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The incoherent diffusion problem is studied on one-dimensional chains where both trapping and
diffusion follow locally a regular Pick s law. When disorder parameters are included in the calcula-
tion, the analysis of the results of picosecond transient-grating experiments displays different
behavior depending on the interfringe distance of the transient grating. We propose various theoret-
ical considerations which hold in the general case. We derive an exact calculation of the observable
effects in the case of shallow traps and uniform diffusion. Starting from a computer simulation, we
consider the general case involving both diffusion and trapping on various segments. We show that
the consideration of the small- and large-interfringe-distance limits is quite fruitful and leads to an
experimental determination of the basic parameters of disorder, such as the mean diffusion lengths,
the trap-to-trap distance, the trapping radius, and the diffusion coefficients. This work reveals the
great efficiency of picosecond transient-grating techniques when one deals with one-dimensional
disordered systems. Additionally it demonstrates that care should be taken in experiments involving
interfringe distances that are of the same order of magnitude as the characteristic lengths of the
problem.

I. INTRODUCTION

The recent development of ultrafast picosecond spec-
troscopy introduced a powerful tool for the study of ener-

gy migration or transport in condensed m@tter. Although
transport phenomena such as one- or three-dimensional
semiconductors, chemical reactivity, diffusion, and chemi-
cal reactions in porous media, etc., concern different fields
of study, all these processes are closely related to the more
general problem of disorder in condensed phases, where
the existence of both diffusion or transport and trapping
impurities interact in an intricate process. '

From a general point of a view, most of the reported
experiments have been unable to bring a real quantitative
description of the basic mechanisms governing the inter-
play between transport and trapping. This is mainly due
to the fact that in all these works the characteristic length
scale of the measurements was much larger than the aver-
aged mean diffusion length, thereby leading to a macro-
scopic understanding of the processes. In turn, the essen-
tial characteristic parameters of the disorder could never
have been estimated through analysis of these experi-
ments.

The introduction by Fayer et al. ' of picosecond tran-
sient experiments opened a new field of growing interest.
As far as solid-state or viscous materials are concerned,
the ability of picosecond transient-grating experiments to
provide both good time, as well as space, resolution may
be a definite advantage when dealing with disorder prob-
lems.

In particular, the geometrical resolution of a typical
transient-grating experiment (up to 0.2 pm) turns out to
be, in most instances, of the same order of magnitude or

smaller than the mean distance between dislocations and
traps in many materials. Keeping this important feature
in mind, the basic equations governing the process must
be reconsidered. The main purpose of this paper is to pro-
vide a theoretical basis for understanding these transient-
grating experiments on systems displaying these kinds of
inhomogeneities.

Following a conventional macroscopic approach for in-
coherent energy diffusion in one-dimensional material, a
continuous-decay process occurring simultaneously with
diffusion is assumed. Under these circumstances, the
time dependence of the excited-state distribution N (x, t) is
described using the classical Pick's law:

dN(x, t) d N(x, t) N(x, t)
Bx

where D stands for the diffusion constant and r stands for
the excited-system lifetime. Following this macroscopic
scheme, both parameters D and z are considered to be
constant throughout the diffusion range. As shown re-
cently, picosecond transient-grating experiments turn out
to be unique in the sense that they can provide separate
information about the decay times and the diffusion con-
stants D. Actually, these experiments consist of intersect-
ing two coherent laser beams on the sample at time t =0
and at angle 8, producing a sinusoidal distribution of ex-
cited states in the sample with a period A given by

A=
2 sin(8/2)

where A, is the wavelength of the excitation laser. In turn,
this distribution acts as a transient grating which is able
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to diffract a delayed probe beam, the intensity of which is
monitored so as to obtain a direct measurement of the
grating printed at time t =0. Now, the contrast of this
grating decays following two competitive processes. The
first deals with the normal decay of the excited states in
the material, and the second relates to the diffusion pro-
cess whereby the excited maxima tend to transfer energy
to the unexcited part of the sinusoidal distribution. Under
these circumstances, the decay of the probe-beam intensity
has been shown to follow an exponential law with a time
constant To given by

/

(;((A

1 1 4m. D (1.2)

As shown previously, a set of experiments involving
various angles 8 gives a straightforward estimate of both
the decay times ~ and the diffusion constants D.

As far as homogeneous material, or systems where the
inhomogeneities are much smaller than the characteristic
length parameter (A) of the measurement, are concerned,
these equations are expected to give a realistic description
of the involved process. The question of whether the A
interfringe distance is of the same order of magnitude or
smaller than the, various pertinent distances in the sample
is still to be answered. In turn, as we show in the follow-
ing, the interpretation of the transient-grating experiments
can elucidate unique information about the very nature of
the disorder in these materials.

Before dealing with more quantitative estimates of the
various processes likely to be encountered in real materi-
als, we first give a definition of and better insight into
what, in the following, we call the small- and large-
interfringe-distance limits.

A. Small- and large-interfringe-distance limits
in transient-grating experiments

As far as transient-grating experiments are concerned,
we must distinguish two extreme separate cases which can
be solved by starting from simple arguments. The first
deals with highly disordered systems where the mean free
path for diffusion or any other characteristic length of the
problem turns out to be much smaller than the distance A
between two maxima at time t =0 of the printed excited-
state grating.

Considering the basic equations of the problem, if D;
stands for the diffusion parameter at abscissa i and if D;
is supposed to run over a homogeneous segment i, the
length of which is l;, the transient-grating signal is ex-

' pected to decay exponentially with a single time constant
TL given by

(1.3)

as far as any I; is smaller than the interfringe A (see Fig.
1).

In turn, if the characteristic diffusion lengths are much
larger than the experimental interfringe distance A
(small-interfringe-distance limit), we will obtain a

(; )) A

FIG. 1. Diagram showing the interplay between the inter-
fringe distance A and the mean diffusion length I;.

transient-grating signal S which decreases following a
multiexponential decay given by

g l;exp( t4m D;/A)—
2

(1.4)

In other words, the large-interfringe-distance limit is, as
far as the detailed nature of the disorder is unknown,
equivalent to the classical result reported in Eq. (1.2).
Seen from the experimental point of view, disorder seems
to be averaged due to the lack of spatial resolution.

On the contrary, the small-interfringe-distance limit al-
lows us to gain insight into the very nature of disorder
due to the nonexponential behavior of the signal.

It turns out that both Eqs. (1.3) and (1.4) contain an ex-
cessively large number of unknown parameters which are
very difficult to extract from experimental results. Our
purpose now is to reduce the number of the pertinent pa-
rameters by considering real experimental situations.

B. Parameters of the problem: Some real situations

Seen from a purely mathematical standpoint, the solu-
tion of the most general situation would involve the com-
plete resolution of Eq. (1.1) where both D and ~ would de-
pend on the x coordinate. Various attempts have been
made in this regard. In particular, the problem where the
diffusion constant continuously changes on the x axis has
been solved at least in the case of particular depen-
dences. '

Fortunately, it happens that the real problem can be ap-
proached most simply by considering only two kinds of
domains involving both diffusion and decay in a classical
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scheme. Figure 2 shows a number of important situations
where only a pair of different constants must be con-
sidered. This is mainly due to the fact that we are consid-
ering essentially two different processes, i.e., diffusion (or
transport) and trapping. As explained in the caption of
Fig. 2, all the cases considered can be computed using
only two different pairs of parameters. Di,Dz and wi, r2,
including, of course, the diffusion lengths li and l2.
Now, if we refer to Fig. 2 we can describe all cases, (A),
(8), (C), and (D), as follows:

(A) Di D2——D(n——onzero), wi
——ao, and finite Ti, '

(B) Di&0, D2=0, ri ——ao, and finite wz,

(C) Di&0, D2 ——0, and ri 12= o——o
(D) Di&0, Dp&0, and vi r2 ——ao .——

Actually, case (A) can be completely solved analytical-
ly, whereas cases (B), (C}, and (D) involve very cumber-
some calculations. In order to give a complete description

«p»

of the expected effects involving the general case when
D„D2 and ~i,~2 are all nonzero or infinite, we have dealt
with the most general case by setting up a computer simu-
lation as described in Sec. IV. However, various pertinent
and general conclusions can be extracted from the con-
sideration of the general mathematical problem. In addi-
tion, a complete calculation dealing with case (A) will lead
to a better understanding of the processes.

D(x) + N+ =E,aN
ax ax ~(x) at

= (2.1)

where the diffusion coefficient D(x) and lifetime ~(x) de-
pend on the x position in the linear system. Since Eq.
(2.1) depends linearly on N, its solutions can be written as

N(x, t) = f f E(x', t t')G(x, x—';t')dx'dt' .

Our purpose here is to determine the properties of the
Green response function from those of D(x), r(x); con-
versely, we will analyze the characteristic parameters of
the system which can be derived from picosecond
transient-grating experiments.

II. GENERAL TRENDS:
ANALYTICAL SOLUTIONS

The excited-state density N (x, t), which is created by an
external excitation E(x, t), is governed by the following
differential equation:

A. Time evolution of the excited-state density

Considering Eq. (2.1), we tentatively define a diffusion-
trapping (DT) operator H,

«D»

H= — D(x}
Bx Bx

which allows us to rewrite Eq. (2.1) as

(H iso)N'(x, to)—=E'(x,co),

(2.3)

(2.4)

(0)

FIG. 2. Schematic illustration of the various relevant pro-
cesses displaying both diffusion (transport) and (or no) trapping.
Case (A) corresponds to a diffusion process in a material where
the D parameter is constant and extends over all traps (shallow
traps). Case (8) deals with a material containing deep traps:
The diffusion occurs with a constant diffusion parameter, and
the trapping process is irreversible. Case (C) refers to a material
containing dislocations: The system is made up of isolated sys-
tems where the diffusion occurs freely. Case (D) shows the ex-
ample of a purely heterogeneous linear chain displaying two dif-
ferent diffusion constants D~ and D2.

(2 5)

In turn, N(x, t) may be calculated from

N(x, t)= f dt'g P„ f e '~" ' 'E'(x co}de
n

where N'(x, co) and E'(x, co) are time Fourier transforms
of N(x, t) and E(x, t), respectively.

Provided that the systein is periodic with a sufficiently
large period I., and that the Born cyclic conditions are
taken into account, the DT operator H is Hermitian; let
g„and h„be its normalized eigenfunctions and values,
respectively. As D (x) and w(x) are strictly positive, it fol-
lows that all the h„are also strictly positive.

We define P„as the projection operator on g„. Equa-
tion (2.4) becomes
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Since the set of the h„eigenvalues is always positive, we
can write

G(t)=B(t)e ~',

or, more classically,

(2.7)

G(x,x';t) =B(t) g P„(x)e "P„*(x')
n

(2.8)

This equation confirms the idea that the decay of the
response function is made up of an infinite number of ex-
ponential functions excluding any oscillatory behavior.

f . dto=B(t)e
h» —t C0

where B(t) is the usual Heaviside unit step function.
Then Eq. (2.2) may be symbolically written as

N(x, t) = f dt'G(t')E(x, t t')—, (2.6)

where G (t) is now an operator defined by

Considering Eq. (2.13), we can isolate three interesting
properties of the Green function Gq q (t).

(i) In particular, near the time origin we find

Gq q
(0+)=5« q and Gq q (t )0)~6« q, (2.15)

and, consequently, Rq(0+) =aq. Therefore the excited-
state density that can be observed immediately after a
very short excitation pulse will exactly mimic the spatial
distribution of the excitation.

Considering Eq. (2.15), it is important to remark that
the experimental conditions for observing the diffracted
light may elucidate much interesting information. In oth-
er words, if we analyze the diffracted light under normal
Bragg conditions, the signal will show up immediately
after the excitation pulse. In turn, the analysis of the dif-
fracted light at other angles will exhibit a time lag which
is likely to give information about the disorder charac-
teristics of the system.

(ii) Now, if we consider the first-order derivative

Gq q (t), and introduce

B. Transient-grating experiment:
intensity of the diffracted light

V(x) = 1

r(x) '

we find

(2.16)

E(x, t) = 1+cos +pe(t) 27TX

2 A
(2.9a)

In a transient-grating experiment, the E(x, t) distribu-
tion can be factorized as

dGq q (t)
dt

[qq'D(q —q')+ V(q ——q')] (2.17)

As we shall see later, N (x, t) can be approximated as

N(x, t) =No(t)+ Ni(t)cos +p'2&X

A

N(x, t) = g Nq(t)e'q" . (2.10)

The Nq(t) components are deduced from e(t) by convolu-
tion with a response function Rq(t):

N, (t)= f R, (t')e(t t')dt' . — (2.11)

Equations (2.8)—(2.11) allow us to obtain Rq(t) by making
the identification

No(t) and N&(t) result from a convolution of e(t) with
two different Green functions. In a general way, the E
and 2V distributions can be expanded as

E(x, t) = e(t) g aqe'q" (2.9b)
q

where D(q) and V(q) stand for the space Fourier
transforms of D(x) and V(x). Particularly, at q =q' we
find

dGq q(t)

, t=0+
q'(D (x) )+, (2.18)

~(x)

which obviously leads to the well-known results when D
and r are independent of x.

(iii) At long-time values, the Gq q(t) function ends up in
a single exponential decay, the exponent of which is given
by the smallest eigenvalue h„, for which @„q is non zero.

The diffracted-light intensity I«(t) is proportional to
the squared modulus of Nq(t) [cf. Eq. (2.11)]:

Iq(t)= ~ ~Nq(t)
~

(2.19)

For a very short pulsed excitation, Nq(t) is proportional
to R«(t), and Iq(t) is simply a sum of cross products of
G«q (t) [cf. Eq. (2.12)]:

Iq(t) =P g aq'aq"Gq q'(t)Gq q'(t) (2.20)
q', q"

Rq(t) = g Gq q (t)aq'
q'

where

Gq q (t)= g @q „e "~C&q „
n

and

L
@q „=~ f e '«"f„(x)dx .

(2.12)

(2.13)

(2.14)

In a transient-grating experiment, there are only three
nonzero aq components [cf. Eq. (2.9a)]:

1 lgao ——T, aq ——e /4, a q
——aq

where qo
——2m /A.

The y phase is a measure of the relative position of the
holographic grating and the linear chain. The average
value over a large number of experiments involving ran-
dom y phases will lead to
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(I,(t) ) =
( Gq, q, (t) )

+4
) Gq, 0(t) ( D;

' —( V; —h„ t )g„g ——0 .
d'P. , t (3.4)

+/Gq, , q, (t)f g 21) They can be written as

g„~=A;e ' +8;e (3.5)
This averaged function over many experiments should

be equivalent to considering a single experiment on a ran-
dom chain with the same values for (D(x)) and for
&1/ ( )&.

These parameters can be separately evaluated by per-
forming experiments at different A values of the transient
grating. Immediately after a very short excitation pulse,
Iq (t) is only governed by Gq q, (t) because the other two

terms Gq 0(t) and Gq q (t) turn out to be proportional

to time, so that

Equation (3.4) resembles a constant-potential Schrodinger
equation. This analogy is not perfect because the
equivalent of the particle mass (1/2D;) may differ in both
regions. Furthermore, the continuity conditions between
two regions differ slightly from those of quantum
mechanics because excited-state current depends on dif-
fusion coefficient: g„~(x) and D(x)(Bg„t,/Bx) are con-
tinuous at the boundary. Nevertheless, this model resem-
bles that of Kronig and Penney, and its solution is very
similar. Let V~ be lesser than or equal to Vz, and we in-
troduce

Iq, (t)

Iq, (0)
=-2 (c»', ,*+p) i. (2.22)

III. PERIODIC ONE-DIMENSIONAL
MODELS

The response function of the system is determined by
the set of the eigenvalues and eigenfunctions of the
diffusion-trapping operator [Eq. (2.3)]. These quantities
cannot be evaluated analytically in a random system.
However, the response function of a stationary (versus x)
random system is very close to the average of response
functions of periodical systems which are built up with
the same elements and the characteristics of which are
equal to the averaged properties of this random system. It
is the reason why we present here a short study of the
response of some periodical systems. Let 1 be the period
of the system. As in solid-state physics, the eigenvalues
of the DT operator form a band structure. They are la-
beled with two indices in the reduced-zone scheme: n, a
band number; and k, a one-dimensional "vector" in the
Brillouin zone:

Hf. , t =h.,a4., t . (3.1)

Partial Green functions of Gq q (t) may be then written as
[cf. Eq. (2.13)]

G (t)=QC .„ge
n, k

(3.2)

2'
k =q +m (m integer) .

l
(3.3)

All the models which are described in Sec. I exhibit two
kinds of regions where D and r are constant. Let li and
lz be their averaged lengths in the random chain. The
unit cell of the simplest periodic chain that best simulates
the random one is made of two zones. Their lengths are
li and lz. In each region i (1 or 2), the eigenfunctions are
solutions of

Owing to the selection rules, matrix elements 4q p k are
nonzero only if

As in quantum mechanics there are three possibilities for
h„ i, to solve Eq. (3.4). The first, when h„ t, is lower than
V~, has no normalizable solution. In the two other cases,
we find, for Vi & h„ t, & V2,

sin(k, 1)
cos( k i 1)+P =cos(kl),

1

(3.9)

where

llzP=
2wzD)

(3.10)

P is a dimensionless parameter which does not depend on
Dz, this is natural because region 2 is too narrow to let ex-
cited states be diffused. The h„ t, exponents can be writ-
ten as [Eq. (3.6)]

h„i, ———+kiD,1

7 ]

D]k ) —D2X22 2 2

cos( k i1i )cosh(K212)—
z

X sin(k i1i )sinh(%21' )=cos(kl), (3.7)

and for Vi & V2&h„q,

D)k )+Dzkz
cos( k i1i )cos(kz1z )—

1 1 2 2

X sin(k i 1 i )sin(k2lz ) =. cos(kl) . (3.8)

Thus, Kronig-Penney-like models can be completely
solved. The entire set of exponents is determined by Eqs.
(3.6)—(3.8). The Bloch theorem and continuity conditions
determine the A; and B; coefficients of g„t, [Eq. (2.5)]
and, consequently, Gq q (t)

We have studied more precisely the particular case
when region 2 is very narrow but has a very short lifetime
so that 12/qz cannot be neglected. This is an excited-state
recombination-center model. Equation (3.7) then becomes
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2Hto
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(3.17)
where

(3.12) by noticing [cf Eq' (3.10)]

I, lg
(-', )

=-'
and

(3.13)
f2
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Under these' circumstances, the relevant parameters are
the following.

(1) The central value of the cluster lengths (li, lq), the
distribution of which is supposed to be Gaussian with
variance measured by hl, and hi&.

(2) The relative concentrations of the two types of seg-
ments which are randomly introduced in the elaboration
of the chain:

1,2

X)+N2
(4.1)

(4.2)

(3) The diffusion constants Di and D2 relative to the
diffusion (or transport) process along segments 1 and 2.

(4) The lifetimes ri and r2 corresponding to the decay
of the excitation on the two segments.

In order to simulate the transient-grating experiment, a
periodic grating of excited states is impressed on the chain
at time t =0 with a sinusoidal distribution following

N~ (Nz) being the number of segments labeled 1 (2).
Another relevant definition for concentration refers to the
number of particles pertaining to the segments, defined by

ponential decays. In order to reveal the deviation of the
exponential law, which we expect in disordered materials,
the time dependence of the diffracted-light intensity has
been plotted on a semilogarithmic scale.

In the following we shall describe the results obtained
for typical disordered models.

B. Results of computer simulation

We have checked the validity of the iteration procedure
in the above-described computer simulation by solving the
classical Fick s diffusion equation where the system con-
tinuously diffuses and decays along the chain. The results
of these calculations are reported in Fig. 4. As expected,
we find a pure exponential behavior, the time constant w,
of which is given by Eq. (1.2). This accurate fit provides
a firm support for more complex situations.

In our computer simulation we restricted the problem
to two types of segments so that Eqs. (1.3) and (1.4) re-
duced to, in the large-interfringe-distance limit,

(4.5a)

where

N(x, t =0)= —,
' [1+cos(2mx/A)] . (4.3) =2 C', +(1—C', )

1,1, l
T Tj Tp

As time passes, the excited-state grating will evolve ac-
cording to a pair of differential equations similar to Eq.
(1.1), but with dhfferent parameters on different segments.
Taking into account the necessary boundary conditions
between two adjacent different segments, it can be shown
that the computer solution may be obtained by using an
iteration procedure following

N(xt, tj ) =N(x;, tj i) 1—dt

and

4m Di=—+
T1,2 +1

and, in the small-interfringe-distance limit,

IS cc C i exp — + (1—C i )exp-
T$ T2

(4.5b)

(4.5c)

+D;dt [N (x; i,t~, ) +N (x;+ i,tj, )

—2N(x;, tj i)], (4.4)

Id
100

where i refers to the label of the segment, and j corre-
sponds to the number of the iteration cycle.

In order to obtain significant results, our calculations
were performed on sufficiently long chains containing
several thousands of particles. Spurious end effects were
avoided using the classical cyclic Born conditions.

It is worth noting here that the computer simulation in-
troduces an artificial quantization of the diffusion pro-
cess. As the invoked process is necessarily incoherent, it
becomes clear that this quantization does not correspond
to any realistic feature.

The intensity I~ of the diffracted light is then calculat-
ed after each iteration cycle by squaring the first-order
real Fourier-transform coefficient of the distribution
N(x, t) This procedu. re has been applied in various
relevant situations depicted in Fig. 2.

It was reported earlier that the classical Pick's diffusion
law regarding homogeneous media gives rise to pure ex-

500 1000 2000 Time t/to

FIG. 4. Results of the simulation for diffusion and trapping
processes in an homogeneous medium: diffracted-light intensity
versus time for different values of the interfringe spacing (the
simulations have been performed with the following set of pa-
rameters). D dt =0.2, and the following A values (in a.u.): a,
84; b, 60; c, 48; d, 28.



7112 A. BOURDON, J. DURAN, F. PELLE, AND D. de VIRY 30

The consideration of these equations in the extreme
cases of short and long times can elucidate interesting in-
formation. In particular, it can be easily shown that the
slope at the origin of the decay curves will provide an
averaged quantity involving both diffusion and decay pro-
cesses weighted by the relative concentration of the two
types of domains, as has been demonstrated in Sec. II.

This result also applies in the small-interfringe-distance
limit as well as in the large-interfringe-distance limit, and
we obtain

100

C2

BS
Bt

Ci, 1=2 +(1—Ct)
1 2

(4.6)

where A/d &~ 1 or A/d && 1.
The asymptotic behavior of the decay curves is also

quite meaningful, at least in the small-interfringe-
distance —limit case: in dealing with Eq. (4.5), we assume
that a long time after the excitation pulse the system will
display the behavior of a unique exponential because the
other processes will have ceased. Thus, at long times after
the excitation, we find

lnS =21nCt t!Tt, — (4.7)

1. Case (8): Homogeneous diffusion outside deep traps

This situation corresponds to the very commonly ob-
served systems where the incoherent diffusion process is
perturbed by the existence of deep traps (e.g., III-
V—compound semiconductors). It should be noted here
that our computer simulation takes into account deep
traps corresponding to domains where diffusion does not
occur (D2 ——0) and where the excitations (or the particles)
disappear with a time constant ~2. On the other segments
the migration is governed by a classical diffusion law with
a D t parameter and an infinite lifetime rt.

The results of the computer simulation are depicted in
Fig. 5. In the large-interfringe-distance limit (A/d &&1),
two time domains must be considered. At first, at short

which, extrapolated to time 0, gives a very convenient
method to measure the trap concentration CI. As will be
clear in the presentation of our results, we have been able
to check this result in all the relevant examples we have
calculated (e.g., Fig. 2).

Another remarkable feature of this asymptotic behavior
is related to the experimental observation of the so-called
large- and small-interfringe-distance limits. As can be
seen on the calculated curves, the preceding formula is
quite sensitive to the A/d ratio. In other words, and from
the experimental point of view, observation of the depen-
dence of the extrapolated value (at time 0) on the
interfringe-distance value while decreasing A turns out to
be very convenient. The observation of the stabilization
of the extrapolated curve will coincide with the oc-
currence of the small-interfringe-distance limit.

Apart from these considerations, which hold for the en-
tire set of the different experimental situations depicted in
Fig. 2, we shall now consider cases (B), (C), and (D), for
which we performed the complete simulation, separately,
whereas case (A) was treated analytically in Sec. III.

500 1000 1500 2000 Time t/to

FIG. 5. Homogeneous diffusion outside fast decaying traps:
variation of the diffracted intensity with time for different
values of the interfringe spacing. The set of injected parameters
was concentration of traps C2 ——0. 18, diffusion constants
D1 dt =0.2 and D2 dt =0, decay time dt/~2 ——10, and domain
lengths and variances L& ——50, AL& ——5 and L2 ——10, AL2 ——2.
A/d values are as follows: a, 1.40; b, 1; c, 0.80; d, 0.47.

times the excitation (or particles) slowly diffuse in the
homogeneous segments. They are then trapped in deep
traps and disappear following a fast decay process with a
r2 time constant. At the end of the process the initially
impressed excitations on the deep traps have disappeared;
they are only fed by the normal diffusion process from the
homogeneous segments, giving rise to a slower decay pro-
cess, as can be realized from Fig. 5.

In the small-interfringe-distance limit (A/d «1), the
two processes are completely separated, and, according to
Eq. (3.8), the extrapolation of the slow diffusion process
at time t =0 allows us to determine the concentration of
the trapping centers in the linear chain.

2. Case (C): Homogeneous diffusion outside traps

This case relates to homogeneous segments separated by
randomly distributed defects, and also to materials con-
taining ill-crystallized or dislocation zones where neither
diffusion nor normal decay occurs. The results of the
computer simulation for this situation are shown in Fig.
6. In the large-interfringe-distance limit, the decay curves
nearly display an exponential behavior with a time con-
stant corresponding to an averaged value of the involved
diffusion and trapping processes according to Eq. (3.6).

In the small-interfringe-distance limit, the two steps of
the migration process are clearly separated. First, the
grating of the excited states impressed on the chain at
time t =0 is smoothed by diffusion on the homogeneous
segments so that the slope of the first part of the decay
curve is in good agreement with the classical theoretical
value given in Eq. (1.2). Actually, the traps act as walls
which stop the energy diffusion process so that the excita-
tion will move back and forth between the barriers. This
diffusion will stop when the distribution of the excited
states becomes uniform. Thus, in the second step the ob-
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FIG. 6. Homogeneous diffusion outside traps. Transient-
grating —diffracted intensity versus time corresponding to vari-
ous interfringe distances. Cq ——0.5, D~ dt =0.15, D2 dt =0,
7 )= ao, 'Tp= oo, and L~ ——50, AL~ ——S and Lp= 10 M p=2.
A/d values are as follows: a, 1.40; b, 1; c, 0.80; d, 0.47.

FIG. 7. Inhomogeneous diffusion without trapping effect.
Transient-grating —diffracted intensity versus time for different
values of interfringe spacing. C& ——0.48, D& dt =0.07,
D2 dt =0.01, ~j ——oo, ~2 ——~, and L

&
——50, LhL

&

——5 and
Lp ——50, dd;p ——S. A/d values are as follows: a, 0.84; b, 0.60; c,
0.48; d, 0.28.

served signal will only vanish corresponding to the decay
process in the traps (if any). Consequently, the mean
value of the length of the domains (mean diffusion length)
can be extracted in the small-interfringe-distance limit
from the interfringe spacing A. Another important pa-
rameter which is of practical interest in real situations can
be obtained from the decay curve; the extrapolation at
r =0 of the decay curve at long times after the excitation
will still .provide the determination of the trap concentra-
tion.

3. Case (D): Inhomogeneous diffusion

This model refers to case (D) in Fig. 2 and corresponds
to two kinds of domains randomly distributed along a
one-dimensional chain. Both are considered as purely dif-
fusive with diffusion constants Di and D2, In this case
no trapping effect is involved. The simulation of the
transient-grating experiment has been achieved and the re-
sults are given in Fig. 7. The time behavior of the dif-
fracted intensity by the grating in the large-interfringe-
distance limit is exponential: The diffusion processes act-
ing on the two domains are averaged, and the decay curve
does not reflect the inhomogeneous character of the sys-
tem. On the other hand, as the A/d ratio decreases and
the interfringe spacing becomes of the same order as the
averaged lengths of the segments, the time dependence of
the diffracted intensity deviates from an exponential de-

cay. Under these conditions, the contribution of the dif-
fusion processes occurring in each type of segment are
clearly separated according to Eq. (1.3). The averaged
lengths of the domains are consequently available from
the analysis of these results, and as before, the concentra-
tion of the particles belonging to one type of segment is
obtained after the extrapolation of the second linear part
of the decay curve.

V. CONCLUSION

The physics of condensed materia'ls is currently more
and more concerned with the concept of disorder. The
geometrical disorder connected with the presence of im-
purities or traps significantly perturbs the energy- or
particle-transport properties. This feature opened a new
field of investigation dealing with potentially interesting
new devices such as amorphous materials (silicium or
glasses) and III-V—compound semiconductors.

The recently developed picosecond technology, and par-
ticularly the transient-grating method, is well suited to the
analysis of the properties of disordered one-dimensional
samples. In particular, the intrinsic spatial resolution as-
sociated with this technique allows one to introduce a
characteristic length for this kind of measurement.
Roughly stated, the system will appear disordered when-
ever the characteristic diffusion length of the material is
larger than the interfringe distance of the transient grat-
ing. On the other hand, under the opposite circumstances
the system will resemble a homogeneous material.

Actually, this basic idea underlies the entire theoretical
work developed in this paper. In order to relate our re-
sults to interesting real materials we focused our calcula-
tions on incoherent energy diffusion on linear chains
which involve shallow traps, deep traps, stopping defects,
and inhomogeneous diffusion.

The problem has been treated following two different
approaches. First, an analytical solution was proposed. A
pseudo-Hamiltonian and its related Green functions were
then derived for a periodic system where the diffusion
coefficient D and decay time depend on the x coordinate
in the linear chain.

A more general computer-simulation procedure was
proposed. Some particular cases corresponding to more
frequently observed situations were treated.

The results of the complete simulation as well as the
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analytical calculation clearly show the pertinence of the
A/d parameter. We have proved that a careful examina-
tion of the decay curves of the diffracted light allows one
to obtain an estimate of the trap concentration, the mean
trap distance, and, more generally, the characteristic dif-
fusion lengths.

The field of application of this technique has been
widely opened toward the analysis of the basic properties
of numerous practically interesting materials. It may con-
cern the basic mechanism of the photographic process, the
chemical reactivity on surfaces (catalysis problems), and

impurity problems in III-V—compound semiconductors. '

This work was mainly directed toward one-dimensional
systems. It may also be applied to two- or three-
dimensional diffusion, provided that a number of minor
modifications are made. ' This important extension is be-

ing currently worked out in our laboratory and the results
will be published in a planned, forthcoming paper. We
hope that the present work will initiate further effort in
this vastly interesting field which would deal further with
the relationship between transient-grating experiments
and disorder in condensed matter.
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