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A theoretical description of substitutional transition-metal ions in semiconductors is presented. It
is based on a defect-molecule approach with renormalized parameters in a manner similar to what

has been done for vacancies in silicon. The self-consistent calculation allows conciliation of two ap-
parently opposite behaviors a quasiatomic spectroscopy classically described by crystal-field theory
and the stability of several charge states related to the presence of strongly polarizable bonds. The
need for going beyond unrestricted Hartree-Fock theory is emphasized and a method for incorporat-

ing the effect of Coulomb correlations in the lower configurations is proposed. Multiplet splitting is

then calculated for chromium in GaAs and Si, where the excitation spectrum is shown to resemble

that predicted by the Tanabe-Sugano diagrams, but with additional excitations from bonding to anti-

bonding states.

I. INTRODUCTION

Among various kinds of point defects in semiconduc-
tors, transition-metal impurities are very interesting both
from a technological and a fundamental point of view.
Their theoretical understanding is still far from complete
although there is a wealth of experimental information.
A very important aspect is that they tend to remain
"quasiatomic" as far as their spectroscopy is concerned,
since they are currently described by the well-known
crystal-field theory. ' On the other hand, several charge
states are observed within the band gap which is evidence
of strong coupling to the extended states of the solid.

Any physically meaningful theoretical description must
then reconcile these two apparently opposite behaviors.

Up to now three types of theoretical approaches have
been applied to these impurities: (i) the self-consistent
scattered-wave Xa method ' first used in this context by
Hemstreet and extended to interstitial transition-metal
impurities in silicon by DeLeo et al. " which treat a
small cluster containing the defect, (ii) the pseudopotential
local-density calculation performed by Zunger and Lin-
defelt' in a Green's-function formulation, and (iii) the
tight-binding work made by Pecheur and Toussaint'3
again using a Greens-function technique. Treatment (i)
can be considered as an approximation of (ii). The three
methods require more or less heavy numerical calculation.
All provide useful information but with a relatively im-
portant error bar as discussed in Ref. 14. They are typi-
cally one-electron calculations and only in case (i) have
the different authors discussed the influence of correlation
effects which are of basic importance for transition-metal
impurities.

In this work we want to analyze the problem of substi-
tutional transition-metal impurities from a completely dif-
ferent aspect. The methodology that we use is reminis-
cent of the one which has proved so successful for the va-

cancy in silicon for which the (quite precise and abundant)
experimental information can be understood in terms of a
"defect-molecule model. "' ' The only difficulty of
such an approach lies in the determination of the parame-
ters which take "renormalized" values to account for the
interaction between the defect molecule arid its environ-
ment. We want to work here in exactly the same spirit
which allows us not only to get a simple description con-
taining all the essential physical aspects but, as in the va-
cancy case, ' ' can be extended to the inclusion of many-
electron effects.

We present here a corresponding simple defect-molecule
model with three levels of sophistication. In Sec. II we
give a restricted Hartree-Fock version which provides a
clear illustration of the mechanism discussed first by Hal-
dane and Anderson '

by which such impurities can give
rise to several charge states in the band gap. In Sec. III
we show that an unrestricted (or spin-polarized) Hartree-
Fock calculation using the same reasonable parameters is
bound to give results in contradiction with available ex-
perimental data for chromium in GaAs. We demonstrate
that this is due to the so called "self-interaction" term and
describe in Sec. III how a consistent removal of this term
leads to a much more satisfactory picture whose virtue is
that it can reconcile both crystal-field and covalency as-
pects. The set of parameters used throughout this paper
has been determined so that the model of Sec. II gives a
good fit to experiment. However, as discussed later, there
is not much flexibility in their choice, so that our general
conclusions do not depend on the details of this choice.
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II. EXPERIMENTAL DATA AND SPIN-UNPOLARIZED
CALCULATIONS

The experimental energy-level positions determined
from techniques such as deep-level transient spectroscopy
(DLTS), photoconductivity, etc., include the electron-
phonon coupling contradiction. As in the following we
derive a purely electronic model (corresponding to nuclei
at their perfect-crystal positions) we have to compare the
predicted levels to experimental values which are correct-
ed by subtracting the estimated amplitude of the relaxa-
tion or distortion contribution. Such corrected electronic
energy levels have been determined for the Cr +~Cr +,
Cr +~Cr +, and Cr+-+Cr + (Refs. 22—24) transitions
to lie, respectively, at 0.44, 0.6+0.03, and 1.58 eV above
the top of the valence band. Another result we are going
to use is the value of 0.82 eV for the internal transition of
Cr + (Ref. 25), which after reduction of the distortion en-
ergy gives a purely electronic transition at 0.75 eV. In
that case one finds no other states between the T2 ground
state and E excited state. The final and most important
point to note is that all ground states follow Hund's rule.

We first present here a spin-unpolarized model which
evidently cannot verify Hund's rule but is the first step in
any treatment and wi11 allow comparison with other simi-
lar but more sophisticated calculations. ' ' Its main vir-
tue will be to offer a very simple and physically transpar-
ent explanation of the mechanism by which several charge
states can exist in the band gap, as was first discussed by
Haldane and Anderson. ' For this we use a tight-binding
formulation in which use is made of one s and three p or-
bitals on the bulk atoms, and of one s, three p, and five d
orbitals on the transition-metal impurity.

The simplest defect-molecule description is obtained by
letting the transition-metal impurity (located at a Ga sub-
stitutional site) interact only with the four sp dangling
bonds of the first-neighbor arsenic atoms [see Fig. 1(a)].
As in the vacancy case one builds A& and T2 combina-
tions of these dangling bonds whose self-energies are pic-
tured in Fig. 1(b). If we restrict ourselves to "s" and "d"
states on the transition-metal impurity these behave,
respectively, as basis functions for the A i and E+T2
representations. The "s" state will thus couple to the a~
combination of dangling bonds, while the t2 "d" states
will couple to the corresponding t2 combinations giving
rise to a~ and tq bonding states and a ~ and tz antibond-
ing states. Only the e-like "d" states will remain uncou-

pled and will keep their pure atomic character. The corre-
sponding level scheme is described in Fig. 1(b). For neu-

tral chromium (labeled Cr + in the literature) there are 11
electrons (6 for Cr and 5 for the As dangling bonds) giv-
ing rise to the occupancy shown in the same figure.

The important effects arise from the d states so that we
concentrate only on the tz, e, tz states. Each pair of t2, t2
states is given by diagonalization of a 2)&2 matrix of the
orm

where E~ and E„are, respectively, the energies of the d

-. As

As

(b)

t2

atomic
states

dangling
bond

states

defect
mal ecul e

states

and t2 dangling-bond states, while V represents their cou-
pling. In the same simplified scheme, the e-like d states
have the energy Ed. The eigenvalues of (1) are

~ 2 p+(g2+ y2)1/2 (2)

F=(Eg+Ey)/2,

5=(Eg Ei )/2, —
arid the normalized eigenstates are

I
&2&=~

I &u&+PI &2V&

I
t2 & =~

I t2d & ~
I t2V&

with

(4)

FIG. 1. (a) Chromium interacting with the four sp dangling
bonds. (b) Corresponding molecular diagram for neutral
chromium Cr +, the occupancy t~e t2 is that of the ground
state.
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1 5
(52+ y2)1/2

TABLE I. Numerical results of the Hartree-Fock calcula-
tions. The energies e are referred to the top of the valence band.
The parameters used are ey ———0.2 eV, U& ——0.2 eV, ego ——2.5
eV, U=8 eV, and V= —0.75 eV.

1 5
(52+ I/2)1/2

The occupancy of these one-electron levels can be writ-

ten in the form t2e '(tz) " where n, and nz vary with
the configuration and charge state (n, +nz is equal to 3
for neutral chromium Cr + in GaAs).

To be physically meaningful our description must be
self-consistent. This can be achieved by the methods
given in Ref. 17, i.e., we write

(ng)
p2

E' g

&e

6'g
2

Cr+

5.14
0.96
3.74

3.58
0.11

Cr'+

4.84
0.79
1.59

1.2
—0.25

Cr +

4.74
0.65
0.98

0.43
—0.59

Cr4+

4.68
0.55
0.6

—0.07
—0.9

Ed Edp+ U(&d &dp)

Ev=Evo+ Uv(&v —iivo)
(6)

where the numbers of d and dangling-bond electrons are
given, respectively, by

nd ——n, +6a +n&P

nv 6P +n~a——
(7)

For Cr in GaAs the natural value for n vo is 3 while for
the impurity we consider the d s state as the reference
state, i.e., we take ndp 5(ano——ther choice would simplify
shift Ed p). With such conventions all the equations above
can be condensed into one analytic self-consistency condi-
tion with (25p=Ed p

—Evp)

5p+ 2 U(n& —2)+ 4 ( U —Uv )ng

1+[U+ Uv )/(5 + V )'/ ](6—n )

which can easily be solved by successive iterations.
We now discuss shortly the problem of the numerical

values taken by the different parameters. One cannot use
parameters corresponding to the free defect molecule, but
instead one has to take renormalized values incorporating
the effect of the coupling with other atoms. The set of
parameters which we use is (Edp +2.5 eV, Ev———0.2——
eV, V= —0.75 eV, U=8 eV, Uv ——0.2 eV, the origin of
energies being the top of the valence band). The justifica-
tion for the choice of such numerical values is given later
(see Sec. V). The main point to be underlined is that while
the Coulomb parameter U on the transition-metal impuri-
ty takes a substantial value, the corresponding value of
Uv is extremely small. This simply takes account of the
fact that when an electron is added on the vacancy states,
the level shift is only of order 0.2 eV, i.e., about 50 times
smaller than typical atomic values. The mechanism re-
sponsible for such a reduction of Uv is described in Ref.
17 and results essentially from delocalization and polari-
zation. We shall see that the small value of Uv is essen-
tial for a correct description of the impurity states.

We have solved the self-consistent equations corre-
sponding to four-charge states (Cr + to Cr'+) for the case
n, =2. The results are reported in Table I and Fig. 2. As
we can see when we go from Cr + to Cr+, the electron
population in the d shell varies only slightly. The reason
for this was discussed first by Haldane and Anderson '

and then verified numerically by Hemstreet. In our sim-
ple description the mechanism becomes transparent:
when adding extra electrons these tend to avoid the im-
purity atom because of the large U Coulomb term. This
occurs through polarization of the t2 bonding states by
which these electrons are transferred on the dangling-band
states (where Uv is small). The polarization mechanism
is inost efficient when all tz states are empty, i.e., nq ——0
as can be verified in Eq. (8) where the term in the denomi-
inator contains 6—n~. The evolution of the levels with
charge state is then considerably reduced with respect to
the free atom as can be seen in Fig. 2. This is in agree-
ment with experimental evidence.

It is interesting to compare the predicted levels with
those calculated by Hemstreet for Cr + in GaAs. How-
ever, this must be done for the configuration tze . The
results are given in Fig. 2 and, due to the stabilization
mechanism discussed above, are close to those obtained
for t2e t2. The agreement with Hemstreet is good (within
0.2 eV). It is also tempting to compare our predicted lev-
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t e present work ~ ~ ~ ~ ~
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HARTREE - FOCK LEVELS

OF CHROMIUM in GaAs
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FIG. 2. Hartree-Fock levels of different charge states of
chromium. The occupancy is t2e (t2 );where n& varies from
n& ——0 (Cr +) to n~ ——3 (Cr+); we also indicate the levels corre-
sponding to our calculation in the configuration t2e and com-
pare them with Hemstreet's calculation Ref. 7. The parameters
are e~———0.2 eV, Uz ——0.2 eV, @do——2.5 eV, U=8 eV, and
V= —0.75 eV.



30 RENGRMALIZED-DEFECT-MOLECULE APPROACH TO THE. . . 7141

els with other calculations, but not for neutral Cr (Cr +)
in silicon. As discussed in Sec. V we modify our parame-
ters simply by shifting ei 0 by 0.9 eV and rescaling V by
using Harrison's rule by which V varies as d ~ (d, in-
teratomic distance). The results of different calculations
are given in Fig. 3. Our calculated levels are in good
agreement with those of Hemstreet and Pecheur and
Toussaint' but our splittings are 50%%uo smaller than those
of Zunger and Lindefelt. ' The larger disagreement with
Ref. 12 is perhaps due to their choice of Xa= 1 which, if
it gives a correct gap for GaAs, is not appropriate for the
free chromium atom.

The conclusion of this section is that our defect-
molecule model (with renormalized parameters) is capable
of giving correct energy levels in a spin-unpolarized calcu-
lation. It also gives the correct evolution of the levels
with charge state. The only thing which obviously it can-
not predict is the fact that Hund's rules are satisfied and
this must be the subject of a spin-polarized calculation
followed by a treatment of multiplet splitting.

III. SPIN-POLARIZED TREATMENTS

A standard method for solving the problem of many-
electron effects which are at the origin of Hund's rule is
to perform a Hartree-Fock calculation followed by config-
uration interaction. We shall thus follow first this pro-
cedure and present a spin-polarized Hartree-Fock exten-
sion of the defect-molecule model presented in Sec. II.

U+2J
Ed(t2 0') =Edo+ (nd —ndo) U—

3
Situ Jplen ~

(9)

E (t2 0') =Ego+( nd
—ndp) U— U+J

~eo J&tcr ~

where n, and n, are the electron populations of spin cr

in the t2 and e states, respectively.
Now we have to solve two 2&& 2 matrices like (1) for up

and down spin in a self-consistent manner and this, for a
given configuration which in our case corresponds to
three electrons in each of the tz, and tz, bonding orbitals,
n„and n, „electrons in each of the e, and e, orbitals,
and, finally, nz, and n~, electrons in the t2, and tz, anti-
bonding orbitals. As discussed later we take U=8 and
J=0.4 eV.

Our model is not suited to a calculation of excitation or
ionization energies as differences in total energies. To
avoid this problem we use Sister's transition-state method,
i.e., we calculate these quantities as differences in one-
electron eigenvalues in a hypothetical state for which the
occupation numbers of the spin orbitals are the averages
of those in the initial and final states. Such a procedure is
valid to second order in the change of these occupation
numbers.

subsets, respectively. With this the t2 and e atomic levels
become distinct and depend upon the spin o =+—,

' of the
electron. The extension of Eq. (6) thus becomes

A. Unrestricted Hartree-Fock treatment

2.

HARTREE - FOCK LEVELS OF

NEUTRAL CHROMIUM in Si
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We then introduce into the calculation two of the
Kanamori parameters, U and J which represent, respec-
tively, the average Coulomb interaction between two elec-
trons in d orbitals and their corresponding average ex-
change interaction. The d atomic level in the solid now
becomes spin dependent and different for the tq and e im-
purity d states. We consider that electrons of a given spin
are shared equally between the basis states of the t2 and e
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FOR CHROMIUM in GaAs
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FIG. 4. Spin-polaj. zed Hartree-Fock calculation for chromi-

um in GaAs. (a) Hartree-Fock levels for Cr2+. Note that the
t2& level is quasiatomic one degenerate with e&, while the t21
level is quasi-dangling-bond-like. (b) The three levels in the gap
all have a strong dangling-bond character and are thus separat-
ed by 0.2 eV, the Uz value of the galhum vacancy. The param-
eters are the same as in Fig. 2.

FIG. 3. Hartree-Fock calculation of the neutral chromium
levels in silicon: (a) Hemstreet (Ref. 5), (b) Zunger and Linde-
felt (Ref. 12), (c) Pecheur and Toussaint (Ref. 13). (d) Present
work with parameters e„=0.7 eV, u~ ——0.2 eV, @do——2. 5- eV,
U=8 eV, and V= —0.85 eV.



Q. PIQOLI, A. CHOMETTE, AND M. LANNOO 30

I,et us begin by discussing the one-electron levels we get
for Cr in GaAs [Fig. 4(a)] in the configuration e,tz, (in
the following we do not mention the occupation numbers
of the tz, and tz, bonding states which are always equal
to 3). The striking point is that the tz, bonding level is
very deep and has practica11y pure d character. As a
consequence the t2, is dangling-bond-like and close to the
valence band. Their energy separation is equal to 7.4 eV,
i.e., close to U. In such a case self-consistency is realized
mainly with the help of the minority spins (since the tz,
level is empty).

A consequence of this model is that both tz, and tz,
levels are practically dangling-bond-like. Thus if one cal-
culates the ionization energies for different charge states
from the eigenvalues in the transition state one finds the
results of Fig. 4(b). The partially filled level tz, in all
cases remains dangling-bond-like in character and its en-

ergy is practically pinned. This is at variances with exper-
imental information as discussed in Sec. II. Another im-
portant point concerns the Tz~ E internal transition of
Cr + whose experimental value is 0.75 eV. This transi-
tion corresponds, as we shall see later, to an excitation
from a configuration e,tz, to e,tz, correspondirig to the
energy interval between the t2, and e, levels in the transi-
tion state. In this Hartree-Pock model we calculate this
energy to be 7.9 eV, which is completely unrealistic.

The cause of such discrepancies is well known and is
due to the exchange interaction which is overestimated.
This point has been discussed for transition metals and
transition-metal oxides. We thus examine now a spin-
polarized treatment in which this defect is consistently re-
moved.

&Ed =+U(nd 1) J(nd —1), —— (10)

the same expression holding for all "d" orbitals. We can
define the spin polarization in terms of And,

I
And —,(nd, —nd, )——,

B. Improved spin-polarized model

One problem arising in Eq. (9) comes from the averag-
ing procedure which leads to effective exchange terms
equal to (U+2J)/2 or ( U+J)/2. In view of the large
value taken by U, the energy associated with spin reversal
is much too large. As discussed in Refs. 27—29 this ener-

gy will be reduced by Coulomb correlations. Hartree-
Fock theory fully prevents two electrons of the same spin
of being in the same atomic orbital but does not do so for
electrons with antiparallel spin. The probability for such
situations to occur is thus too large when using the Slater
determinantal wave function of the Hartree-Fock approxi-
mations. According to the variational principle, correla-
tion effects will act to reduce the statistical weight of
these situations. To account for this we shall take the ex-
treme point of view of saying that, when an electron is in
one of the atomic "d" orbitals, correlation effects will
prevent all other electrons from being in the same orbital
regardless of their spin.

In such a scheme the Hartree and exchange part of the
d levels can now be written

and rewrite the d level energy from (10) as

Ed) =Edp+(U —
p J)(nd —ndp) g J~nd

Ed) =Edp+. ( U —
g J)(nd —ndp) / g JAnd

(12)

These equations are the direct generalization of Eq. (6)
at the condition of replacing Edp by Edp, U by U ——,

' J,
and by adding an exchange term. We have chosen the pa-
rameters in order to get the correct value for the internal
transition Tz~ E of Cr +. This gives the set of parame-
ters

Edo ——+2.5 eV, U ——,J=S eV,

—,J=0.2 eV, Uy ——0.2 eV, Ey ———0.2 eV,
(13)

The spin-polarized model corresponding to the parame-
ters of Eq. (13) is close to the unpolarized one described in
Sec. II. As shown in Table II, it is not surprising that
similar behavior is obtained for the dependence with
charge state. The only important difference comes from
the moderate splitting of the levels with different spin,
due to the exchange parameter J. Figure 5 shows this
splitting for the levels corresponding to the ground-state
configuration of Cr + in GaAs. One can check that the
level ordering and occupation is consistent with the first
Hund's rule. We can also see that the splitting of the tz
state is weak since it has a more pronounced dangling-
bond character. I.et us now discuss the excitation energies
of different charge states of Cr in GaAs.

A. Cr + in GaAs

In Fig. 6 the excitation energies from the ground-state
configuration e, to low-lying excited configurations are
given. All such energies have been determined using
Slater's transition state in our self-consistent spin-

TABLE II. Numerical results of the correlated spin-
polarized calculation for chromium in GaAs with the same pa-
rameters as Table I and with the additional parameter J=0.4
eV. el correspond with the ionization energy as experimentally
observed but without electron-phonon coupling.

Cr+ Cr2+ Cr + Cr'+

p2 t
p2 i

et~ 4

e, l
t*t

68 f
et2$
et2 f

5.10
0.90
0.97
4.39
4.25
2.54
2.30
0.15
0.03
1.31

4.82
0.54
0.88
2.17
1.9
0.95
0.25

—0.14
—0.55

0.74

4.74
0.42
0.81
1.5
1.14
0.59

—0.3
—0.41
—0.93

0.46

4.68
0.36
0.74
1.04
0.6
0.33

—0.66
—0.68
—1.23
—0.89

which will be discussed in Sec. V. We now present our re-
sults for different charge states of Cr in GaAs and in sil-
icon and compare them to experimental data.

IV. DISCUSSION OF THE RESULTS
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FIG. 5. Lifting of the degeneracy of the Hartree-Fock levels

(J =0) by our correlated spin-polarized calculation (J=0.4 eV)
for the T2 ground state of Cr +: (tqe gtq* f).

FIG. 6. Internal excitations of Cr + in GaAs; this spectrum
looks like the Tanabe-Sugano diagram but with additional exci-
tations which come from the t&g, g~t2 g, ~ transitions. (a)
States calculated by the "transition-state" method. (b) Lifting of
the degeneracy of the previous states by first-order perturbation.
The parameters are the same as those given in Fig. 2.

polarized model. Due to our simplified averaging pro-
cedure for Coulomb and exchange terms we obtain in
several cases an accidental degeneracy. For instance the
e,e, configuration gives rise to two degenerate 'E and 'A,
levels. We have then calculated the splitting of these two
levels by first-order perturbation theory, the perturbation
being the difference between more exact Coulomb and ex-
change parameters and the average ones. This splitting
can be expressed in terms of the Racah parameters as
described by Griffith' for instance. We obtain

E( A i ) —E( E)=y(88 +2C), (14)

where 8 and C are the free atom parameters and y is a
reduction factor (constant for all levels) accounting for
solid-state effects (see Sec. V). We have applied the same
procedure for all such low-lying configurations and ob-
tained the level structure of Fig. 6.

To our knowledge there are no experimental data on
Cr + in GaAs. Nevertheless, it is interesting to notice
that the overall level structure resembles what is obtained
from the Tanabe-Sugano diagrams for Dq/8 —1.5.
However, there is one important difference coming from
what we call core excitations (from the filled shell to the
open shell, i.e., t2, ~tz, ) by contrast to the usual ones
which occur within the open shell.
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B. Cr + in GaAs
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We use the same methodology for neutral Cr in GaAs
and obtain the results of Fig. 7. Again the ground state

FIG. 7. Internal excitations of Cr +. The overall characteris-
tics are identical to Cr +.
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C. Cr2+ in GaAs

Our parameters have been adjusted to reproduce the
correct E +Tz trans—ition. One good test of the validity
of our predictions is that we obtain no interinediate states
between these two levels (Fig. 8). Hemstreet found such
levels but this cannot happen since such levels should
open nonradiative channels in such a way that the
E—+ T2 could not be observed in luminescence. Another

evidence that Fig. 8 should be correct comes from the
analysis of the fine structure in the 'E' state of trigonal
Cr + —I, at the origin of the famous 0.839-eV line. The
fine structure can be understood in terms of an effective
Hamiltonian in the E* excited state:
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/
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e'1 t+23)

1' 2

3
T2

E, A2

37

37)
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obeys Hund's rule and the whole spectrum looks like the
Tanabe-Sugano diagrams. However, there is an important
difference for the first excited state which we predict to be
T~ . The reason is that the T

&
—+ T~ corresponds to spin

flip in the delocalized t2 orbital. Such a situation cannot
be reproduced by standard crystal-field theory.

This charge state has been studied using electron
paramagnetic resonance (EPR) by Krebs and Stauss.
The ground state T~ is strongly coupled with e and 72
lattice modes, giving rise to an orthorhombic distortion.
Deveaud et al. ' have recently interpreted the optical
transition at 0.666 eV as an internal transition E~ T~ at
neutral chromium. At first sight Fig. 7 suggests that it
might be due to the Tj+ T~ transition. Both are spin
forbidden and a detailed study of the strength of the opti-
cal matrix element and Jahn-Teller coupling is needed be-
fore any definite conclusion can be reached.

H =A,*creSz+D Sr+pi (SzS+)++(SeS+)+

+@2 o+(S+) +cr (S ) (15)

Uihlein and Eaves have shown that the Zeeman spec-
troscopy is dominated by the fine structure in the E* ex-
cited state with

D = —0. 12 MeV, A,*=0.69 MeV . (16)

Cr '-X (C3v }

/'
/

Ti( T2) ~ W

A2( Ai)

This D* value cannot be predicted by considering only
the spin-orbit coupling between the T2 and E states.
One must include other excited states to which coupling
can occur via the spin-orbit interaction. Let us assume
that such coupling occurs mainly with one excited state.
From group theory such a state must be a T~ or T2 state
which in the trigonal coupling will split into two com-
ponents as shown in Fig. 9. In such a situation one can
derive explicit expressions for the parameters defining the
effective Hamiltonian of (15). We get the results of Table
III (see Ref. 34 for more details). One can see that Ti
and Ti give completely different results, especially as re-
gards the value of pi and pz. As discussed in Ref. 34
only T& gives a description coherent with experimental
data.

As shown in Fig. 8 our level ordering predicts a T&

just above E. This is coherent with the above discussion
and shows that, once again, our model gives a completely
coherent picture of Cr in GaAs.

To conclude this section it is interesting to see how this
model behaves for substitutional chromium in silicon.
With respect to GaAs we have to modify only two param-
eters: the dangling-bond energy E~o and the coupling pa-
rameter V. As discussed in Sec. V we estimate V by as-
suming, as in Harrisson's rules, that it scales like d
from its value in GaAs, i.e., 0.75 eV. As regards the
dangling-bond energy it will be shifted upwards to an en-
ergy equal to 0.7 eV above the top of the valence band
(again see Sec. V for discussion). The corresponding ener-

gy levels are given in Fig. 10 for the different charge
states. We predict a Cr +~Cr + level near the top of the

EXCITATIQNS of Cr +
5

t42 1

0--
(b)

57
2

FIG. 8. Internal excitations of Cr +. Same comments as for
Fig. 6.

FIG. 9. Selected levels corresponding to the trigonal center
Cr +—X (Ref. 37). In order to explain the fine structure of the
first excited state E* we need the proximity of a Ti state split
by a trigonal field W*. This state must differ from E by a
monoexcitation in full agreement with what we predict in Fig. 8.
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TABLE III. Spin-orbit coupling constant for an effective Hamiltonian acting on a 'E* space by cou-
pling with a split TI 2 state. The effective Hamiltonian is written

H=~ a'zSz+p& to+(S+Sz)++cr+(S Sz)+]+pa(cr+S+ +o S )+(dSz)

for more details see Ref. 36. (E ) ~H, , ~ ) T~ q ) are the reduced matrix elements. rV are pictured in Fig.
9.

Ti case 'T~ case

6*+8" d *+8'*

valence band. The ground state of Cr + is Az. To our
knowledge there is no experimental indication of any gap
level, but EPR gives a signal relative to Cr +. There is
thus good agreement with our predicted level scheme.

The conclusion of this section is that our correlated
spin-polarized model is capable of interpreting the exist-
ing experimental characteristics of Cr in GaAs but also in
Si. Now, we still have to give some justification for the
parameters which we have used, although an accurate a
priori determination of them is not possible at the present
time. This shall be the purpose of a future work.

V. DISCUSSION OF THE PARAMETERS
OF THE DEFECT-MOLECULE DESCRIPTION

Before deriving any numerical value for the parameters
we have to examine the physical meaning of the defect-
molecule concept. The impurity atomic states can be clas-
sified with respect to their symmetry ("s" or ai, "d" or
e + t2) In a tig.ht-binding description we assume that the
most important interaction occurs with nearest-neighbors
sp orbitals pointing towards the impurity, which we can
label sp dangling bonds when the impurity is absent. As
is well known these dangling bonds transform as ai+t2
In this description the "e"states are not coupled which is
confirmed by more elaborate calculations. If we now con-
centrate on the "d" t2 states the corresponding tight-
binding matrix takes the form (in a spin-unpolarized
scheme)

~00 ~On

~RO ~ RR
(17)

Cr2

Q
LU

4J
Cr'

0.37 eV

0--

CHRO MIUM L EVELS

I N SIL ICON

FICx. 10. Level positions for chromium in silicon. The pa-
rameters are e~——0.7 eV, U& ——0.25 eV Gdp=2. 5 eV, V=8 eV,
and V= —0.85 eV.

where Hoo is a 2X2 matrix connecting one of the "d" tq
atomic states with the corresponding tz combination of
the sp nearest-neighbors arsenic dangling bonds. We
write it as

ed V0 00 6'y.

where E'd and e~ are the diagonal terms and V is the cor-
responding hopping integral. This can be viewed as a
"bare" defect molecule. Thus Hotc and Htto connect this
bare molecule with the remaining crystal of Hamiltonian

~RR .
Let us now describe how the defect-molecule concept

can be used for an accurate description of defect proper-
ties. This is based on the concept of an effective Hamil-
tonian. "

We can write the wave function of the system in a basis
formed by the atomic state p~, the dangling-bond state
q&„, and all other states of crystal. The corresponding
coefficients of the expansion will be written as a~, a„, and
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a column vector aii built from all other coefficients. The
equations become

a,' (E)= [1 f'—(E)]'~ a„

we recover the usual normalization condition as

(23)

(E —eq)a~= —va „,
(E —e„)a „=—va g~H „Ra ii,
(El Hgg —)a g H——g„a

(19)
I
a~ I

'+
I
a'(E}

I

'= 1 . (24)

It remains to rewrite the system of equations (20) in terms
of a~ and a„' (E). This gives

The last equation can be eliminated leading to the 2&2
equations

(E —e~ )a~ —— a„' (E},
[1—f'«)]'"

(25)
(E —ez)a z ———va, ,

[(E—e„)—f(E)]a „=—va ~,
f(E)=H „~(EI H~it ) —H RU ~

(20)

f'(E) /a —„/

If we now define

(22}

These equations look like a 2)&2 ordinary system ex-
cept for f(E) which is an energy-dependent self-energy
term. To recover an effective 2)&2 system justifying the
defect-molecule concept we first have to normalize the
defect-molecule wave function, with

(21)

1
a~ I'=H R(EI HRR) HR la. I'

E &v f—(E)—, u

1 f'(E—) [1 f'(E)]—'~a,'(E)= — ag .

At a given energy E, solution of the problem, this sys-
tem is now like a 2&&2 one with renormalized parameters.
To estimate these parameters we notice that, when v =0,
the second equation of (20) or (25) gives

E =ev+f(E),
whose solution is Ev, the T2 vacancy level. From (23) the
quantity 1/[1 f'(Ev)] .r—epresents the value of ~a„~
i.e., the weight of the sp dangling bonds into the T2 ar-
senic vacancy wave function. For energies E in the vicini-
ty of the T2 vacancy level, i.e., near the energy gap, one
can expand f(E) in the second equation (25) near Ev, giv-
ing

E ev f(E)— — 1 f'(Ev) f—"(Ev) ,' (—E Ev)——-(E Ev)—
1 —f'(E) 1 —f'(Ev) f"(Ev)(E Ev)— —

f"(Ev) (E Ev)—
1 f'(Ev) 2— (27)

which, in the first approximation, is equal to E Ev. —
This mathematical analysis can be translated in simple

physical terms. All happens exactly as if, in the defect-
molecule model, the d atomic states were coupled to the
sp3 component of T2-like As vacancy states. This param-
eter V of Eq. (1) is equal to v/[1 f'(E)]'~ sinc—e
[1—f'(E)] ' is the amplitude of the vacancy wave
function on these sp states. If we calculate v from
Harrisson's prescription we directly get u =1.33 eV. If
we reasonably consider that the weight of the sp states in
the T2 states in the Tz vacancy state is of order 30% to
40%, then we obtain for V a value close to 0.75 eV, as we
have used in the previous section.

The parameter Uv represents the effective Coulomb en-
ergy at the vacancy states which we take to be 0.2 eV in
agreement with existing estimates. As regards the vacan-
cy level E~ most calculations give a value close to the top
of the valence band, i.e., -0 eV, for the neutral vacancy.
We chose here E~———0.2 eV, i.e., take the situation ap-
propriate to the positive gallium vacancy when n~ ——3 to
take into account self-interaction effects.

The three last parameters concern the transition-metal
impurity itself. The Coulomb parameter U is, relatively
to the Hartree-Fock value, reduced by atomic correlations
and solid-state effects but, anyway, the results are not sen-

'
l

sitive to this parameter. If we take U„, =(5E/5n)„
we find from experimental value U,«m

——10 eV which in-
cludes atomic correlations effects. In the same way we
take, following Ref. 29, J=—,'B+C where B and C are
the fitted Racah parameters of the Cr+ ion, which also
contain atomic correlations effects. With 8=0.08 eV
and C=0.35 eV (Ref. 1) we obtain J=0.55 eV.

We have used for our fit J=0.4 eV, so that the agree-
ment is correct if we use a reduction factor y =0.73 which
is a typical value for the reduction of the Racah parame-
ters of an ion embedded in a solid; this reduction factor is
generally interpreted as due to the expansion of the d or-
bital of the ion when it is incorporated in the solid. So we
further reduce U„, =10 eV by the y factor which gives
U=7.3 eV which is in good agreement with the value
used (U=8 eV).

Finally, an important and difficult parameter to deter-
mine is @~0, the "d" level position for n~ ——5. In principle
it might correspond to the "d" free atom level in the con-
figuration d s; however in the solid the d shell is not sur-
rounded by an occupied s shell but rather by four dan-
gling bonds which fall in the same space region as the s
shell; such overlap effects in general tend to shift the
intra-atomic terms upwards with respect to the free atom
values. Here we have adjusted 6/0 to obtain the best
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overall fit and obtained an absolute value of —3 eV (in-
stead of —10 eV for the free atom) in agreement with the
general tendency. A detailed justification of this value is
beyond the scope of this paper but would be needed for a
systematic extension of the model to other transition-
metal ions and semiconductors.

VI. CONCLUSION

We have presented a simple theoretical description of
substitutional transition-metal impurities in semiconduc-
tors. The corresponding model based on a defect-
molecule approach with renormalized parameters is ca-
pable of predicting both the defect-ionization energies
(gap levels) and the internal transitions. The spectrum of
such internal transitions looks like the one predicted by
the crystal-field theory (as illustrated by the Tanabe-

Sugano diagrams) but with new excitations that corre-
spond to the t2~tz transitions.

We have found that the charge density in the d shell
stays almost constant when the charge state of the defect
is changed which is related, as shown by Haldane and An-
derson, to the presence of several levels in the gap. In our
model the mechanism is quite transparent, consisting of a
strong polarization of the t2 bonding state. The same is
true for internal excitations. This strong polarization ef-
fect is the essential difference between the present theory
and the crystal-field theory where the tz bonding states
are treated as a frozen core.

In this work we have only treated chromium in GaAs
as silicon. The extension to other cases is relatively trivial
at the condition of specifying rules for determining the
parameters. The basis for such rules has been discussed in
Sec. V and further work will be devoted to a systematic
study of cases which have been observed experimentally.
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