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Polar optical interface phonons and Frohlich interaction in double heterostructures
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The phonon dispersion relations and the Frohlich interaction in polar double heterostructures are
derived, by application of a modified image-charge ansatz. The interface phonons couple to form a
symmetric and antisymmetric -normal mode. The effective interaction is described by two-
dimensional form factors, which represent a reasonable measure for the interaction strength. The
theoretical results are in good agreement with recent magnetophonon experiments.

I. INTRODUCTION II. CLASSICAL ENERGY LOSS

In recent years there has been an increasing interest in
the interaction between low-energy electrons and the ele-
mentary excitation of solids in the presence of i'nterfaces.
In the case of polar semiconductor layers the dispersion
relation of polar-optical phonons and their effective in-
teraction with two-dimensionally confined electrons can
be strongly modified compared to the three-dimensional
case. Additionally, to the restricted number of bulklike
modes there appears a series of corresponding two-
dimensional, so-called interface phonon modes.

In a fundamental paper Fuchs and Kliewer' derived the
optical vibration modes in an ionic slab. They found a
symmetrical and an antisymmetrical surface mode (decay-
ing exponentially from the interface) and sinusoidal bulk
LO phonon modes with nodes at the interfaces.

For a semiconductor-insulator structure and a com-
pletely two-dimensional electron gas (2D EG), the interac-
tion Hamiltonian with interface optic phonons was de-
rived by Tzoar.

In this paper a generalized approach is presented for a
double heterostructure (DHS) made of arbitrary polar
semiconductors and for realistic electronic wave func-
tions. The DHS represents an intermediate step between
single heterostructures and superlattices. Therefore quite
general physical features are derived.

In order to obtain the Frohlich interaction in a DHS we
apply the energy-loss method: The Poisson equation for
the potential of a point charge moving in the DHS layer is
solved by introducing a modified image-charge ansatz.
The bulk dielectric functions of the two materials are used
as an input. The classical result for the energy loss of the
test charge is then compared with the quantum-
mechanical rate of energy loss, yielding the interface pho-
non energies and the interaction strengths. Mapping the
so-obtained local electron-phonon Hamiltonian with the
electronic wave functions, the effective two-dimensional
Frohlich potentials are calculated.

The dependence of the interface phonon energies and
the effective interaction on the phonon wave vector and
the system parameters is discussed and used to explain re-
cent magnetophonon experiments in 2D systems.

By a comparison with the quantum-mechanical expression
for the energy loss:

+co& ( (H;«) i
5(co& qzuz), —

dt ~ q (2)

the phonon energies Acoq as well as the matrix elements
(H;«) for one-phonon emission are obtained in a second
step.

From Poisson's equation, the general relation between
potential P, charge density p, and dielectric function e (in-
cluding a small imaginary part i 5) is given by

P(q, co) =4np(q, co)/q [e(q,co)+i 5] .

For a point charge moving in the z =zo plane with veloci-
ty Uz one obtains

e5(~ —q, u, )
P( qg, co,z —zo) = e

8nzq~ e(q,co). (4)

In a DHS this relation is modified due to the presence of
the interfaces. The discontinuities of the dielectric lattice
properties are described by introducing a modified
image-charge ansatz for the potential to solve the
Maxwell continuity conditions at z=+d/2. Based on
syrnrnetry considerations and analogous to the single-
interface case in classical electrodynamics, four different
image charges oi(qz), . . . , o4(qz) are introduced for a
test charge at

~
zo

~

(d/2:

The DHS interfaces are taken parallel to the (x,y) plane
at z =+I/2 and the bulk dielectric functions of the layer
and the surrounding material are denoted by e& and e2,
respectively. The symmetry of the problem allows work-
ing in the (qz, z) space, which makes the calculations sim-

ple and leads to analytical results.
At first the classical rate of energy loss of a test charge

moving with velocity vz in the DHS layer is calculated

from the imaginary part of the potential P( x, t):

lim eve VP(x, t.)=2e f d qj fdcocoImg(qj, co).
X ~Ups
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As usual, the value and the position of the image charges
depend on the position of the observer at z. With respect
to the observer, they are always placed on the opposite
side of the interface. For example, if z &d/2, the inter-
face at d/2 is between the observer and the test charge
and an image charge cri(qi ) is set on the same place as the
real charge. On the other hand, the test charge is between
the observer and the interface at ( —d/2), and the corre-
sponding iinage charge cr2(qi ) is placed at ( —d —zo).

However, it is important to point out that the image
charges cr, (qi ), . . . , cr4(q) ) are not classical image
charges, since their value depends on the Fourier wave
vector qi parallel to the interface. With this remaining
degree of freedoin in Eq. (5), the Maxwell continuity con-
ditions for both the potential and the dielectric displace-
ment at the interfaces can be fulfilled. In contrast to solu-
tions with conventional image charges, which require an
infinite series to describe two interfaces, this new ap-

I

proach allows exact solutions with a sinall number of
"modified" image charges. After some algebraic manipu-
lations they are obtained in the following form:

[(e2—e))—y+(e2 —ei) ]
[(ei+e2) —y (e2 —ei) ]
[(e2 el ) y —(e2 e) ) ]
[(el+e2) y (e2 el)'1

cr2= —cr4 cr2= —cr), y =exp( —q) d),
'y+ =exp[ q). (d+2zo)] .

For the determination of the energy loss [Eq. (1)] only the
imaginary part of the potential contributes, which is ob-
tained by setting z =zo and using the relation
Im[1/(x —i5)]=m 5(x) for the dielectric function:

Img(q), co) =
—e5(co —qiut ) (1—y+ —y +y ) 4y cosh (q) zo)

5(e) )+ 5[e2(1+y)+ e)(1—y)]
87rqi ( 1 —y2) 1+y

4y sinh (qizo)+ 5[e)(1+y)—e2(1 —y)]
(1—y)

(7)

It is seen that the test charge loses energy only for co values where either e)(co) or the mixtures of ei(co) and e2(co) in the 5
functions are equal to zero. These frequencies are attributed to the phonon normal modes of the system. The prefactors
before the 5 functions correspond to interaction strengths.

III. LOCAL PHONON STRUCTURE
AND ELECTRON-PHONON INTERACTION

The classical DHS potential Eq. (7) contains all the in-
formation on the phonon structure and the electron-
phonon interaction. The first term in the large
parentheses corresponds to the interaction with bulklike
phonons of the layer material (ei). The restricted number
of modes is expressed by the prefactor. The second and
the third term represent interface phonon modes, with a
weighted mixture of both dielectric functions (e),e2) ap-
pearing in the 5 functions. The prefactors indicate that
the modes at the two interfaces couple to form a sym-
metric and an antisymmetric normal mode.

The quantum-mechanical expression for the electron-
phonon interaction is therefore written in the following
form, which already includes the specific phonon wave
functions (for

~

z
~

&d/2):

(2s) & q z x —q&(d/2 —z) —
q& (d/2+z)
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q&

)&v2 b2 /v'1 —y+H. c. , (9)
~ ~ ~ QQ
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'

)nor]vi, bs+H. c, (10)
n=1

where b2„b2„and b3 denote destruction operators of the
interface phonons and the bulk mode. The bulklike po-
tential V(&z) is characterized by a restricted number of
modes with nodes at z =+d/2. V~(' and V~&' describe
the symmetric and the antisymmetric two-dimensional
DHS interface phonon modes.

For simplicity, we treat in the following only the situa-
tion when the layer as well the surrounding material are
of single-mode type, characterized by

e) 2(co) =e) 2(fi co L i 2 )/(i)i co —T—i 2) .
e, L, and T denote the high-frequency dielectric con-
stant, the longitudinal, and the transverse bulk optic pho-
non energy. In this case one obtains two interface phonon
modes corresponding to the two bulk materials involved,
with a symmetric and an antisymmetric form. The classi-
cal potential [Eq. (7)] is inserted in Eq. (1) for the energy
loss and the co integration is performed:
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, cosh (qizp) , sinh (q]zp)+4yg 6(co+ —q] v] )f'+ +5(e]+—qi ui )f'+(1+y) — — (1—y)
(12)

where the interface phonon energies fuu'+' are given by

Ip+[p —(e']+e2}(e]L]T2+e2L 2T] )]
(e']+ e~)

p =[e'](T2,+L])+e2(T]+L2)]/2, i =s,a

ei ——e] (1—y), ei ——e] (1+y),

(13)

(14)

v» eL——(1 T'/—L )/4AqJ (20)

The index p includes the specific transition (e.g., 0-0) and
the type of phonon involved. u2D is the idealized
Frohlich interaction of a point charge moving in a plane
and coupling to unperturbed three-dimensional phonons.
The form factors F„carry all the information on the z
dependence of the system.

The electronic wave functions in a DHS are given by

e', =ez"(1+y), ez —e2 (1—y)—,
[]]iz(co'+) —T] ][A' (co'+) —Tz]

]]'r'[(~'+ )'—(~' )'](e']+e2)
(16}

A comparison of Eq. (12} with the quantum-mechanical
energy loss [Eq. (2)] using the electron-phonon interaction
[Eqs. (8)—(10)] yields the following two-dimensional in-
teraction strengths:

g„(z)=&2/d sin[(z/d + —,
'

)rw] .

Mapping the local electron-phonon interaction Eqs.
(8)—(10) with the electronic wave functions, we obtain the
effective 2D potentials and form factors Fz. It is evident
that only the symmetric DHS mode contributes to the (0-
0} transition, whereas the antisymmetric mode introduces
a coupling between the zeroth and the first electric sub-
band:

vz~ =(e f'+/4fuo'+Aq] )'~ 2(1 y) f'+e L
F(o-o) =

a(1+a /4m ) (L +T )Tug'+(I+y)

' 1/2

where the normalization area is denoted by A. The index
(+ ) describes the two interface phonon modes correspond-
ing to the two bulk materials, while the index (i) denotes
the symmetric or antisymmetric form.

It can be seen that the two-dimensional phonon energies
fico'+ (as well as the interaction strengths v2;) depend on
the layer thickness d and on the phonon momentum qz
parallel to the interface. This is a new feature compared
to the practically constant dispersion relation of three-
dimensional optic phonons.

The bulk interaction Ub is given by

vb„eL](1—T——]/L])/Ade] [q]+(nor/d) ], (18)

a=qrd, (22)

+
F(o-1)=

' 1/2f+e"L
(L T)fico'+(1 —y)—

X2a(1+y) 1

a +
1

a +9H
(23)

For the bulklike phonons in the layer, the effective in-
teraction can be approximated within a few percent by the
modes with n = 1 (0-0) and n =2 (O-l):

which, as expected, is quite similar to the three-dimen-
sional Frohlich interaction.

F]p-]] =.

F]p.p]
—— [a/(a +H)]'3'

64
15m

pa/[a +4m )]'~

(24)

(25)

IV. TWO-DIMENSIONAL
EFFECTIVE INTERACTION

V~h
——ge '

vqDF&(qj d),
q&

(19)

In a 2D system the motion of the electrons normal to
the interface is restricted and practically replaced by
discrete transitions between the electric subbands. In
most cases only scattering within the zeroth subband or
between the zeroth and the first electric subband is impor-
tant. Therefore it is useful to define an effective 2D in-
teraction for the most important cases, which means that
the interaction V~zh is written as a sum over 2D momen-
turn transfers, with appropriate form factors:

For a comparison, the effective interaction with undis-
turbed three-dimensional phonons is calculated as

1/2

a +42 a (-1+a /4H)

(26)

V. RESULTS AND DISCUSSION

In this paper a theoretical approach has been developed
to determine the properties of I.O phonons in polar dou-
ble heterostructures. The phonon energy spectrum and
the Frohlich interaction strength are obtained by calculat-
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ing the classical energy loss of a test charge. A compar-
ison with the quantum-mechanical expression for the en-

ergy loss enables one to assign the different phonon ener-
gies and matrix elements to specific normal modes. . The
introduction of a modified image-charge ansatz simplifies
the analytical calculations.

The phonon structure of a layered system is strongly
.modified as compared to a 3D system. The number of
bulklike modes is restricted to those with zero amplitude
at the material boundaries. Two-dimensional phonons are
created at the interfaces.

In a DHS the 2D modes at the two interfaces couple to
form a symmetric and an antisymmetric normal mode.
The dependence of the DHS phonon energies on the wave
vector q~ is a new feature compared to the constant
three-dimensional dispersion relation. The influence of
the two dielectric materials (E,,e2) is weighted by the fac-
tor y=exp( —qqd), and the relative strength is reversed
for the symmetric (antisymmetric) mode, as can be seen
from Eq. (7).

It is interesting to compare our results with the calcula-
tions of Fuchs and Kliewer, ' who calculated the potential
vibration modes of an ionic slab. Using both lattice
dynamics and using classical electrodynamics, they de-
rived a set of coupled integral equations for the optic pho-
nons. A solution was obtained by using trial wave func-
tions: a symmetrical and an antisymmetrical surface
mode (decaying exponentially from the interface) and
sinusoidal bulk LO phonon modes with. nodes at the inter-
faces. Fuchs and Kleiwer also found qj-dependent sur-
face mode dispersion relations.

In contrast to the calculations of Fuchs and Kliewer
our approach uses the energy-loss method (described
above), applying a modified image-charge ansatz for the
potential of a test charge. The quantum-mechanical
Frohlich interaction Hamiltonian is directly derived. As
an input bulk dielectric functions of the layer and the sur-
rounding material are used. In this approach, the possi-
bility of working in (qz, z) space makes the calculations
quite simple, for arbitrary bulk dielectric materials. How-
ever, it should be mentioned that an extension of the
method introduced .by Fuchs and Kliewer is expected to
yield analogous results.

In the following the theory is applied to a GaInAs-InP
double heterostructure. The interface phonon energies
and the 2D form factors for the Frohlich interaction [Eq.
(19)] are compared. The results are used to explain recent
magnetophonon experiments.
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ter a =q j d describing the relation of the layer thickness to
the phonon wavelength (-1/q~ ) parallel to the interface.

Figure 1 shows the phonon energy spectrum as a func-
tion of a, revealing the characteristical features of DHS
phonons. The modes can be separated into an InP-like
[Fig. 1(a)] and a GaInAs-like sector [Fig. 1(b)]. The solid
lines correspond to the bulk LO and TO phonon energies
(the InP bulk mode, however, does not couple directly to
the electrons in the DHS and is shown only for complete-
ness). The dashed lines indicate the symmetric and the
dotted lines the antisymmetric modes, respectively.

For a « I, i.e.,—for long phonon wavelengths or small
layer widths, the symmetric DHS phonon corresponding
to the layer material (GaInAs) is damped down to the TO
phonon energy T~. The InP mode, on the other hand, ap-
proaches the bulk value I z. This can be interpreted as a
transition from 2D to 3D interaction with the surround-
ing material for long wavelengths.

The antisymmetric modes show the opposite behavior:
For a—+0, the mode corresponding to the layer material
converges to its bulk value, whereas the InP mode is
damped down to the TO phonon energy T2. This "an-
tisymmetric" behavior is evident from the second and the
third 5 function in Eq. (7), which have been discussed
above.

For short wavelengths (a~ 00) the DHS phonon ener-
gies converge to a constant value, which is the single in-
terface limit. This behavior is easily explained by the ex-

A. Application to Ga~ „In„As-InP
e ~ ~ ~ ~ ~ ~ 0 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

The numerical calculations are performed for a
Ga05Ino 5As layer embedded in InP. Although it is well
known that GaInAs is a two-mode material, the lower
mode is neglected for simplicity. This is justified since
for the given composition it couples much weaker to the
electrons than the upper mode. The material constants
are taken to be L ~

——34, T& ——31.7, L2 ——43, Tz ——37.6 (all
in meV), eP = 11.35, and e2 ——9.56.

Generally it can be said that the properties of the DHS
phonons depend essentially on the dimensionless parame-

0

FIG; 1. DHS phonon dispersion relations versus qjd, for a
GaInAs-InP structure and correspondingly with an (a) InP and
a (b) GaInAs phonon sector. The dashed lines indicate the sym-
metric and the dotted lines the antisymmetric interface phonon
modes.
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FIG. 2. Symmetric two-dimensional form factors F(oo) for
the Frohlich interaction versus qqd. The circles indicate the in-

teraction with 3D phonons, the solid line the bulk GaInAs layer
phonons, the dashed and the dotted lines the InP-like and
GaInAs-like interface phonon interaction.

q

FIG. 3. Asymmetric two-dimensional form factors F~(0 ~) for
the Frohlich interaction versus q~d. The solid line indicates the
interaction with GaInAs bulk phonons, the dashed and the dot-
ted line the interaction with InP and GaInAs antisymmetric in-
terface phonons.

ponential decay of the 2D phonon amplitude with the dis-
tance from the interface, which implies decreasing influ-
ence of the second interface for y =exp( —q3 d )~0.

Figure 2 shows the symmetric 2D form factors F~&z 0~ as
defined in Sec. IV, which represent a reasonable measure
for the effective coupling strength. For comparison, the
circles indicate the corresponding interaction with 3D
phonons.

The interaction with the InP-like mode (F+ ) ap-
proaches the 3D value for a~0, describing the 2D~3D
transition. For the GaInAs modes it can be seen that over
the whole regime the bulk interaction (solid line, Fb) is
considerably stronger than the interface phonon interac-
tion (dotted line, F ). This is due to the fact that the
DHS phonon energy is closer to the TO phonon energy,
which corresponds to weaker polarity.

For a & 1.5, the interaction with the layer bulk phonons
becomes relatively larger than the coupling to interface
modes from the surrounding material. For still higher
phonon momenta, the interaction with bulk layer phonons
approaches the 3D value, whereas the interface form fac-
tors decrease more rapidly. For absolute estimations,
however, it should be mentioned that in the total interac-
tion strength also the basic polarity of the material enters
via UqD. The form factors describe the general properties
and the influence of the third space direction.

In Fig. 3 the antisymmetric form factors for the inter-
subband coupling (F~~p ~~) are shown as a function of a.
Over the whole regime, the coupling with GaInAs bulk
modes (solid line) is much stronger than the interaction
with the two GaInAs (dotted line) and InP (dashed line)
interface phonons. In contrast to the intrasubband in-
teraction (Fig. 2), the (0-1) form factors F+ are of the
same order.

S. Magnetophonon effect

The magnetophonon effect describes the resonant opti-
cal phonon scattering between Landau levels. It

represents an exact tool for the determination of polar-
optical phonon energies in solids. Tsui et al. were the
first to observe the magnetophonon effect in 2D electron
systems. The experimental results were quantitatively
well explained by the theory of Lassnig and Zawadzki. 6

Portal et al. detected two series of magnetophonon os-
cillations in Ga047111Q 53As-InP superlattices with d =80,
100, and 150 A and InP layers of 400 A. For the lower
"GaInAs" series they found duo=33. 6 (32.9) meV for a
150 (80) A sample. The energy decrease for lower d
values can be well explained by the increasing influence of
interface phonons for d —&0. One observes a mixture of
the bulk and interface phonon interaction, which is
weighted by the symmetric form factors shown in Fig. 2.

For the higher "InP" mode the energy was found
around 43 meV. The coupling mechanism of InP-like
modes from the surrounding material into the layer has
been well explained in the present work. However,
theoretically a somewhat lower interface phonon energy is
expected, as can be seen from Fig. 1(a). The remaining
discrepancy is possibly due to an incorrect description of
nonparabolicity.

The asymmetric phonon modes can, in principle, only
be detected in intersubband experiments, but have to our
knowledge not been observed until now.

The effect of interface grading or surface roughness
does not essentially alter the results obtained for the ideal
interface, at least for phonon wavelengths larger than the
irregularity dimension. In addition, the penetration of the
electronic wave function into the InP, which allows a
direct interaction with InP bulk modes, is weak since the
bulk phonon amplitude close to the interface is very small.
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