron interaction is not
taken into account (low-carrier-concentration limit). No
adjustable parameters are introduced. The linear response
to an oscillating electric field is calculated from the Kubo

formula. In Sec. II the magneto-optical spectrum is ob-
tained in second-order perturbation theory with respect to
the scattering potential (lowest-order Born approxima-
tion). In Secs. III and IV the resulting formulas are ap-
plied to ionized-impurity and longitudinal-optical-phonon
scattering, respectively. In Sec. V the calculated
linewidths are compared with experiment. Cyclotron-
resonance harmonics and phonon-assisted harmonics are
also considered. Finally, the validity, limitations, and
possible improvements of the calculation are discussed in
Sec. VI. A preliminary, partial account of this work has
been given in Ref. 40.

A= —Hye (2.1)

The system under consideration is then described by the
Hamiltonian

2

p+ —A +H„+H;„,2' C

ao+a (2.2)

In Eq. (2.2), m is the parabolic band mass, —
~

e
~

is the
electron charge, and c is the velocity of light. H„de-
scribes the free scatterers (e.g., phonons, impurities, etc.)

and H;„, is the interaction term. In order to simplify the
calculations we perform a canonical transformation intro-
duced by Larsen. ' Any operator B is transformed to

. PxPy . Ex'8 '=exp i 8 exp —i
7?1%co~ ~~c (2.3)

where A' is Planck's constant and to, =eHlmc is the
cyclotron-resonance frequency. Only terms containing x

II. FREQUENCY-DEPENDENT RESPONSE
OF A SCATTERED ELECTRON

IN A MAGNETIC FIELD

A. Transformation of the Hamiltonian to a simple form

We consider a parabolic band electron in a constant
external magnetic field H along the z axis. In the Landau
gauge this field is determined by the vector potential
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or y are infiuenced by this transformation:

tr 1
X =X+ Py

coc

tr 1=x+
toe

(2.4a)

(2.4b)

The transverse motion of the unperturbed electron is now
described by a simple one-dimensional harmonic oscilla-
tor. This will cause a considerable simplification of the
following calculations.

Introducing the Landau-level raising and lowering opera-
tors,

1/2

B. Kubo formula for a scattered electron
in a magnetic field

and

1 ~a)c

(2mfuu, )'~ 2R

1 cb= p —i
(2mfuo, )'~ 2A

' 1/2

M'=%co, (btb ~ ,' ) ~ —p,'~H,",~H,'„',
2&l

tr tr=H0+H;„, .

one can rewrite the transformed Hamiltonian as

(2.5a)

(2.5b)

(2.6)
I

Consider a conduction electron in an oscillating exter-
nal electric field. In the weak-field limit the absorption of
energy by the electron is adequately described by linear-
response theory. Physically relevant quantities, such as
the mobility and the optical-absorption coefficient, can be
obtained from the conductivity tensor cr Expl. icit expres-
sions for the elements of o have been formulated in
linear-response theory by Kubo. We will now rewrite
these expressions in a form well suited for explicit calcula-
tions. We start from the expression for the elements of o,
given in Ref. 42, and we consider the q =0 limit:

ne i5„„ 7l 0
uu 11m "'." +

e 0 m (co+i e) fi(co+i e) I— ( i~+(~~i( [j e i~i~~j e )~i~~] ) (2.7)

In Eq. (2.7), n is the free-carrier concentration, co is the
frequency of the incident radiation, ( ) denotes a thermal
average, u and U can have the meaning x, y, or z, 5» is
the Kronecker 5 function, and the current operator j„ is
defined as

' 1/2

(j~)"=e '
(b +b) .

201

Consistent with the usual notation, we now define

(2.9b)

A (t) (A 't /AA (A 'tls— (2.10)

j„=e =—i[A,u] .du e

After the canonical transformation (2.3), one obtains

' 1/2

(j„)"=ie (b —b),
2m

(2.g)

(2.9a)

for an arbitrary operator A and arbitrary variable t (real
or complex}.

In the Faraday configuration the response to circularly
polarized radiation (passive or active mode) is determined
by cr~+io„~ From Eqs.. (2.7), (2.9), and (2.10) one ob-
tains the following expression for this quantity, after the
canonical transformation (2.3):

r

o m (co)-ie) m(co~ie)
(2.11)

As we are interested in sufficiently high temperatures, we will, from now on, consider single-particle expectation values
in the canonical ensemble. Performing a partial integration with respect to r, one obtains, from Eq. (2.11},

r

ne s
CT~ + E 0~y

= 11m
o m ((o+(o, ~i e)

+ ~c+ d& e i(co+i@)t—, b . Htr b
m()(m+ie)(ru+m, +(c) — & ' '"" b )

(2.12)

Consider the identity (canonical ensemble) for arbitrary operators A and B,

([A,B])= —I ds([A ', A]( itis)B)—
in Eq. (2.13), P= 1/kT, where k is Boltzmann's constant and T is the absolute temperature.

Using the identity (2.13) we can now rewrite cr~+icr„~ as

(2.13}
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ne i2 ne co,2 2 0 . . P~ ~

0~ +E 0'~y =11m + dt e '"+"" ds
' .

( i—fis) H,'„', , t (t)
@~0 m (co+co~ + i e) m (co+ le)(co+co~ +ie)

r

ne ~c 0 . . P
dl e ""-+"" ds H"

m R(co+ Ee)(co+co~ + le)
( —i((s) 8 „', , ( (s)j (2.14)

Performing a second partial integration with respect to E, and taking into account the identity

f ds b ( —(((s) H,",„, bi
. (0))—=0, (2.15)

one finally obtains

ne i
0'~+Eo~y =1101

0 m (co+co, +i e)

ne coC dte —l (CO+EE')t

EElm (co+co, +ie)

b~
1

X j ds( dd,'„', ,
'

b
( —(((s) H,'„', , bi (s)l (2.16)

Note that this expression is the natural extension, to nonzero magnetic field, of the force-force correlation function intro-
duced (for polaron scattering at weak coupling) in Ref. 43. At first sight, Eq. (2.16) is well suited for perturbation theory
with respect to H,'„'„. The first term on the right-hand side (rhs) yields the free-electron result. The second term contains
two factors H,'„',. Therefore, second-order perturbation theory with respect to H,'„', becomes trivial. It is sufficient to re-
place A '

by Ho' in all exponents arising in Eq. (2.16). All expectation values can then be calculated using unperturbed
wave functions:

(C7x)i + E CT~E, ) = 11m
0 m (co+co, +i e)

ne co, 0 . . P—!( ds) + i E)E

EEEm (co+co +i e) —~ o PH(~)—
C Tr(e )

QTr e
—pHO' Ho's tr 6 Hotrs

Ho t/A tr b —'Ho t!
&& e Hint ~ gg e (2.17)

It is easy to see, however, that this straightforward perturbation calculation leads to unphysical results. Indeed, a small

perturbation is expected to cause a broadening and a shift of the cyclotron-resonance line. It is immediately clear that

such a behavior cannot follow from Eq. (2.17). The calculated spectrum will always contain a 5 function at co=+co, .
Moreover, there iq an additional term diverging as (co+co, ) . In the next section we will show how to obtain more

reasonable results.

C. Introduction of a memory function

From the discussion of Eq. (2.17) it follows that a direct perturbation expansion for ET~+icr„„ is not satisfactory.
More physical res'ults can only be obtained from a theory that introduces a broadening and a shift of the cyclotron-
resonance line. Moreover, we want a calculation that is simply related to the perturbation theory of Sec. II B. A11 these
requirements are met by the "memory function approach. " In this formalism the response function (o~+icr„~)' ' is
written in the form

(2.18)(2) ne E

(CT~ +ECTO@ ) = (2) ~

m(co+co, +=+ (co,co„T))

Here, =~ (co,co„T) is called the memory function. It is straightforward to write a perturbation expansion for the left-
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hand side (lhs) of Eq. (2.18), considering "'~'(e),co„T) as a small quantity. It is then clear that Eqs. (2.17) and (2.18) are
equivalent up to second-order perturbation theory with respect to the interaction, provided the memory function
=~'(to, ~„T) is given by

toe=' '(co co„T)= i—'
lim f dte '"+"" ds
e 0 0

1 Tr e

r

—PHD HOS tl Q —HOS
Hint ~'

g

l'H
0 f/f2 tr Q l'H

0 t/RXe H;„', , ~g e (2.19)

The absorption coefficient for circularly polarized radiation in the Faraday configuration (passive or active mode} is pro-
portional to the real part of o~+io„~ O.ne obtains

2 Im=',"(~,~„T)
Re(o +io„x)' '= -(2) z -(p) z

(2.20)
m [to+co, +Re=~ (co,to„T)] +[1m=~ (co,co„T)]

Although Eqs. (2.17} and (2.18) are equivalent up to
second-order perturbation theory with respect to H,'„'„ it is
intuitively clear that Eqs. (2.18)—(2.20) will lead to more
reasonable results. Indeed, for slowly changing Re=+
and 1m=+', it follows from Eq. (2.20) that a quasi-
Lorentzian line shape is obtained. The position of the
cyclotron-resonance line is then determined by the equa-
tion

co+to, +Re=~'(co, co„T)=0,
and the half width is given by

Im=',"(~,~„T)
at the peak maximum.

A further justification for the present approach is given
by the zero-magnetic-field case. In Ref. 44 the free-
polaron optical absorption was investigated and excellent
results were obtained. The present method is a straight-
forward extension, to include arbitrary magnetic field, of

I

I

this free-polaron calculation. (For nonzero magnetic
field, a similar method has been used in Refs. 7, 23—25,
27, 28, and 33.)

Expression (2.19) will be worked out explicitly in Secs.
III and IV for scattering by longitudinal-optical (LO) pho-
nons and ionized impurities. The results will be compared
with experiment in Sec. V. The validity of the method,
and possible improvements, will be discussed in Sec. VI.

III. LO-PHONON SCATTERING

In polar semiconductors the electron —LO-phonon in-
teraction can be described by the Frohlich polaron Hamil-
tonian. ' For this model, one obtains, after the canoni-
cal transformation (2.3),

H'O' Ace, (b b+ —,
'——)+ p, +gfmzoa a-, (3.1)

2m k k
k

T ~'

0;„',=g Vka-„exp i k„x+ +k,z+(k„+i' )
ky5'x . fg

k

1/2 r

b+(k„i')—2' Q)c

' 1/2

+H. c. (3.2)

In Eqs. (3.1) and (3.2), coLo is the longitudinal-optical-
phonon frequency, and a- and a are the creation and

k k

annihilation operators for phonons with wave vector k;
furthermore,

1/2
fi~co 2' egg o

a (t) =a -exp(icozot),

b (t) =bexp( ice, t), —

b t(t) =b exp(i co,t),

(3.4b)

(3.4c)

(3.4d.)

1 4m

k V

' 1/4
1/2 (3.3)

a -(t) =a exp( icoLot), —
k k

(3.4a)

In this expression, V is the volume of the crystal and u is
the dimensionless Frohlich coupling constant.

In order to obtain explicit results for the memory func-
tion, =~,&

~(co,co„T), one needs the zeroth-order time
dependence of the different operators involved. This is
given by

p„(t)=p„(0),
x (t) =x (0),

p, (t) =p, (0),
p, (0)

z(t) =z(0)+

(3.4e)

(3.4f)

(3.4g)

(3Ah)

Analogous expressions can be written for the s depen-
dence. Now remember the following operator properties:
If the commutator of A and B commutes with A and B,
then
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[A,expB] = [A,B]expB (3.5) exp(A +B)=exp' expB exp( ——,
' [g,B]) . (3.6)

The commutators [H;„'„bt](i) and [~,'„'„b](—i2r2s) can
then be written in zeroth order as

kypx
Vka e exp i k„x+ -t-k, z

k m~c

Xexp
fg(k„+k„) k,P, 2rik, (i) ' '(k„ik—») '(k„+ik») '

expi t expi t
4m roc m 2m n1!n2!

X
2m doc

-(n, +n, )/2
l!1 F12 1(81—52)cc

Co

i (k„+ik, )
0 2mNcn3, n4 ——

' 1/2
iLOt kyp„

Vka e exp —i k„x+ +k z
k mco,

Xexp
fi(k„+k» ) k,p,

exp —i
' 't

mesc m

2rik, ( i) '—'(k„ik») —'(k„+ik») '
Xexp i t

2m n 3!n4!

X
2m toe

(n 3+n4 )/2

(bt)ll2(b)114 l (113—1(4)cc 1
(3.7)

e "[H,'„', ,b]e ' = —g g i(k„—ik, )mt~ e & Ey
m(, mp ——

1/2 ~ANggs k,p,
Vka e exp A s

k m

kyp„
Xexp i .k„x+ +k,z exp

COc

A'(k„+ k» )

4m cgc

Ak,
X exp — s

2m

(i) ' '(k„—ik») '(k„+ik»)
m1!m2!

2m')c

' (m]+my)/2
(bt) 1(b) 2 1 2 c

c

i (k„ik») Vka -e —exp fi s-ficoL~ zpz

m m =0k 3 4— m

kyp
Xexp —i k x+ +kz exp

mac

R(k„+k» )

4m cue

Xexp
f2k2

S
2m

( —i) ' '(k„ik») '(k—„+ik»)
m 3!m4!

X
2m doc

(m3+m4)/2
( 2

—m4)6u
(3.8)

In the canonical ensemble, the expectation value of an arbitrary operator A is given by
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II X X f'"dp, e
n =0 N=O

&n-„I &N I &p* I~ Ip. & IN& In-„&

(3.9)
f+~ ~"~k "Lo pN—Aru p—(pi/2m)

dp, e " e 'e
n~=O N=Ok

Note that Eq. (3.9) takes into account the population of the higher Landau levels as temperature is raised.
Substituting Eqs. (3.7) and (3.8) into Eq. (2.19), and applying Eq. (3.9), one obtains =p,!+(co,co„T) for Frohlich pola-

rons, in the lowest-order Born approximation. After a lengthy, but straightforward calculation, one finds, for the imagi-
nary part of the memory function,

(xcogcoLQ(I ficoLo)' (1—e ')sinh(Pfico/2)
Im pg 1(co,coq, T)=

2covmsinh(pfuuLo/2)

XXX XXX
N=Om1 Om2 0nl n2

¹!(N n2+n—!)!(mi+n!)!5(„,

X(T1+T2+T3+T4) .

m1 —n2 n& —n2
( —1) exp —Pfico N+c 2

m!!m2!n)!n2!(N—m!)!(N—n2)!

(3.10a)

In this expression, the terms T), T2, T3, and T4 are defined as follows:

T!=Ão(z pA'I~ ~Lo+(m! —m2)~ I)

T2=Kp(2 pAI co+coLo —(m! —m2)co,
I ),

(3.10b)

(3.10c)

1 ~Lo
T3 = — dx exp

2 coc

P"l~ ~LO (n) n2)~ 1 P~LcR ~L(P ~L(P

4' LoX 4 N co
(3.10d)

1 ~toT4= — dx exp
toe

Pfi[a)+coLo+—(n! —n2)co, ] PficoLpx

4COLoX

COz oX COLoX
Em, +n, +i

COc
1 1

(3.10e)

The real part of the memory function is obtained as

-(2) -,"Lo(P~Lo) (1—e ')—PACE

Re pol, l(co, toe~ T)=
2coVmsinh(pfuuLo/2)

xg
N=O m1 ——0 m2 ——0 n1 ——0 n2 ——0

( —1) ' 'exp I'duo, N+—n& —n2
N!(N n2+n1)!(mi+n—!)!5(„,„,) (, , )

m!!m2!n!!n2!(N m!)!(N—n—2)!

2togo + ~ Q cozo
X W1+W2+W3+W4+W5+ duu exp Em+„+1

4coq 7T
m1 n1+

Q COLo
2

2Coc

X (~)+~2+~3+ ~4+ ~3+ ~6) (3.10f)

» this expression, the terms Wj, W2, W3, W4, W5 and V&, V2, V3, V4, V5, V6 are defined, respectively, as
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8'] —— lr—I0( ,' —P]]1[coLp+(n ] n—2)co, ]),
e Ip( PA[ —co+ cozp+ (n ] n2—)co, ])8(—co+cozp+ (n ] —nl )co, )

(3.10g)

(3.10h)

3
—e 'Ip( 'p—i][co+coLp+ (n ] n—2 )co ])8(co +coz o+ (n ] n—2 )co, ) (3.10i)

IV4 e IO( l P~[co coLp+ (n ] n2 )co, ]}8(co—coLp+ (n ] —n2 )co, ), (3.10j)

~5 e Ip( l P~[ co coLp+(n] n2)co ])8( co coLp+( n] nl )co ) (3.10k)

1 P~Lo
V] ——2expI TPA'[coLp+(m3 —m])co, ]ID

1/2
coz,p+(my —m ] )co&

+
2 Q NLO

(3.101)

' 1/2
1 P~LO u

V2 ——2 exp t —,PA'[ —coz p+ (m2 —m ] )co, ] ID
—cozp+ (m, —m ] )co,

Q COLo
(3.10m)

V3 ——exp j —,
'

PA'[co z o+ (m 2 —m ] )co, ] I D

' 1/2
PRcoLp

2
u cozp+(m2 —m] )co&—+
2

(3.10n)

ÃCOLP
V4 ——exp [ —,

'
P]]1[—coz p+ (m 2

—m ] )co, ] I D 2

1/2
Q +
2

—coLp+(m2 —m] )co, +co

Q COLO
(3.10o)

P~Lo
V, = —expI -,

'
Pg[ —~Lo+(m, —m, )~, ] ID

2

' 1/2 —coLp+(m2 —m ] )co, —co

Q coLo
(3.10p)

V6 ———exp I ,' P]rl[co—Lp+(m 2
—m ] )co, ] I D

' 1/2
P]rico Lp

2
CoLp+ (m2 —m ] )Cog +Co—+

2
(3.10q)

Note that =~» (co,co„T)=:-z,I +(co,co„T). Therefore the simplified notation =~,I z(co,co„T) is introduced. In Eqs.
(3.10), 8(x) is the Heaviside step function: 8(x) =0 for x & 0; 8(x)= 1 for x )0. We write

T

a /2 a 1 a due
IC =e- i' i" and IO ————exp

2 o v'u(u+ ic]
i

) 2 lr 2 o v'u(u —x)

which are Bessel functions of the second kind (Ref. 47, Secs. 3.364.1 and 3.364.3). D(x) is Dawson s integral (Ref. 48,
Secs. 7.1.3, 7.1.4, and 7.1.16); E„(x) is the exponential integral function of order n (Ref. 48, Sec. 5.1.4; Ref. 47, Sec.
8.353.3). In the derivation of Eqs. (3.10), use has been made of the well-known representation

0
lim dte ' +"'=m6 x +i P 1 x
e~O

(3.11)

where P indicates the principal value. Moreover, the summation over k space has been converted into an integral via

gf(k)= f dkf(k) .
(2m )'

(3.12)

Finally, use has been made of the following transformation:

oo N oo oo

g f(m], m2, n], nz~N)5(n] —n&), (m& —m])
N=O m1 0 2 1 2

oo N' oo oo N'

g f(m2, m], n2, nI, N'+n'] n2) („. „—.
) (

~ ~

)
.

=0 m' =0 m' =0 n' =0 n' =0
1 2 1 2

(3.13)
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In this equation, f (m &, m2, n&, n2, N) is an arbitrary func-
tion, and the new summation indices are defined ts fol-
lows:

-0.04 T=20 K
-(2)

Im po( J
X'=W —n2+n &,

Im ) =P1p

Pl 2 =f71 I

n&
——n2,

I
n2 ——n& .

(3.14a)

(3.14b)

(3.14c)

(3.14d}

(3.14e}

-0.03

-0.02

-0.01

0.5 1.0 1.5 2.0 2.5

As a result of this transformation one has immediately,
from Eqs. (3.10), the following symmetry relations:

(3.15b)

co —co, +Re"~,~ z(co,co„T)=0, (3.16)

and its width is given by Im=&J z(co, co„T) at the max-
imum.

1m=~~ q( co,co—„T)= Im=~~ q(co, co„T), (3.15a)

Re=~~ j ( co,co„—T)= —Re=~~ q(co, co„T) .

The imaginary part of:-~~ j is an even function of co, and
the real part is an odd function of co. The results of Eqs.
(3.10) have been evaluated numerically. In Fig. 1 typical
plots of 1m=~,~ j, Re=~,~ z, and Re(o +i o„~ )~,&

are
shown, as a function of co jcoLo. The imaginary part of

ppf J exhibits logarithmic divergences for co =coLo+ n co,
and co = —~Lo+nco, . Associated with these divergences,
the real part shows finite, discontinuous jumps. In the ab-
sorption coefficient, the singularities give rise to the well-
known phonon-assisted cyclotron-resonance harmon-
ics. These peaks correspond to simple physical pro-
cesses: The electron, stimulated by the radiation, is
moved up or down n Landau levels, and simultaneously a
phonon is emitted or absorbed. The divergent behavior of
the present calculation is a consequence of the use of
second-order perturbation theory (lowest-order Born ap-
proximation). It is related to the inverse-square-root
divergence of the unperturbed density of states for the z
direction. In a more sophisticated theory, the divergences
will be finite maxima, and the jumps will become continu-
ous.

For co=~, the cyclotron-resonance peak is observed. It
is clear that, for co, &~coL~ or co, &~coLo, its position is
determined by the equation

-0.

-0.

0.5

- -0.01

3x10 —(2)I+ —po(, x

-1.5 1xi4

-1.0

-0.5

0.5952 0.5955

0.5 1.0 2.0 2.5 /~„0

FIG. 1. Typical numerical results for the polaron magneto-
optical response functions in the Faraday configuration. The
following parameters have been used: polaron coupling con-
stant, a=0.02; LO-phonon energy, fmLQ ——24.4 meV; parabolic
band mass, m =0.0139m o, cyclotron-resonance frequency,
co, =0.6m'. Q temperature, T=20 K. The real and imaginary
parts of the memory function "~~& are calculated using Eqs.
(3.10a) and (3.10b). The imaginary part of:- j j shows logarith-
mic divergences at co=cuLQ+nco, . The real part shows finite
jumps at the same frequencies. The absorption spectrum in the
active mode is calculated using Eq. (2.20). The cyclotron-
resonance peak at co=0.6coLQ is slightly shifted and broadened.
In the inset it is shown completely, using different scales. At
$=$LQ the one-phonon peak is observed. Phonon-assisted har-
monics occur at m/coI. Q ——1.6, 2.2, 2.8, . . . . The response func-
tions, which have dimension s, are given in units where coLQ —1.

IV. IONIZED-IMPURITY SCATTERING

In this section we consider elastic scattering of the
charge carriers by ionized impurities. In a typical semi-
conductor the mass of the impurity is several orders of
magnitude larger than the electron effective mass. There-
fore it is a reasonable approximation to take the mass of
the impurity to be infinite in the present calculation.
After the canonical transformation (2.3), one then obtains
the following unperturbed Hamiltonian:

potential between the electron and the ionized impurities.
Although much work has been done on this subject, the
situation is quite unclear, especially in the lower-
temperature region ( T (4 K in InSb). Several potentials,
with different screening, have been proposed. s

In the present work, however, our comparisons wi11 be
made with experiments at somewhat higher temperatures.
In that case, a Debye-screened Coulomb potential is be-
lieved to be a reasonable approximation, '

H'o'=fico, (blab+ —,
' )+ p, .

2m
(4.1)

e ~ exp( —
f

r —R
f

/LD)

fr —RJ f

(4.2)

A long-standing problem is the form of the interaction The Debye-screening length ID is given by
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1/2
akT

4n.ne
(4.3)

ln Eqs. (4.2) and (4.3), ~ is the total number of ionized

impurities in the crystal, RJ is the position vector of the
jth impurity, and ]1 is the static dielectric constant of the
medium; n is the free-carrier concentration.

After the canonical transformation (2.3), the interaction
term can be rewritten as

H,'„', = g g Wkexp i —k RJ+k„x+ +k,z+(k„+ik~)
j=1 k

mm,
' " " 2m',

In this expression, the Fourier component 8'k is given by

4me 1

VK

1/2

b+(k„ik—y )
2m')c

' 1/2

. (4.4)

(4.5)

The memory function =; '~ «(co,co„T) for ionized-impurity scattering can then be calculated, in second-order perturba-
tion theory with respect to H,'„',. Again, we start from Eq. (2.19). The commutators [H';„'„bt](t) and [H,'„'„b]( i%—s)
can now be rewritten, in zeroth order, as

1/2 —i k ~ R . kyp~8'ke 'exp i k„x+ +k,z
c

X exp
fi(k„+ky) kgp, ]]]k, (i) ' '(k„iky)—'(k„+i') '

expi t exp i t
4m', m 2m n1!n 2!

X
2m coc

' (n]+n2)/2
1(b) 2 1 2 c (4 6)

and

e ' [H,'„'„b]e "= gg— g i(k„—]k, )
-m m=O12 2

' 1/2
ik ~ R k,p,8'ke 'exp A s

kyp„
Xexp i k x+ +kz

mesc

]]](k'+k') ])2'k'
Xexp — exp — s

4m cue 2m

(i) ' '(k„ik„) '—(k„+ik~)
m1!m 2!

(m l +m2)/2

(bt) 1(b) 2e™1 2 c (4.7)

Substituting Eqs. (4.6) and (4.7) into Eq. (2.19), one obtains =,' ' «((]],co„T) for ionized-impurity scattering in the
lowest-order Born approximation. In the explicit calculation, only single-site-scattering events have been taken into ac-
count (low-impurity-concentration limit). After a long, but straightforward calculation one finds

2nt(22rP)'~ e (1—e ')sinh(Pfico j2)1/2 4 ~~c

m ~ %co

xg
N=O m&

——0 m2 ——0 n&
——0 n& ——0

X!(X n2+ n])!(m]+n])—!t](„, „,) (, , )( —1) ' 'exP Pficoc i]1'+—
m]!m2!n]!n2!(N nz)!(N —m] )!—

P']]22[co —(n, —n2)~, ]2x exp —t2—
2 [—1+(x+m]+n, +1)e"E „,(x)]

(4.8a)
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and

~i)
2ni(2P)'i e (1—e ')

&~p ) (co,co„T)= «z 2m v fico

m l
—n2 —PNAco~

( —1) e 'X!(X—nz~n))!(m) ~n))!5(„) „i) (~i ~))xg
N=O m =0 m =0 n =0 n =0 m)!mi~n) ~n2!(S —n2)!(S—m) )m]=

~ dt
X —1+ x+m1+n1+1 8"Eml+nl+1 x 8'1+ 8'2+ 8'3 .

(4.8b)

In this expression,

p))i(n, n2 )co,—
8'1 ———2D t ~ 4t

(4.8c)

p))i(n) —nz)co, +co
82=D t~

4t
(4.8d)

pi)i(n )
—ni )co, —co

8'3=D t~
4t

(4.8e)

Furthermore,

4t' i)iX= +P~, 2m co,LD
(4.9)

and nq ——~/V is the ionized-impurity concentration. Note again that = 'p ==,' 'p +. Therefore the simplified nota-
tion =';~'~) is introduced. The derivation of Eqs. (4.8) is analogous to the LO-phonon calculation in Sec. III, and the
saine notations are used. Again, it can be immediately seen that Im"', 'p) is an even function of co and Re" 'p) is an
odd function of co.

The theory will be compared with experiment at moderate temperatures ( T & 75 K in InSb). Therefore the expressions
for =,' 'p) can be simplified by only considering the terms dominant for kT &%co, in Eqs. (4.8). This corresponds to
neglecting the population of the higher Landau levels with n &0. Such a procedure results in a serious simplification:
Only one summation remains, and we find

Im=!2)p, (co,co„kT&)rico, ) =
nt(2irP)' e (1—e

~ 1/2 2~
c )( 1

—PRco)

r

P(A/2)(~ —l~, ) " dt p fi (
i

co
i
—lco, )

X g e ' f exp t — — [—1+(x+i+1)exp(x)E)+)(x)]
1=0 t 16t

(4.10a)

and

2nt(2P)) ~ie4(1 e ~)
Re",'~'p ) (co,co„kT&fico, )=

~ dt
X y f [—1~(x ~t+ l)exp(x)E)+)(x)]

l=o
r

pfilco, pA'(lco, ~ co)—2D t ~ +D t+
ph'(lco, —co)

+D t~
4t

(4.10b)

The results of Eqs. (4.10) have been worked out numeri-

cally. In Fig. 2 typical plots of Im=p~'p J Re=p~'p J and

Re(o~+icT„~) 'p are shown, as a function of co. The
imaginary part of I p J exhibits logarithmic divergences
for co=+i~, . Associated with these divergences, the real

I

part shows finite jumps. Just as in the LO-phonon-
scattering case, this behavior is a consequence of the
inverse-square-root divergence from the integration of the
product of two square-root divergences. For co=0 the
l =0 term in Eq. (4.10a) leads to the well-known diver-
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necessary to consider the inset of Fig. 2. Owing to the
divergence of Im=l p J the absorption coefficient shows a
zero at co=co, . From the figure it follows that the
cyclotron-resonance peak is broadened and shifted away
from the unperturbed frequency, to higher co. At the
low-frequency side the spectrum shows a shoulder which
is spurious and due to the lowest-order Born approxima-
tion. The cyclotron-resonance linewidth can then be ob-
tained from Fig. 2 by measuring the width at half max-
imum of the calculated peak. In Sec. V we will show that
this interpretation leads to surprisingly good agreement
with experimentally determined linewidths.

From the numerical results, it follows that a good ap-
proximation for the position of the calculated cyclotron-
resonance peak is obtained by the equation

-300

(2)
~m:Imp, ~

(v-u), +Pe= j + (Im= )
(2) 2 (2) 2

IIp, i Imp, x

-1,0

217x10 2.2340

-0
I

8, x)o ~ (s )

gence of the dc resistivity in the lowest-order Born ap-
proximation. (An excellent review of the zero-frequency
case has been given by R. Kubo, S. J. Miyake, and N.
Hashitsuma in Ref. 54.) For co=co„a logarithmic diver-
gence occurs due to the I =0 term. Since this singularity
appears exactly at the position of the unperturbed
cyclotron-resonance line, it is not immediately clear how a
cyclotron-resonance linewidth can be extracted from the
present calculation. In order to clarify this point, it is

FIG. 2. Typical numerical results for the ionized-impurity-

induced magneto-optical response functions in the Faraday con-
figuration. The following parameters have been used (corre-

sponding to InSb): magnetic field, H =17.42 kG; temperature,
T=20 K; static dielectric constant, a=16.8; parabolic band

mass, m =0.0139m o,
' ionized-impurity concentration,

ni ——5)&10' cm; free-carrier concentration, n =1&10' cm
The real and imaginary parts of the memory function =,'"p j are
calculated using Eqs. (4.10a) and (4.10b). The imaginary part of

p $ shows logarithmic divergences at co=n co, . The real part
shows finite jumps at the same frequencies. The absorption
spectrum in the active mode is calculated using Eq. (2.20). In
the inset (lower panel) the structure of the calculated spectrum
near co=co, is shown in full detail. The high-frequency max-

imum is considered to be the cyclotron-resonance line. It is

broadened and shifted to higher frequencies (the divergence of
Im '

p J occurs exactly at the unperturbed cyclotron-resonance

frequency). The lower structure on the left-hand side is con-

sidered to be spurious. It is due to the logarithmic divergence of
Im=,' 'p & (~=co, ), in the lowest-order Born approximation. The
divergences at ~=n~, (n =2,3, . . . ) give rise to cyclotron-
resonance harmonics. The response functions, which have di-
mension s, are given in units where cuLo ——1.

co —co, +Re=; 'p g(co, co„T)=0, (4.11)

and the linewidth is given by Im=,' '~ j(co,~„T) at the
maximum of the cyclotron-resonance peak. Note that the
lowest-order Born approximation predicts a negative shift
of the cyclotron-resonance (CR) line, directly proportional
to the ionized-impurity concentration.

For I & 1 the divergences give rise to harmonics of cy-
clotron resonance. These will be discussed in Sec. V.

It is interesting to consider how the present approach is
different from previous methods. The calculation of Ref.
30 is essentially equivalent with the work of Kawabata.
In this paper the impurity-dominated cyclotron-
resonance-linewidth calculation starts from the transport
relaxation time r, for co=co, . Such a procedure leads
inevitably to a CR linewidth proportional to nI. It is
clear that such a calculation is essentially different from
the present work, where the broadening and the shift of
the CR line (co&co, ) are calculated explicitly.

V. COMPARISON WITH EXPERIMENT

A. Cyclotron-resonance linewidth in InSb:
Temperature dependence

The cyclotron-resonance linewidth for free carriers in
n-type InSb has been measured by Matsuda and Otsuka
in a temperature region from 4.2 up to 160 K. The exper-
iment was carried out in the Faraday configuration, for
different frequencies of the incident radiation. Various
samples were investigated, with different concentrations
of the ionized impurities and different free-carrier concen-
trations. For each sample the absorption coefficient was
measured at constant radiation frequency and temperature
T, as a function of magnetic field. The half width at half
maximum of the cyclotron-resonance line was then deter-
rnined. The experiment was repeated for different tem-
peratures. In Figs. 3 and 4 the measured cyclotron-
resonance linewidth is shown as a function of temperature
for typical samples from Ref. 29. Essentially two regimes
can be distinguished as a function of temperature. For
T &75 K the half width varies rather slowly. In this re-
girne, ionized-impurity scattering dominates. For T & 75
K the half width increases steeply. Here, optical-phonon
scattering is important.
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FIG. 3. Cyclotron-resonance half width in InSb as a function
of temperature for different wavelengths of incident radiation.
Open triangles, solid circles, and open circles denote experimen-
tal values obtained by Matsuda and Otsuka (Ref. 29) (172, 119,
and 84 pm) for a sample with an ionized-impurity concentration
of nI ——5.5)& 10' cm and a free-carrier eoneentration of
n =2.1&(10' cm . Solid, dashed-dotted, and dashed lines
denote corresponding results of the present ca1culation. Low-
temperature side, ionized-impurity scattering; high-temperature
side, LO-phonon scattering.

The ionized-impurity-dominated regime is considered
in more detail in Figs. 5—7. The half width as calculated
with the present method is shown by the dashed lines.
These results are obtained by numerically evaluating
:-I~'~ q and:-z, I z [Eqs. (4.10) and (3.10), respectively], for
a given frequency co and temperature T, as a function of
co, . Using Eq. (2.20) a plot is then made of
Re(o ~ + i o „~ ) versus magnetic field. Since Re(n~

1p11
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I I I I I

100

TEMPERATURE (K)

FIG. 5. Theoretical and experimental results for the
cyclotron-resonance linewidth in InSb as a function of tempera-
ture. Open circles denote the experimental results of Matsuda
and Otsuka (Ref. 29) for n-type InSb using incident radiation of
wavelength A, =84 pm (ni ——5.5&&10' cm and n =2.1)&10'
cm ). 1, theoretical result of Shin et al. (Refs. 8 and 9). 2,
theoretical result of Fujita and Lodder (Ref. 22). 3, theoretical
result of Kawamura et al. (Ref. 1). 4, theoretical result of
Arora and Spector (Ref. 30). 5, theoretical result of Kawabata
(Ref. 2). 6, present calculation. 7, theoretical result of Bebenin
(Ref. 17).
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FIG. 4. Cyclotron-resonance half width in InSb as a function
of temperature for different samples (84 pm). Sample parame-
ters from experiment (Ref. 29) are as follows: Open circle,
ni ——5.5)&10' cm and n =2.1)&10' cm; open triangle,
ni ——3.4)& 10' cm and n =0.81 X 10' cm; solid circle,
ni ——3.6X10' cm and n =0.1)&10' cm . Dashed, solid,
and dashed-dotted lines denote corresponding results of the
present calculation. Low-temperature side, ionized-impurity
scattering; high-temperature side, LO-phonon scattering. Obvi-

ously, the LO-phonon results are identica1 for the three samples.
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FIG. 6. Same as Fig, 5, but with a wavelength of incident ra-
diation of A, =119 pm. The experimental results of Matsuda
and Otsuka (Ref. 29) are indicated by solid circles.
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FIG. 7. Same as Fig. 5, but with a wavelength of incident ra-
diation of A, =172 pm. The experimental results of Matsuda
and Otsuka (Ref. 29) are indicated by open triangles.

FIG. 8. Example of a theoretical spectrum used in the
linewidth calculation (ionized-impurity scattering). The follow-
ing parameters are used: temperature, T=32 K; wavelength of
incident radiation, A, =172 pm; ionized-impurity concentration,
n~ ——5.5)& 10' cm; free-carrier concentration, n =2.1&(10'
cm; parabolic band mass, m =0.0139m0, static dielectric con-
stant, ~=16.8. Note the spurious structure due to the lowest-
order Born approximation (cf. Fig. 2, where the spectrum is
shown as a function of frequency of the incident radiation, at.
constant magnetic field).

+io.„~) is proportional to the optical-absorption coeffi-
cient, the theoretical half width of the cyclotron-
resonance line can then be determined directly from the
calculated spectrum. The following material constants
have been used for InSb: parabolic band mass
m =0.0139mo, static dielectric constant a = 16.8,
LO-phonon energy fuuzo ——24.4 meV, and Frohlich po-
laron coupling constant a=0.02. A typical example of
a calculated spectrum used to obtain the linewidth is
shown in Fig. 8.

From Figs. 3 and 4 it follows that good agreement is
obtained between our calculation and experiment, in both
regimes, for all wavelengths and samples under considera-
tion.

For the sake of comparison we also show, in Figs. 5—7,
the half widths as calculated in the impurity-scattering re-
gime by other nonadjustable parameter theories, using a
screened or unscreened Coulomb potential (solid lines).
Note that the agreement with experiment for these
theories is not very good, although in most cases quite so-
phisticated techniques have been used.

Special attention should be given to the low- and high-
temperature limits of the impurity-scattering regime. For
low temperatures ( T & 15 K) the agreement between our
calculation and experiment is not so close. This is mainly
due to the incomplete ionization of the impurities. The
agreement could be easily improved by making the num-
ber of ionized impurities (and carriers) temperature depen-
dent. A better description of the low-temperature region,
ho~ever, would also necessitate the introduction of a dif-
ferent scattering potential: It is believed that the aniso-
tropy of the screening becomes important at low tempera-
tures. The exact form of the potential, however, is not
known. We will not consider corrections of this type here

since the main purpose of the present paper is to investi-
gate the relevance of the lowest-order Born approxima-
tion. Additional complications would only obscure our
results.

As temperature is raised above 30 K, the experimental
linewidth decreases slowly. Physically, this decrease can
be easily understood in the framework of the present cal-
culation. The width of the cyclotron-resonance line is
mainly determined by Im='; '~ j (co-=co, ). Owing to the
inverse-square-root divergence of the density of states in
the z direction, the most important contribution to
Im=; ~ j (co=-co, ) comes from carriers with small(2)

momentum along the direction of the magnetic field. As
temperature increases, the number of low-pz electrons de-
creases, and so does the linewidth. Note that the
linewidth decrease is more pronounced for the larger-
wavelength radiation, in agreement with the present calcu-
lation. It should also be noted that the experimental
linewidth measured by Matsuda and Otsuka is almost
independent of the free-carrier concentration. This is il-
lustrated in Fig. 4. Two samples are considered with
comparable impurity concentration, but with free-carrier
concentrations differing by a factor of =-8. The calculat-
ed linewidths for these samples are almost identical, in
agreement with experiment.

In the impurity-dominated regime, the cyclotron-
resonance spectrum in InSb was observed earlier by
McCombe et al. For low temperatures the linewidth
was found to be proportional to the square root of the
ionized-impurity concentration. This result is in agree-
ment with several theoretical calculations. ' ' Recently,
however, it has been argued that the (nl)'~ behavior is a
consequence of the competition of two independent mech-
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anisms, namely ionized-impurity and acoustic-phonon
scattering. Therefore it is interesting to consider the re-
sult of the present, lowest-order calculation, taking into
account only ionized-impurity scattering. In Fig. 9 the
calculated linewidth is shown for InSb parameters as a
function of ionized-impurity concentrations at T=4.2,
10, and 25 K (note the log-log scale). For comparison the
slopes of nr and nI' are also indicated. Clearly, the
present calculation yields a (nl )'~ behavior at T=4.2 K,
in agreement with the observations of McCombe et al.
At higher temperatures the exponent of ni gradually in-
creases to 1. This is in agreement with the measurements
of Matsuda and Otsuka. Indeed, for sufficiently high
temperatures these authors observe a linewidth consistent
with the effective inverse relaxation time obtained from
zero-magnetic-field dc measurements. Obviously, in the
impurity-dominated regime this result implies a linewidth
proportional to nI.

It is interesting to consider the low-temperature limit of
the impurity-dominated cyclotron-resonance linewidth.
In the work of McCombe et cil. a definite minimum was
observed for this linewidth as a function of magnetic
field. The present calculation, however, produces a
linewidth decreasing monotonously with magnetic field.
This discrepancy might be due to the use of a Debye-
screened Coulomb potential in our calculation. As men-
tioned earlier, the introduction of an anisotropically
screened potential is necessary at low temperatures. It has
been shown by Heuser and Hajdu ' that such a potential
can produce a linewidth minimum.

B. Cyclotron-resonance harmonics
and phonon-assisted harmonics

An interesting phenomenon observed in the magneto-
optical conduction-band spectrum of InSb is the appear-
ance of cyclotron-resonance harmonics and LO-phonon-
assisted harmonics. These harmonics were first observed
in samples with a free-carrier concentration of the order
of 10' cm . However, Grisar et a/. have im-

I

)012

C3

OPE nI

SLOPE n"i2
I

T=4, 2K

T =10 K
c r'

T= 25K

2. 3. 4. 5. x 10

4 IONIZED IMPURITY CONCENTRATION (cm- ' )

FIG. 9. Calculated cyclotron-resonance linewidth as a func-
tion of ionized-impurity concentration at different temperatures.
InSb parameters are used for a sample with a free carrier con-
centration of n =0.5&(10' cm . It is seen that the slope
changes from an nl' to an nl behavior with increasing tem-
perature. Note the logarithmic scale. For the sake of compar-
ison, the slopes nr and nI' have been indicated.

proved the experimental resolution by using intraband
photoconductivity. They have investigated samples with
low free-carrier concentrations (n =8X10' cm ). Vari-
ous possible explanations have been given for the appear-
ance of the cyclotron-resonance harmonics. ' It was
suggested by Mycielski et al. that they are caused by
ionized-impurity scattering ("impurity-assisted cyclotron
resonance harmonics"}. Owing to the low free-carrier
concentration (nondegenerate limit) the results of our cal-
culation can be compared immediately with the experi-
ment of Grisar et al. In the Voigt configuration, for
EJH, the absorp. tion coefficient is proportional to

Reer~ = —,[Re( ~c7+i „c7)~+eR( r~cicr„„)]. —(5.1)

Starting from Eq. (2.20) and taking into account LO-
phonon and ionized-impurity scattering, Reo can then
be written as

-(2) ~(2)
—,(Im=p, i i+.Im=; p i)

(2) (2) 2 (2) (2) 2
(co —co, +Re= i i+Re=; p i) +(Im=ppi J+Im=' p J }

-(2) -(2)
T(lm=po], i+ Im=imp, j. }

(co+co, +Re=p, i &+Re= 'p i) +(Im=p, i i+1m=,' 'p i)

Here, =p, i i and:-I~p i are given by Eqs. (3.10) and (4.10),
respectively. From these analytical expressions it is im-
mediately clear that I.O-phonon-assisted and pure har-
monics will indeed occur.

For comparison with the experiment of Grisar et al. ,
an explicit numerical evaluation has been made of Eq.
(5.2). (InSb parameters; T= 12 K, n =8X 10' cm
and nl ——1X10' cm .) The results are shown in Fig. 10.
Obviously, the calculated intensity of the pure harmonics
is at least 2 orders of magnitude smaller than the calculat-
ed intensity of the phonon-assisted harmonics. Moreover,
note that the ionized-impurity concentration, nI ——1)& 10'

cm, is certainly overestimated. Experimentally, the os-
cillator strengths of the two types of harmonics are found
to be of comparable magnitude in photoconductivity mea-
surements. Although the photoconductivity is not
directly proportional to the absorption coefficient, it is
clear from our results that ionized-impurity scattering
cannot possibly give rise to sufficiently strong cyclotron-
resonance harmonics. We can conclude that the sugges-
tion of Mycielski et al. cannot explain the experimental
observations in the present case. Note that this result is
independent of the memory-function approach.
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FIG. 10. Calculated cyclotron-resonance harmonics and
phonon-assisted cyclotron-resonance harmonics using InSb pa-
rameters at T= 12 K. Ionized-impurity concentration,
ni ——1&(10' cm; free-carrier concentration n =8& 10' cm
The peak heights are indicated. The intensity of the harmonics
is at least 2 orders of magnitude smaller than the intensity of the
phonon-assisted harmonics.

VI. DISCUSSION AND CONCLUSIONS

The present paper was mainly motivated by the large
discrepancies among various theoretical results for the
quantum-limit cyclotron-resonance linewidth in semicon-
ductors. As illustrated in Sec. IV, these results vary by
more than an order of magnitude. Moreover, predictions
are also qualitatively different and agreement with experi-
ment is poor.

As far as elastic scattering is concerned, the problems
are obviously related to the logarithmic divergence of the
response functions at co=co, in the lowest-order Born ap-
proximation. Owing to this feature, any really satisfacto-
ry theory must be essentially nonperturbative. This seems
to have been the major source of difficulties in most cal-
culations: It has led to the introduction of various ap-
proximations, the validity of which is difficult to esti-
rnate. An important reason for the existence of several
conflicting theories is the absence of a simple criterion to
investigate the correctness of a linewidth calculation. The
lowest-order Born approximation, however, is believed to
yield good results for the spectrum, far from resonance.
Therefore the present work can be useful as a test for
more sophisticated calculations. Note that this argument
is independent of the memory-function approach. It is
difficult to judge theoretically the validity of the present
method to obtain the linewidth. For ionized-impurity
scattering, the calculated cyclotron-resonance peak is si-
tuated close to a (spurious) divergence, and this will cer-
tainly induce error. Note also that in the framework of
many-body theory it has been shown by Miyake ' that
two distinct formulations of the lowest-order Born ap-
proximation lead to essentially different results. It is
therefore rather surprising to see the close numerical fit in
Figs. 3—7. Moreover, several qualitative predictions are

also in agreement with experiment [the (nr)' depen-
dence of the linewidth at low temperatures, the linewidth
decrease for T&30 K which is more pronounced for
larger wavelength radiation, and the independence of the
free-carrier concentration]. It will only be possible to
understand this agreement, however, after performing a
more sophisticated calculation in which the divergences
are eliminated. In analogy with the dc case, such a calcu-
lation will have to incorporate collision broadening,
inelasticity, and/or non-Born scattering. Further im-
provements will also require the introduction of a more
realistic model. This includes many-body effects, spin
and umklapp processes, an anisotropically screened im-
purity potential, and most important, nonparabolicity
(note that the experimental data presented in Figs. 3—7
have been treated by Matsuda and Otsuka such as to el-
iminate the effects of nonparabolicity).

The present method can also be used to study the
cyclotron-resonance linewidth measured in germanium by
K,awamura et al. in the regime dominated by ionized-
impurity scattering. In this case, however, most experi-
mental points are situated in the temperature region
kT&Acu, . Therefore, in the numerical calculations, the
population of higher Landau levels must be taken into ac-
count, and the full expressions (4.8) must be evaluated [in-
stead of Eqs. (4.10)]. This is left for future work. A re-

cent calculation for these experimental data has only con-
sidered population of the lowest Landau levels. It
should be noted that in order to obtain good agreement
with experiment it is essential to evaluate the lowest-order
Born approximation in full detail. This is illustrated by
the calculation of Ref. 17. The result of Ref. 17 can be
obtained from our equations (4.10) by an (approximate)
evaluation of the I =1 term only. This procedure leads to
qualitative differences: The ( nz)' behavior for low tem-
peratures is lost, and also, as can be seen from Figs. 5—7,
the linewidth does not decrease for T ~ 30 K.

As far as the electron-phonon interaction is concerned,
it is interesting to consider the so-called "pinning region, "
for co, =coLo. In this special case, and for low tempera-
tures, the present results are equivalent to those of earlier
calculations. ' These calculations were shown to con-
firm signer-Brillouin perturbation theory, and they
seemed to indicate a coupling constant a=0.03—0.04 for
InSb (also see Ref. 62). The present results, however, far
from the pinning region, lead to the generally accepted
value a=0.02. This apparent contradiction is explained
by a recent calculation where it is shown variationally
that %'igner-Brillouin perturbation theory does not give
an adequate numerical description of the pinning region.

In conclusion, we have presented a calculation of the
cyclotron-resonance spectrum for semiconductors in the
quantum limit. No adjustable parameters have been intro-
duced. Starting from the Kubo formula, we have shown
that the lowest-order Born approximation leads to excel-
lent agreement with measured cyclotron-resonance
linewidths in InSb, both in the ionized-impurity- and
LO-phonon-scattering regimes.
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