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Electrons in surface states are usually treated decoupled from lattice motion. In reality, that cou-

pling is at least as important as in the bulk, and possibly much more so, for surface bands are gen-

erally narrower. We present here a theory of polaron effects on the dangling-bond states of the
Si(111)2)&1 reconstructed surface, probably the best-studied crystal surface in every other respect.
In view of the current debate over the nature of the reconstruction, we consider two alternative situ-

ations, ionic buckling (Haneman model) and covalent m-bonded chains (Pandey model). With pa-
rameters chosen to approximate as closely as possible the known experimental facts, the buckled sur-
face is found to be strong coupling with small surface-state polarons, while the m-bonded surface is a
relatively weak-coupling case. Among other things, the temperature-dependent red shifts of
optical-absorption lines predicted for the two situations are different by almost 1 order of magni-

tude. This study provides a first theoretical illustration of large- and small-polaron effects on sur-

face states. It could also specifically help discriminating between 2& 1 reconstruction models of the
Si(111)surface, when its temperature-dependent spectroscopy becomes available. We finally discuss
the general relevance of polaron effects in experimental surface-state spectroscopic studies, including
optical absorption and luminescence, as well as photoemission and scanning tunneling spectroscopy.

I. INTRODUCTION

The quantitative experimental detection of surface-state
energies on clean semiconductor surfaces has become pos-
sible in the last decade mostly by means of photoemis-
sion, ' and also via optical and energy-loss techniques.

At present, these experimental results are being com-
pared with very elaborate self-consistent one-electron cal-
culations, also in order to learn about the surface
geometry, which is generally unknown. The implication
is that effects not contained in one-electron calculations,
e.g., of the local-density type, can be disregarded, an as-
sumption which is not always obvious. While some work
has been devoted towards many-body effects, ' lattice-
reconstruction effects, ' and even surface electron-
phonon coupling, ' there seems to be no discussion avail-
able of polaron effects on surface states.

This paper is a first attempt to study the polaron effects
produced by coupling of the surface-state electrons (and
holes) to the vibrating surface lattice. For specificity, and
also because of high current interest in it, we have chosen
the clean Si(111)2X1 reconstructed surface as our work-
ing example. Since at least two widely discussed recon-
struction models —the buckling model' and the chain

model' —are available for the atomic structure of this
surface, we have decided to consider both of them. This
has been done also in the hope that our predicted behavior
could be sufficiently different for the two cases so as to al-
low some conclusions to be drawn from a comparison of
these predictions with existing or with future experiments.
We stress again, however, that although most numerical
calculations carried out in this paper refer to the 2X1
reconstructed Si(111) surface, our scope is much wider.
We intend to discuss and illustrate the relevant concepts
and the main consequences of the more general problem
of the surface-state polaron, such as one could also find,
for example, on a nonreconstructed surface or a metal sur-
face.

The structure of this paper is as follows. We first con-
struct the model Hamiltonian suitable for our purpose and
fix the parameters used. This is done in Sec. II A for the
buckling model and in Sec. IIIA for the chain model.
Both our model Hamiltonians are strictly one-electron
Hamiltonians, additionally involving coupling to a surface
lattice. While, of course, electron-electron interactions
may often be relevant in a real situation, they are not an
essential ingredient of the physical effects we want to
describe, and have thus been dropped. Two provisions
must, however, be made in this respect. One is that the
one-electron or hole states to be considered must always
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be energetically close enough to the gaI: or the Fermi en-

ergy in a metal —so that their lifetime, due in effect to
electron-electron interactions, is sufficiently long for any
lattice relaxation to play a role. The second provision is
that we will in fact reintroduce some effects of electron-
electron interactions when dealing with electron-hole pairs
bound to form an exciton. Of course, the electron-hole
Coulomb attraction is not contained in our Hamiltonian
and must be introduced separately to account for this im-
portant feature of the optical spectrum. ' Calculations
of such surface-state exciton binding energies and wave
functions are carried out explicitly in Secs. II C and III C.

The energy shift and the lattice deformation that occurs
when one extra electron or one hole—is injected in a sur-
face state, otherwise at equilibrium, are calculated for the
two models in Secs. IIB and IIIB. This state, i.e., a
surface-state electron (hole) plus its accompanying
surface-lattice deformation, is what we shall call a
surface-state polaron.

A surface-state polaron will also build up around a
bound electron-hole surface pair, i.e., a surface-state exci-
ton. This situation, which typically occurs in optical ab-

sorption, is, of course, not just the linear superposition of
the polarons of a free electron plus that of a free hole,
and requires separate calculations, which are carried out
in Secs. IID and IIID. The optical absorption itself is
calculated —as it is perhaps the most important conse-
quence of surface-state polarons of direct experimental
relevance —in Secs. II E and IIIE.

The results of Secs. II and III show that surface-state
polarons can have binding energies easily 1—2 orders of
magnitude larger than those in the bulk of the same ma-
terial. Thus, for example, the buckled Si(111)2&& 1 surface
is a strong-coupling case with self-trapped electrons and
holes —as in a bulk ionic crystal —while bulk Si is, of
course, a case of weak coupling. Comparison between
Secs. II and III, on the other hand, is useful in that it
shows how critically dependent on the detailed surface sit-
uation the polaron effects can be, and how they can be
handled in each case.

Finally, Sec. V is devoted to a discussion of situations
where surface-state-polaron effects will, or might, play an
important role. By analogy with known bulk situations,
one would expect important consequences on (a} transport
and (b) spectroscopy. Of these, transport is ruled out for a
surface-state problem: no known evidence has so far been

produced for it. One is then left with polaron effects on
surface-state spectroscopy. The most direct observation
of polaron effects is expected in optical absorption from
surface states. For increasing coupling strength, the na-

ture of the absorption process goes from band to band (as
in a bulk semiconductor) to Franck-Condon type (as in a
color center). ' This aspect is discussed in Sec. IVA.
The corresponding effects expected on luminescence are
briefly discussed in Sec. IV B, particularly in connection
with the contrasting behavior of the two models investi-

gated. The remaining subsections, IVC—IVE, are devot-
ed to speculations about possible new experimental conse-
quences of surface-state polarons. The ideas elucidated in
this last part are totally qualitative, and may or may not
turn out to have actual quantitative relevance.

A. The buckling model and its parameters

The surface geometry for the buckling model of
Si(111)-2&&1 (Ref. 18) is shown in Fig. 1. Alternate [110]
rows of surface atoms are displaced in and out with

respect to the "ideal" geometry. The outermost atomic
layer of each surface unit cell (a cell is labeled by the in-

dex n) contains one raised atom [labeled (n, l)] and one
lowered atom [labeled (n, 2)]. Each surface atom carries a
dangling-bond (DB) orbital, which we denote

~
n, i )

(i=1,2). As it turns out, ' the surface states of
Si(111)with energies close to the Fermi level have a very

strong DB character. Thus it is reasonable to restrict our
attention to DB orbitals in this case. The simplest picture
of a DB is a combination of s and p, wave functions, with
coefficients which depend on the distance H„; of the atom
from the second atomic plane,

2 1/2

~
n,i)=v6

~

si) + 1 —6
a a ~

p„i ), (2.1}

0

where a is the surface lattice constant (a =3.85 A). With
the choice (2.1},

~
n, i ) is an sp orbital when

H„; =Ho ——a/2V6 (the value for the "ideal" geometry),
while it reduces (a} to a p, orbital for the fully relaxed
case H„; =0, and (b) to a pure s orbital when

(n,1)

~M3a~

(b)

FIG. 1. Geometrical arrangement of surface atoms for the

buckling model of Si(111)2X1. Solid and open circles represent
raised and lowered first-layer atoms, respectively. (a) Top view,

a =3.85 A is the surface lattice constant along the [1TO] direc-

tion. (b} Side view, HI and Hz are the vertical distances of the
raised and lowered atoms from the second atomic plane (not in
scale}. (c}Surface Brillouin zone.

II. SURFACE-STATE POLARONS
IN THE BUCKLING MODEL

OF Si(111)2X1

In the following series of subsections, II A—II E, we in-

troduce and study polarons in a semiconductor surface
state. This will be done in the following sequence. First,
we introduce a one-electron Hamiltonian describing the
chosen model, i.e., that of a Si(111)2&(1buckled surface.
Then we study an electron or a hole in a surface state and

determine (a) the form and magnitude of the accompany-

ing lattice distortion, and (b} the energy shift (polaron

binding) caused by this distortion. Lastly, we consider, in

the same context, a surface electron-hole pair and the re-

sulting optical-absorption line shape, as modified by lat-
tice relaxation.
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where C = 12(«z —«, ), and «, and «z are the s and p atom-
ic energies.

As mentioned in the Introduction, we do not intend to
include electron-electron interactions in our calculation
(except when dealing with the exciton problem). In par-
ticular, for instance, the electronic part of the total energy
will be simply calculated as a sum of one-electron ener-
gies. The possible relevance of many-body effects in
buckling-type models has been discussed to some extent in
a few papers, ' ' and has been found to be important in
the determination of the relative stability of various sur-
face configurations (e.g., paramagnetic versus antifer-
romagnetic' ). Our point here is, however, to start with
the simplest possible scheme that would enable us to focus
on surface-state polarons, a one-electron effect. Thus we
just assume in this section that the buckled nonmagnetic
surface is the stable ground-state configuration of
Si(111)2X1,and we describe single-particle properties by
the model surface-state Hamiltonian:

m= g «;(H„;)
~
n, i &(n, i

~

n, i

+t g (
~
n, i &(m,j ~

+H.c.),
(ni, mj )

(2.3)

where t is the hopping integral, and (ni, mj & indicates a
restriction to nearest neighbors. Here electron-lattice cou-
pling is present through the dependence (2.2) of the on-site
energy on the atom z coordinate H„;. We wish to em-
phasize that this is by no means the only
electron —surface-lattice coupling mechanism to be expect-
ed in a real situation. For example, (2.3) does not include
the electrostatic coupling (Frohlich type ) that might
quantitatively play a role in this case, since the buckled
surface is strongly ionic. Restriction to the coupling (2.3)
helps greatly to simplify the problem, while in our view it
should not lead to important qualitative errors. Quantita-
tively, we expect (2.3) to somewhat underestimate the cou-
pling strength and thus the polaron binding energies.

For static and uniform buckling, i.e., «; (H» )
—=«;

(i = 1,2), the eigenvalues of (2.3) become

6') +6'2
E+ ( k ) = +2t cos( k.az)

2

H„; =2Ho=a/v 6, for then the angle between each pair
of backbonds is m/2. The DB energy depends on atomic
position, in the form

2

(2.2)

where the c;+'s are calculated using the Bloch eigenstates
corresponding to (2.4). The general expression for a~„ is
quite involved. However, we can exploit the fact that the
"gap" («2 —«i) is sufficiently larger here than the band-
width (4t), and expand to lowest order in a. Then the
functions a+„ take the form

a „=(n, 1&+a g ~m, 2&,
(m2, nl)

a+„= ( n, 2&+a g ~
m, 1 &,

(ml, n2&

(2.7)

(2.8)

rameters t, «i, and «z for Si(111)2&&1. The results of
several calculations have shown that the width of the DB
bands for the buckling model is quite small, typically a
few tenths of an electron volt. ' ' This is partly due to
the large separation between surface atoms, nearest neigh-
bors on the surface being bulk second neighbors, but also
to a strong cancellation effect. While the direct hopping
has a negative sign, there is an indirect hopping term via
second-layer atoms that is of opposite sign and slightly
larger in magnitude. The latter is sufficiently large to
offset the former, but the ensuing cancellation makes the
surface band of Si(111) particularly narrow. Assuming
thus that t & 0, the width of the lower band in our model
band structure is B =4t. We take t=0.075 eV, result-
ing in 8 =0.3 eV, a value in the range of current esti-
mates. The appropriate value of «z —«i, on the other
hand, can be determined a posteriori, by requiring that the
calculated absorption peak position fit the experimental
value, fun-0. 45 eV. This requires, as will be shown
later, e2 —e&-1 eV. With these parameters our model
band structure (2.4) is shown in Fig. 2. A useful dimen-
sionless parameter that characterizes it is

(2.5)

which is much smaller than unity in the present case, and
will be later used as an expansion parameter.

It is desirable at this point to introduce the Wannier
functions of this problem. The Wannier states will be use-
ful in the derivation of a simple expression for the total
energy, and also as good basis functions for the polaron
states. The Wannier functions of our model can be ex-
pressed as

a+„——g[c,+(n —m)
~
m, 1 &+ c+2(n —m)

~
m, 2&], (2.6)

'2
k a) k a2

4t cos cos
2 2

I /2

0-

(2.4)

where k is a vector of the two-dimensional surface Bril-
louin zone (SBZ) of Fig. 1(c), and ai ——W3ax and az ——ay.
The lower and upper signs in (2.4) refer to the filled (—),
or lower band, and to the empty (+), or upper band,
respectively. We must now provide an estimate of the pa-

FIG. 2. Surface-state energy bands for the buckling model of
Si(111)2)&1,with e2 —e~ ——0.98 eV and t=0.075 eV. The zero
of the energy scale is the midgap energy.
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(2.10)

the difference Eg„=(62 '6i—)+8ta being the single-
particle gap for localized states.

We now want to determine the T=0 K static equilibri-
um positions of the surface atoms corresponding to the
Hamiltonian (2.3) and the chosen values of the parame-
ters. Thus we minimize the total energy of our model sys-
tem, consisting of 2N surface atoms and 2N surface elec-
trons, if N is the number of surface unit cells. Within the
usual Born-Oppenheimer approximation, the total energy
is approximately given by

8'2~ ——
2 gy(K» —Ho ) +2+@

n, i
(2.11)

where H„; Ho is the dis—placement of the atom (n, i) from
an appropriate reference value Ho, which will be dis-
cussed below, and y is some effective elastic force con-
stant for atomic displacements perpendicular to the sur-
face plane, therefore simulating the effect of stretching
and bending the backbonds from their equilibrium config-
uration. In the ground state all unit cells are equivalent,
and we normalize our total energy per unit cell,

8'(Hi, H2)= —,
'
y[(Hi —Ho) +(H2 —Ho) )

+2 ei(Hi)— 4t
ez(H2) —ei(Ki )

(2.12)

where ej and e2 depend on Hi and H2 through (2.2).
Minimizing 8' with respect to Hi and Hz, we find

ya Ho
H~) ——

2y'a —(2—Sa )C
H'

H$= (2.13b)
ya —8a C

Note that 2—Sa and Sa are the fractions of electronic
charge on atom 1 and 2, respectively. Equations (2.13)
show that. when the height H; of an atom increases, so
does the electronic charge on it. In fact, this is due to the
dehybridization effects contained in (2.1) and (2.2) which
cause e~ to decrease with increasing H;. In particular, it
is clear from (2.13) that Ho would be the atomic position
if the DB's were empty. An estimate. for the numerical
values of the parameters C, y, and Ho are C=52.8 eV,

. y=20.4 eVA, and Ho ——0.65 A, as discussed in Ap-
pendix A. Along with these values, the equilibrium posi-
tions (2.13) of the buckled surface are Hf =0.99 A and
H$=0. 66 A.

Since Hf and H$ minimize the energy (2.12), it follows
that substitution of Hi ——Hf+q i and H2 ——H$+ q2

(2.13a)

where (m2, n I) ((m l,n2)) indicates the four nearest
neighbors of type 2 (1) surrounding the atom (n, 1) [(n, 2)].
With our value a=0.077, the lower (upper) Wannier state
essentially consists exclusively of the DB orbital on atom
1 (2), with only a 2.2&o admixture of atom 2 (1). This
means, of course, that the surface is strongly ionic, the
electronic charge being almost completely localized on
type-1 atoms. ' The Wannier-state energies are

(2.9)

transforms 8' in a quadratic form in qi and q2. To
lowest order in a, the two vibrational normal-mode fre-
quencies are

co)—-[(ya —2C)/Ma ]', co2=-(y/M)'~ (2.14)

The corresponding eigenvectors show them to consist
essentially of a local vertical vibration of atoms 1 and 2,
respectively. We note that the frequency of atom 2 in this
approximation is identical to that in the hypothetical
"empty" surface (Rcoz ——55 meV), while that of atom 1 is
lowered (Rcoi ——44 meV) by the presence of two electrons.

fe=gcna+n ~
(2.15)

the energy 8'2~+, is a functional of both the set of atomic
coordinates {H„; j and the set of coefficients {c„j,
5'2~+, ( {H„;j, {c„j).Thus the relaxation energy is

where the indices g and e label ground and relaxed values,
respectively. I.et us now tentatively assume that we are in
a strong-coupling situation, so that the Born-
Oppenheimer approximation is good. In this case the en-

ergy of the relaxed state can be calculated according to the
adiabatic prescription: For any given configuration
{H„;j, first minimize 8'»+i with respect to {c„j in or-
der to determine the adiabatic potential N'{ {H„; j,
{c„(H„;)j ), which can subsequently be minimized to
determine H». Even after elimination of the electronic
coordinates, the problem of determining the infinite set of
atomic coordinates {H„'; j is still generally very difficult.
For our SC situation, however, the following approximate
procedure turns out to be convenient. We start by assum-
ing that the electron is perfectly localized in a single unit
cell, which we call 0,

B. Electron polaron and hole polaron

Different techniques are available to handle weak-
coupling (WC) and strong-coupling (SC) polarons. 3z

Therefore, we should first recognize whether our surface-
state problem is WC, SC, or intermediate. This will be
done in the following way.

We start by considering an extra electron added to the
system of 2N surface atoms and 2N electrons. In the ab-
sence of coupling to the lattice, the excess electron is in a
Bloch state, of the empty upper band. When the coupling
to the lattice is turned on, the electron is subject to two
competing tendencies: one toward delocalization, so as to
minimize the kinetic energy, and local lattice distortions,
which reduce the electron on-site energy and tend to favor
the localized situation. The strength of the localizing
force is measured by the relaxation energy Ez which is
released when the lattice is allowed to distort around a lo-
calized electron. More precisely, E~ is the difference
between the total energies 8'2++i of the system of 2N
atoms and 2N + 1 electrons before and after lattice relaxa-
tion. If we express the wave function P, of the excess
electron as a linear combination of empty Wannier states,
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1 if n=0,
0 otherwise, 2.17

and calculate the value of E~ for this test case. This
value must be compared with the corresponding kinetic
energy 8, that is, the energy released when the electron,
initially localized in one unit cell, is allowed to spread
throughout the surface lattice. Here, B is the difference
between the upper-Wannier-state energy @+0 and the ener-

gy of the bottom of the upper band. If E~ )B, we can
consider (2.17) a sufficiently good guess. If, on the other
hand, E~ should turn out to be noticeably smaller than B,
then we must allow the electron to spread over successive
shells of empty Wannier states. Eventually, if the linear
size of the region in which IH„;I differs significantly
from [Hf;I becomes much larger than the lattice con-
stant, our initial SC assumption (i.e., Born-Oppenheimer)
will be invalid, and a different approximation scheme
should then be used.

For our buckled-surface model, (2.15) with (2.17) turns
out to be a good wave function for the excess electron, as
will be shown below. This could, in fact, be anticipated
since the Hamiltonian matrix element between neighbor-
ing Wannier functions is of order a «1, implying pre-
cisely that that electron spreading away from the central
cell is small.

Cn —'

where e „ is the energy of filled states in cell "n," while
e+p is the energy of the extra electron in the cell "0." As
described in Sec. II A the upper Wannier state a+0 is basi-
cally localized on the atom (0,2), with only a small spread
on the four nearest neighbors of type 1. This implies,
however, that even with the simplifying assumption
(2.17), the lattice relaxation will, in principle, affect not
only the atom. (0,2) but also the neighboring atoms. This,
in turn, alters the energies of their (filled) Wannier states.
In this way the relaxation can propagate out to successive
shells of neighbors. However, the relaxation amplitude
decreases very quickly with increasing distance from the
central site. In this calculation we tentatively assume
that there is no relaxation beyond the first shell of type-1
neighbors of the atom (0,2) [see Fig. 3(a)]. Taking into ac-

1. E/elytron polaron

The bandwidth B defined above must be calculated as-
suming that the surface lattice is frozen in the ground-
state equilibrium configuration H& Hf and——H2 Hf, ——
with Hf =0.99 A and H$ =0.66 A. The upper-band
minimum of (2.4) occurs at the J point (O, m/a) of the
SBZ (see Fig. 2) and is e2 —2t. The corresponding Wan-
nier energy e+p is given by (2.10), yielding B=2t+4ta,
that is, B=0.17 eV with our choice of the parameters.

The relaxation energy E~ is defined by (2.16). Howev-
er, with our choice (2.15)—(2.17) of the electron wave
function, the total adiabatic energy 8'2~+I depends only
on the set of atomic coordinates I H„; I,
e',„,(IH„, I ) = —,

' yg(H„, —H,')2
n, i

+2gE ( [H I)+E+p( [H ] ) . (2.18)

JL
%F

[S4 X]

(Q]) BL

[t5x] [&.sx]

b) pic

[4 X]
0

,b

0
[4V]

0
[4X]

b a b

FIG. 3. Surface atoms involved in the relaxation following
injection of (a) an excess electron in (0,2) and (b) an excess hole
in (0,1). The values in square brackets denote the electron (hole)
wave-function square amplitude at the various sites after relaxa-
tion.

count the equivalence of these four neighbors, the relevant
energy to be minnimized is

I (Hpl Hp2')= I'y[(Hp2 —Hp) +4(Hp) —Hp) ]

+8[el(Hpl ) 3ta,' ta,—]-
+62(Hp2 ) +4tH (2.19)

where

e2(H() —el(Hpl )
(2.20a)

f
A'~ =

~2(Hp2 ) ~1(Hpl )
(2.20b)

The new local equilibrium positions for the atom (0,2) and
its neighbors are

ya'Ilo
Hp) ——

ya —C(2—a, —6a,' )
2 t2

(2.21)
ya Ko

Ko2 ——
ya2 —C(1+4a, )

Numerically, the central-atom relaxation is quite large:
from H$=0. 66 A to Hp2 ——0.80 A. The corresponding
relaxation of the four type-1 neighbors turns out to be, in
fact, negligible, i.e., from H I

——0.990 A to HOI ——0.988 A.
This finding confirms the validity of our initial SC as-
sumption. The relaxation energy amounts to Ez ——0.15
eV, resulting from an electronic energy gain of 0.32 eV—
due to the outward displacement of the central atorn-
approximately half-balanced by the necessary elastic cost
( —0. 17 eV). This relaxation energy Ez is almost identi-
cal to the bandwidth B ( -0.17 eV), thus confirming once
more that we are dealing with a strong-coupling case. We



7072 C. D. CHEN, A. SELLONI, AND E. TOSATTI 30

can also calculate the mass renormalization for the excess
electron. The renormalization factor is usually expressed
as exp(S, ), where S, is the Huang-Rhys factor, 26' given
in our case (and T=0 K) by

S, —= —21n(x'„;b
~

x'„;b)

Mcofcp,'(Hf H—)=X
A'(cps+ cp';)

(2.22)

Here, the X„;b are zero-point vibrational states, cof and cd
are the vibrational frequencies in the ground state of the
system with 2E electrons, given by (2.14), while co& and co&

are the corresponding local frequencies in the relaxed state
with an extra electron. The latter are calculated by ex-
panding the adiabatic potential (2.19) around the equilibri-
um positions (2.21), which gives co~ ——44 meV and co&——50
meV (as opposed to co/ =44 meV and co/=55 meV). The
resulting value for the Huang-Rhys factor is S, =3.6,
which corresponds to a mass-enhancement factor

l

exp(S, )-40 for the excess electron. The original band-
width B=0.17 eV is reduced to a few milli-electron-volts,
showing that the electron can in fact be considered immo-
bile and essentially classical.

&z =I'2» -i(IH' j)—&2» i(IH." j»
where

(2.23)

2. Hole polaron

The same approach discussed for the case of an excess
electron can be straightforwardly used to evaluate the re-
laxation energy Ez around a localized excess hole. Again,
assume that the hole is perfectly localized in a single unit
cell, which we call 0; thus its wave function P» reduces to
P» ——a p, the lower Wannier state of cell 0. The total adi-
abatic energy 8'z» is a functional of only the atomic
coordinates IH„;j, and the relaxation energy can then be
expressed as

g», ([H„,j)=-,'yg(H„, —H.')'+2 g ~ „(tH.;j)+~ p(IH. ;j) . (2.24)

In (2.23) the index h is used to label. quantities of the hole relaxed state. As discussed in the preceding subsection, the lat-
tice can, in principle, spread over a large region of the surface lattice because the Wannier functions are not strictly sin-
gle site. " We tentatively assume that only the central atom (0,1) and its four type-2 nearest neighbors can relax. In this
case, and taking into account the equivalence of the four type-2 atoms, the relevant part of the total energy is

8 (Hp], Hp2 )=—,y[(Hp, —Hp ) +4(Hpz —Hp ) ]+8[6~(H[)—2ta —2tcc» ]+8[@&(Hf)—3ta —ta» ]+@,(Hp& ) 4ta»—
(2.25)

where

and

ez(Hp2) —e)(Hf )
(2.26a)

In (2.25),

E2(Hp2) —E~(Hp~ )
(2.26b)

e, —:e((Hf ) —2ta —2tcc»

b =E)(Hf ) —3&(x—tlat»
are the energies of the lower Wannier functions centered
on the atoms denoted a and b, respectively, in Fig. 3(b).
Minimization of (2.25) yields the new local equilibrium
positions,

HO[
ya Ho

(2.27a)
ya —C(1—4a» )

H'
H" = (2.27b)

ya —C(a» +6a» )

The numerical values of Ho~ and H02 are Hp&
——0.76h h h

A (Hf=0.99 A) and H'p2 ——0.65 A (Hs2 ——0.66 A). As for
the electron polaron, the relaxation is strong for the atom
in the central site, but almost negligible for the neighbor-

ing atoms, thus supporting the initial SC assumption.
Note that the sign of the relaxation for the central atom is
the opposite of that of an excess electron. The energy bal-
ance now consists of a strong gain of elastic energy
( —1.04 eV) partially cancelled by an increase of electronic
energy (+0.66 eV). The resulting value for the hole relax-
ation energy is Ez ——0.38 eV. This must be compared
with the value for Bh, the kinetic energy of localization of
the hole. 8» is the difference between the energy of the
lower Wannier function and the top of the lower band in
the undistorted lattice, Bh ——2t+4tu=0. 17 eV in our
case. Therefore we conclude that the hole should be self-
trapped This is . confirmed by the value of the Huang-
Rhys factor Sh, for which we find, using an expression
analogous to (2.22), S» =8.3 (the local vibrational fre-
quencies in the relaxed state are now co& ——51 meV and
co&

——55 meV). The resulting enhancement factor for the
hole mass is exp(S»)-4000, and the hole can thus be
rather accurately described as a localized defect.

C. Exciton states in the buckling model

As a first step for the calculation of the optical spec-
trum, in this subsection we start studying electron-
hole —pair excitations —namely exciton states —of our
model system of 2N surface atoms and 21' electrons, as-
suming for the moment that the lattice is frozen in the
ground-state equilibrium configuration. To this end we
must introduce some effects of electron-electron interac-
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tions which are so far not present in our calculations. Our
model for the exciton consists of an electron transferred
from a Wannier state of the lower band —basically local-
ized on an atom of type 1—to an empty Wannier state
centered on a nearest-neighbor atom of type 2. The justi-
fication for this model is that (a) this is certainly the
lowest (singlet) exciton state, as suggested by the analogy
with strongly ionic bulk materials, and (b) the dipole ma-

trix element (a „ I
r

I a+ ) determining the strength of
optical transitions —is nonvanishing only if a „and a+~
are first neighboring sites. In our calculation of the exci-
ton binding energy, we shall also neglect the terms respon-
sible for the exciton propagation through the surface lat-
tice. ' In our model, these terms —roughly proportional
to the square of a in Eq. (2.5)—are very small. In addi-
tion, as shown by the results of the next subsection, the
coupling to the lattice will cause self-trapping of the exci-
ton. %'ith this simplification, the singlet exciton binding
energy E» reduces to the sum of the e-h Coulomb and
exchange energies, '

the screening contribution of the surface states them-
selves. However, introduction of this two-dimensional
screening appears to be a minor correction in the present
case, where the main interaction to be screened is intracell
and will be approximately omitted. On the other. hand,
we will take care to include it in the m.-bonded chain
model, where the exciton radius is somewhat larger.

In conclusion, we take the image-charge screening
E=G'b&=(E'b+ 1)l2 for both Vc and V„, where eb is the
bulk dielectric constant (eb = 12 for Si). Using the expan-
sion (2.6) of the Wannier functions in terms of DB orbi-
tals, (2.29) and (2.30) can be expressed in terms of in-
trasite,

2

U;= r r' y;r y;r'
eb, I

r —r '
I

and intersite,

2
VJ(R)= fd r d r'

I y;(r ) I I yj(r ' —R)
I

~b, I
r —"'

I

Eas = ~c—2~&

where

Vc= fd r d r'a —o(r )a —o(r )

X ae+o(r ')a+o(r ')
e, r —r'

(2.28)

(2.29)

i =1,2; R+0
Coulomb interactions. The intrasite background screen-
ing ebs appearing in U, is very difficult to evaluate, and
we have chosen to make it equal to the intersite screening
e'bs= Ebs. We evaluate Vj(R) using the Point-charge aP-
proximation,

and

V„=fd r d r'a' o(r )a+o(r )

2

X a+o(r ')a o(r ') .
~b, lr —'I (2.30)

The binding energy of the triplet exciton, instead, is unaf-
fected by electron-hole exchange, i.e., E+T Vc. The sur-—-

face electron-hole exchange (2.30) is screened by the
underlying bulk only, whereas the dielectric screening of
the Coulomb attraction (2.29) contains also, in principle,

2

Vq(R)—
ebgR

which is justified by the relatively large distances between
surface atoms and by the lateral localization of DB
states. The intrasite repulsion U; is evaluated numeri-
cally using tabulated atomic wave functions. We ignore
the different hybridization of the two DB's, and obtain
U=1.9 eV for sp hybrids. This value is in the range of
current estimates of the intrasite repulsion for silicon.

The exciton binding energy (2.28) can be explicitly writ-
ten as

E» = —~ ~ U+(&+9~'+«'~') V(
I 2 a i+ 2 a2 I

)+2~'O'I V(
I
a i I

)+ V(
I az I

)+ V(
I
a i+ az I )]

+~'t 3 V(
I 2 a i+ z a2 I )+3 V(

I z a i+ 2 a2
I )1+V(

I

—'a i+ z a2
I

) (2.31)

where a was defined in (2.5) and P =1—4a (recall that
al ——~3 ax and a2 ——ay, as shown in Fig. 1). Numerical-
ly, we obtain Eas ——0.55 eV, that is, essentially, the
Coulomb interaction between two point charges on
nearest-neighbor sites. With the same parameters the
triplet-state binding energy is Ea~ ——0.57 eV. The
(electron-hole —exchange) singlet-triplet splitting obtained
here is very small, essentially because it is a contact in-
teraction, i.e., it is proportional to

I P(r, =ri, ) I, and in
our model the electron and the hole belong almost totally
to the two different sites, (0,1) and (0,2), respectively, in
the cell.

D. Exciton polaron

The presence of a surface-state electron-hole pair will
also cause a surface-lattice distortion, just as a single ex-

@elastic+ +electronic+ @e-h (2.32)

Our model for the exciton is the same studied in Sec. II C
that is, basically, a hole on the atom h =(0,1) and an elec-
tron on the atom e:—(0,2). As in the case of a single elec-
tron or hole, we assume that the only atoms which can re-
lax are h, e, and their respective first neighbors, as shown
in Fig. 4. The elastic energy is then (neglecting relaxation

cess electron or hole does. This relaxation affects the
wave function of both particles, and hence, in principle,
their binding energy as well. To study this effect we fol-
low the same procedure of Sec. II 8 for the electron and
hole polarons, including, however, the e-h interaction en-
ergy 8'e I, as an essential ingredient of the relevant energy
to be minimized:
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the atoms e and h through a, «= —,'(1—p) and p, «= —,
' (1+@),with

C
0

d

::g 4&2p= 1+
[e2(H, )—ei(H«) j

—1/2

b ai 'a

iaaf

FIG. 4. Surface atoms involved in the relaxation following
creation of an exciton, with the hole localized at h and the elec-
tron at e.

of atoms such as a and b, that are not first neighbors)

,' y——(h—«+h,+h, +2hq+2hs+hi ), (2.33)

where we use the simplified notation h =H„Hp and-
the labeling of the various sites is given in Fig. 4. The
part of the total electronic energy which can change by re-
laxation is

N c]0~1~0~~
——e+p +e p+4e z +2e «+4E'

+4&—g+2&—1 ~ (2.34)

where e+p and e p are the energies of the upper (centered
on e) and lower (centered on h) Wannier states of cell 0,
while e „e b, etc. are the energies of the lower Wannier
states centered on the atoms a, b, etc. in Fig. 4. These
Wannier energies have the same meaning and expressions
as those given in the preceding subsections, e.g.,

t 2

e2(H, ) ei(H«)—
2 t2

+ +
eq(H, ) ei(Hs ) e2(H, )—e i(Hi)—

as can be easily inferred from Fig. 4. Finally, the
electron-hole —interaction energy is approximated by a
slightly simplified form of (2.31),

8', « =2a, «p, «U (a, «+p, «+—4a, «p, «)V(a),

(2.35)

where a, «and p, «depend on the atomic coordinates of

Minimization of (2.32) with respect to I h«, h„. . .I—
performed numerically —leads to the local equilibrium
configuration given in Table I. As in the case of the sin-

gle electron and single hole, there is a strong relaxation of
the atoms in the central cell (outward and inward dis-
placements for e and h, respectively), while all other
atomic positions are substantially unaltered. Note that,
due in part to the presence of the electron-hole—
interaction term in (2.32), the magnitude of the displace-
ment of the atom e (and, siinilarly, h) is smaller with
respect to the single-electron (-hole) case. The relaxation
energy Ez"' around the localized exciton is obtained as the
difference between the values taken by (2.32) before and
after the relaxation. The numerical value for Ez"' is
Es"' 0.34 eV. —T—he effective bandwidth B,„, for the ex-
citon motion can be estimated as half of the bandwidth
for the single electron or hole, i.e., 8,„,-0.08 eV in our
case. This leads to the conclusion that the exciton
polaron —as was the case for the hole polaron —is self-
trapped. The energy-configuration diagram for the
ground and excited states of our model system is sketched
in Fig. 5. The vertical excitation energy is eo——Eg —Ezz,
where Eg is the local single-particle gap and E~z is the
singlet exciton binding energy in the unrelaxed lattice, nu-
merically eo ——0.47 eV with our pararnetrization. This en-
ergy gives the position of the absorption peak according to
the Franck-Condon principle, while Ez" is the energy
released after'the optical excitation. ' For the emission
process, the Franck-Condon energy e& is given by
ei =ep Eg —e2& wh—ere e2 is the energy of the ground
state with a distorted lattice configuration (see Fig. 5).
Using the results of Table I we can calculate ez-0. 12,
which yields ei-0 for the peak of the emission line, and,
correspondingly, an extremely large Stokes shift, essential-
ly equal to the Franck-Condon excitation energy. This is
indicated in Fig. 5 by the minimum of the excited-energy
curve essentially falling onto the ground-state-energy
curve.

0

TABLE I. Vertical distance from the second atomic plane (in A) of the surface atoms shown in Fig.
4, before and after the relaxation following creation of an exciton (with the electron at e and the hole at
h). Also giveri for comparison are the relaxed atomic position for a single electron at e and a single hole
at h. For the "ideal" Si(111) surface, the distance between the first and the second atomic planes is

Hp ——0.79 A.

H,

Before relaxation
After relaxation
(exciton)
After relaxation
(electron)
After relaxation
(hole)

0.657
0.727

0.801

0.653

0.990
0.860

0.988

0.765

0.657
0.658

0.657

0.653

0.657
0.658

0.657

0.653

0.990
0.990

0.988

0.990

0.990
0.990

0.988

0.990
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ik E
—y»(Q» —H»"')'+ ,

'
—y.(Q, —H,'"')'

+5(Q» —H» )(Q —H'"')+&~
(2.38)

I"IG. 5. Qualitative energy-configuration diagram for the
ground state and the lowest singlet exciton of our buckling
mode) of SiI,111Q&1. eo ——0.47 eV is the position of the absorp-
tion peak according to the Franck-Condon principle, E~"'——0.34
eV is the energy released after optical excitation, and
e&

——eo —(Ez"'+e2) =0 is where the luminescence line should be.

I , g(c+x) =I +QPkg I ~~k I ~1 ) I '5(ecx, l eg, k

(2.36)

where
~
Xk ) and

~

X',") are the vibrational wave functions
for the electronic ground and excited states, with total
quantum numbers k and l, respectively. Pk is the proba-
bility of the state

~
Xk ) at thermal equilibrium, and IQ is

the optical (electronic) squared matrix element.
The phonon frequencies in the ground electronic state

are given in Sec. IIA. In this case, atomic vibrations on
sites of type 1 and 2 can be considered essentially uncou-
pled because of the small spread of valence electrons from
type-1 atoms to neighboring sites. The ground-state vib-
ronic wave functions are

2

~Xgk)=+FAX'kg.

(Q„,—Hg),
n i=1

(2.37)

where Q„; and Hg; denote the actual coordinate and the
equilibrium position of the atom (n, i), and Xkg is the
wave function of a harmonic oscillator of frequency rof
and quantum numbers k„; (with g„,.k„;=k).

When an exciton is created in the cell 0, the vibrational
motions of the atoms on which the electron and the hole
are centered become coupled through the e-h interaction.
For small displacements from the equilibrium configura-
tion, the adiabatic potential for the motion of the e and h
atoms can be expressed in the form

E. Absorption line shape

In the adiabatic and Condon approximation, the nor-
malized line-shape function for transitions from the elec-
tronic ground state (g) to the exciton state (ex) can be
written as

where the force constants yI„y„and 5 are, in principle,
given by the respective second derivatives of (2.32),
evaluated at Q» H»"——' and Q, =H,'"'. It turns out, how-
ever, that H»"' and H,'"' are so very different from HI%&

and HIKED of the ground state, that the true excited-state
"potential energy" (2.32), which is very nonparabolic, is
badly misrepresented, in the neighborhood of Q» Hg, ——

and Q, =Hgz, by (2.38) if the values of y», y„and 5 indi-
cated above are used. Strictly speaking, one should deter-
mine numerically the true vibronic levels of (2.32), which
would no longer be of harmonic-oscillator type. However,
it is clear that we are only interested to know these excited
vibronic states in the neighborhood of Q, =Hf ~ and

Q» H~gz. L——ocally, these eigenstates will still be similar to
harmonic-oscillator wave functions, but with different pa-
rameters. We have found that these wave functions are
reasonably approximated by the harmonic eigenfunctions
of (2.38), where, however, different values of the four con-
stants y», y,', 5', and e2 are used. We use y»=20. 7
eV/A, y,'=19.5 eV/A, 5'=3. 1 eV/A, and ez ——0.24 eV,
which reasonably describe e of (2.32) in the important re-
gion. The corresponding normal mode frequencies are
fico+ 58.7 meV——and %co =50.2 meV. The lower-
frequency. mode is characterized by the two atoms e and h

vibrating in phase, while the higher-frequency mode has
them vibrating out of phase. The frequency %co is close
to the frequency characterizing the outward and inward
relaxation of the unreconstructed surface in its ground
electronic state, as calculated in Sec. IIA. The other
mode appears to be pushed up in energy because it in-
volves changes of the electron-hole —interaction energy
which itself is large. This is an example of how the pres-
ence of an exciton can stiffen the lattice rather than soften
it. The vibrational wave functions for the electronic excit-
ed state are

2

~X',")= + gX',g'. (Q„,—H„, )X,',+'(Q+)X,' (Q-),
n (~o) i =&

(2.39)

where Q+ and Q are the normal-mode displacements
from the equilibrium positions of the e and h atoms.

We have calculated the absorption line shape (2.36) nu-
merically for increasing temperatures, with cutoff
kQ j l —= 10 in the summations over initial and final vib-
ronic states, and with an energy resolution DE =10 meV.
The results are displayed in Fig. 6 in the form of histo-
grams, the vertical lines being approximately the zeros of
the 5-function argument in (2.36). The main lines—
determining the basic feature of the absorption line
shape —are accompanied by satellites forming a fine struc-
ture which becomes increasingly richer with increasing
temperature. The line-shape envelope is asymmetrical
(Poisson-distribution-like) at low temperatures, and
evolves slowly towards a Gaussian shape with increasing
temperature, as in usual strong-coupling situations.

At the lowest temperature (T=2 K) the absorption
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With increasing temperature, the excited vibrational
states of the initial electronic configuration give an in-
creasing contribution to the absorption: This produces a
tail on the low-energy side of the spectrum, while the
fine-structure sidebands become more numerous and in-
tense with respect to the main sidebands. The total oscil-
lator strength remains constant, being transferred from
the high spikes to the low spikes. The line shape becomes
broader and more symmetrical, while there are no detect-
able shifts of the peak position within the accuracy of our
calculations. We shall return to discuss this line shape in
Sec. IV A.
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In this section we shall study surface-state polarons for
the m-bonded (dimerized-) chain model of Si(111)2&&1 re-
cently proposed by Pandey. ' We follow closely the
scheme used in Sec. II for the buckling model. In Sec.
IIIA we introduce our one-electron Hamiltonian, fix its
parameters by requiring a reasonable comparison of the
resulting band structure with known experimental results,
and finally determine the corresponding equilibrium posi-
tions (dimerization amplitude) of the surface atoms. In
Sec. IIIB we study polaron states associated with an ex-
cess carrier —electron or hole—in a surface state. In Secs.
IIIC—IIIE we consider an electron-hole pair as created,
for instance, by optical excitation. For this we first study
the exciton binding energy and wave function in the
frozen lattice (Sec. III C), and next the coupling of the ex-
citon to phonons (Sec. IIID). Finally, we calculate (Sec.
III E) the absorption line shape.

A. The model and the parameters

10- (e)-

5-

starts approximately at the energy e2, and has a fine struc-
ture due to the slight difference of irico+ and %co . The
peak of the absorption spectrum occurs at a frequency
which is approximately the vertical excitation energy
eo ——0.47 eV of Fig. 5.

ILh I&l lg I t III LI .» i I III I 4 tr &I, .

0.2 04 0.6 0.8 E~}

FIG. 6. Normalized absorption line shape at various tem-

peratures for the buckling model of Si(111)2)&1,in the Condon
approximation. The width of each line of the histogram is
E=10 meV. The modulations are due to two different vibra-
tional frequencies of the excited state (fico+ ——59 meV and
%co =50 meV), as discussed in the text. Note that before these

calculated line shapes can be compared with experiments, the
additional rigid red shift due to the T dependence of the recon-
struction magnitude discussed in Sec. IV A must be considered.

In the m.-bonded chain model' the surface atoms are
each bonded to two other surface atoms and form zigzag
chains along the [110]direction similar to those occurring
on the Si(110) surface. An important feature of this
geometry is that the surface atoms along a chain are as
close as bulk nearest neighbors (db ——2.35 A), while dif-
ferent chains are quite well separated, their distance being
-6.7 A. Because of this anisotropy the model has a large
dispersion ' ' of the DB bands along the chain direction
I J, and flat bands along JE and I J', perpendicular to
the chains.

As was done for the buckling model in Sec. II, we focus
only on the atoms of the outermost atomic plane and con-
sider the DB-like states, which we assume to be mostly p,
in this case. Within this approach, the symmetric chain
model originally proposed for Si(111)2X1 has degenerate
bands along JE. To remove this degeneracy we assume
that the ground-state configuration of the surface is
characterized by uniformly dimerized chains, with alter-
nating short (contracted) and long (stretched) bonds.
The situation is thus very similar to that of a Peierls-
distorted quasi-one-dimensional system, particularly po-
lyacetylene. As shown by Fig. 7, the dimerization
breaks the reflection symmetry through the x-z plane and
this gives rise to a finite gap along JX. Contrary to the
buckling model, no charge transfer occurs between DB's,
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FIG. 8. Surface band structure of the dimerized chain model
of Si(111)2&(1,with t~ ———0.9 eV and t2 ———0.45 eV. The zero
of the energy scale is the midgap energy, i.e., the surface Fermi
level.

FIG. 7. Atomic arrangement in the surface plane for the n.-

bonded chain model of Si(111)2&(1 (top view): (a) the sym-
metric chain model, where (n, i) is the ith atom in the nth unit
cell, and a =3.85 A; (b) the dimerized chain model (for clarity
of the figure, the dimerization is strongly magnified); (c) atomic
displacement pattern for the "dimerization mode"; (d) the sur-
face Brillouin zone.

from more realistic calculations for this model. '
We approximate the Wannier functions of our model by

simple bonding and antibonding combinations of DB or-
bitals in the same cell. For negligible overlap between
DB's at different sites, we have

so that the surface ground state is, in this case, purely co-
valent.

To describe the electronic structure of the above model,
we assume the one-electron Hamiltonian to be

(In»+ In»»1

2

a+„= (
I
n, l) —In, 2)),1

2

with energies

(3.3)

(3.4)

~= eX I
n t & &n t

I

n, i

+Et',.(
I n»&n, 2 I+ I

n, 2}(n,l! )

+Xt2,n( In, l)(n —1, 2! + In 2}(n+1,1
I ), (3 1)

with
I
n, i } denoting the ith (i =1,2} DB in cell n Here, .

is the DB on-site energy —the same for all DB's—t& „ is
the hopping integral between the two DB's connected by
the short bond in cell n, and t2 „ is the hopping integral
between the two DB's connected by a long bond in neigh-
boring cells along a given chain. For uniform dimeriza-
tion, t& „—= t, and t2 „=t2, diag—onalization of (3.1) yields
the DB's dispersion relations:

e+(k )=e+[tf+t2+2t, t,cos(k, a)]'~', (3.2)

where the minus and plus signs refer to the filled ( —) and
empty (+) states, respectively. Reasonable values for the
band parameters t& and t2 are determined by the follow-
ing requirements: (a) the valence-band width should be
-0.8 eV, as suggested by angle-resolved photoemission;
(b) the optical-absorption peak should occur at -0.45
eV. In our calculation the absorption spectrum includes
both the electron-hole interaction, leading to exciton
bound states, and the exciton-lattice coupling, leading to
polarons. "' The exciton-lattice coupling depends strongly
on the ratio tq/t2, which is related to the magnitude of
the ground-state dimerization. Conditions (a) and (b) are
well satisfied by taking tI ———0.9 eV and t2 ———0.45 eV.
The resulting surface band structure is shown in Fig. 8. It
does reproduce fairly well the band dispersions resulting

n=e+t& „. (3 5)

ti „——toexp( —phd„i), tz „——toexp( phd„2), —(3.6)

where tp is the hopping integral between DB's at distance
d 0 (equal to the bulk nearest-neighbor distance
db =2.35 A}, and hd„, (hd„z) is the contraction (expan-
sion) of the short (long) bond referred to do,

'

Adni =—dn& —dP (3.7)

The functional form (3.6) has been extensively used in sur-
face electronic-structure calculations to describe the seal-
ing of tight-binding parameters with distance and is
quite reasonable as long as

I
b,d„; I

/do&&1. The values
Ad„q and Ad„q are connected by a simple geometrical re-
lationship in our model. Vhth dp ——2.35 A and

I
b,d„; I &(do, 'bond angles for uniform dimerization are

0-109.5', resulting in

b.d„p ——,
' hd„) . —— (3.8)

This condition, combined with (3.6) and the values of t&

and tz, yields the relation between dimerization parame-

For the lower (upper) Wannier state the error involved in
this approximation is the neglect of an antibonding (bond-
ing) contribution of amplitude a:t2/4t, —-0.12 from
neighboring cells along the chain, more distant cells con-
tributing terms of higher order in u. The Wannier-state
energies (3.5), on the other hand, need only corrections of
second order in a, which can be neglected.

We shall determine the ground-state configuration and
the electron-lattice coupling by assuming that t& „and t2 „
depend on bond lengths according to
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ters and hopping integrals,

p b,d„ i ————' ln(ti /t2 ), (3.9)

(3.16)

~2K ~1 tt+ ~ 1( Id '
I ) (3.10)

where 8'i«t is the lattice (potential) energy and 8',i( Id„;J)
is the electronic energy corresponding to the configuration
specified by the d„s. To evaluate 8'i,«we restrict our-
selves to the dimerization mode —shown in Fig. 7—and
describe it in terms of the force constant y in the approxi-
mate form

(3.11)

while the electronic energy is simply

(3.12)

with the Wannier-state energies e „given by (3.5). By
minimization, and with the geometrical constraint (3.8),
we find

numerically, P Ad„ i
———0.52. The hopping parameter for

the undimerized chains, to ——tiexp(Phd„i), is then deter-
mined to be to ———0.54 eV in our case. This value is in
fair agreement with commonly accepted first-neighbor
(ppm) interaction parameters in Si.

To calculate the ground-state structural configuration
of the surface, we now consider the total energy of our
system of 2N surface atoms (N is the number of unit
cells) and 2N electrons occupying lower-band states.
Within the Born-Oppenheimer approximation, the total
energy is

This relation defines the frequency coo of the long-
wavelength "dimerization mode, "

M
2

coo ——
9 y+2p ti, (3.17)

where hd„; is the bond-length contraction or dilation in
the ground-state dimerized configuration. By this restric-
tion, we shall automatically exclude from our treatment
the possibility of soliton formation.

yielding %coo——0.059 eV with our model parametrization.

B. Electron polaron and hole polaron

We now consider an excess electron which, in the ab-
sence of coupling to the lattice, occupies a Bloch state of
the conduction band. As discussed in Sec. II 8, the locali-
zation or delocalization of this excess electron is roughly
determined by the ratio ER/8, where EI't is the energy
released when the lattice relaxes around the localized elec-
tron, while 8 is the kinetic energy of localization of the
electron, 8=

~
t2

~
in the present model. If EI't &8, the

electron will be localized. Since electrons and holes are
perfectly symmetric in this model, we shall restrict our
discussion to electrons. Implicitly, all the results will
refer also to holes.

We shall also require that the lattice distortions q„;
caused by the excess electron satisfy

Ad„i ——', Pti!y . — (3.13)
1. Limit of strongly localized polaron

We need to estimate the values of the parameters P and y.
The dependence of the total energy on bond-length con-
traction was recently calculated by Pandey for the sym-
metric chain model of Si(111)2&&1. His results —in the
form of total energy per surface atom —can be
parametrized as follows:

We first calculate the relaxation energy assuming that
the excess electron is perfectly localized in one cell, say
cell 0. We denote by I df; I the configuration parameters
of the ground state —before the lattice distortion induced
by the excess electron —and by I d„';I those after distor-
tion. Within the adiabatic approximation, the total ener-

gy is

I',„=const+ —,
' K(b d) (3.14)

where %=18.5 eV/A and b,d is the bond-length contrac-
tion (expansion) with respect to the calculated equilibrium
values, d, =2.2 A. Within our scheme, and for sinall de-
viations from equilibrium, the total energy per surface
atom of the symmetric chain model can be expressed as

=const+ ,' (y+P to)(hd')— (3.15)

where the equilibrium bond-length value —to which hd' is
referred —is assumed to be do=2. 35 A. We ignore the
difference between d, in (3.14) and do in (3.15) and re-
quire that our parameter (y+132to) equals the calculated
value for K. Coinbining this condition with (3.9), we ob-
tain y=22. 3 eV/A and P=2.7 A '. In the resulting
ground-state configuration, bond-length contractions and
expansions are then hdf = —0. 194 A b,df =+0.065 A.
For small displacements, q« ——hd„; hdtv;, from e—qui'libri-
um, the total-energy increase, to second order, is

+2+@ „(d„i ) +E+p(doi ) . (3.18)

Since we assume perfect localization, the only bond
lengths which change after lattice relaxation are do ~,
dp 2, and d ) ~, with

b dM bd , 2
————,

' (Adoi+——4d»-)

(see Fig. 7). Minimizing 8'2&+i with respect to b.dot, we
obtain

Phdoiexp(Pbdoi)= t'OP to/y (3.19)

gives ~doi = —0 069 A and Ado2=~d ~2=+0.044 A. As shown by Fig. 9(a) the lattice distortion
caused by the excess electron is a local reduction of the di-
merization with respect to the ground-state configuration.
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H
~

qi) is

+2N+1 =,g Xg[(hd„&) +(bd„z) ] +2+(e+t( „)

(3.21)

where t„=———,
'

tz „ is the hopping integral between
~
n+ )

and
~
(n+1)+ ). Since we assume that the distortion of

the ground-state configuration is small, i.e.,

FIG. 9. {a) Qualitative picture of the lattice distortions
caused by a strongly localized excess electron, for the dimerized
chain model. (b) Electron-polaron envelope function g„, Eq.
(3.27); n is the cell label along a given chain; g„ is symmetric for

hd„';=hd„;+q„; with ~q„;/bd„; ~
&&1,

we can use

t) „——tr(1 —Pq„r), (3.22)

e
COp = ( , y+p ti)—

Numerically, ~p ——0.077 eV, resulting in S'-2. 1, a value
which indicates an intermediate-coupling situation [the
mass enhancement is exp(S, )-8]. Note that coo is larger
than the phonon frequency in the ground state.

2. Polaron radius

To account for the spatial extent of the polaron, we
now express the wave function of the excess electron as a
linear combination of upper Wannier states

~
n+ ),

This, in turn, implies a reduction of the lattice potential
energy and, correspondingly, an increase of the lower-
band-electron energy, since the bonding energy

~
t~c

~

is
decreased. Overall, the relaxation energy is

Er'r =8'zN+&(Id) I)—8. 'zN+~(Id„;. I)=0.14 eV .

This value must be compared with 8=0.45 eV for the ki-
netic energy of localization. Since here Er'r «8, we
deduce that, unlike in the buckling model of Sec. II, in
this case the excess electron will not stay localized, but
will spread to find a configuration energetically more
favorable. This is substantially confirmed by the value of
the Huang-Rhys factor S'. The expression for S' at
T=O K is S'=Et'r ificoo, ' where coo is an appropriate
average between coIE, the phonon frequency in the ground
state, defined by (3.17), and coo, the local value of the pho-
non frequency in the presence of the excess electron. The
local frequency is

' 1/2

where
~
t,

~

is the value of the bonding energy in the
ground state. For simplicity, we shall neglect the depen-
dence of t„on the cell index by taking t„—:——,

' tz. Since
the present situation is of intermediate-coupling type, we
are in the embarrassing situation that neither the strong-
coupling approximations nor the weak-coupling ones are
really quantitatively reliable. Another way of saying this,
is that, in principle, we are not allowed any kind of adia-
batic approximations, such as (a) freezing the b,d„;, deter-
mining the corresponding c„, and, by substitution into
(3.21), obtaining the adiabatic potential 8'zz+r as a func-
tional of hd„; alone (good for strong coupling), or (b)
freezing the c„,determining the corresponding rM„;, and,
by substitution into the minimum condition of (3.21), with
respect to c„,obtaining an equation for c„alone (good for
weak coupling}. Rather than going into more elaborate
interinediate-coupling methods, we have chosen to fol-
low route (b) anyway, because it is still qualitatively
correct, if numerically inaccurate, and also because it has,
in this case, less variational parameters to be determined
than the corresponding SC treatment. Freezing the elec-
tronic coefficients c„ first, the minimum condition with
respect ta the lattice coordinates yields

Ed'
P&d~

I cn I
(3.23)

+g(e—t, +pt, q„r) ~c„~'

i.e., the excess electron acts to reduce the dimerization
magnitude. Substituting into (3.21) we obtain, to first or-
der in Cnl~

+2N+1 const+ 9 7 ~d f+qn 1
—2pt i gqn 1

l(, =pc„~ n+ ), (3.20}
1——. 2g( ~ .+i+ ~ .

with coefficients c„normalized to unity, g„~c„~ =1.
For

By virtue of (3.23), the second and third terms correspond
to the elastic gain obtained by "undimerization" arid to
the related electronic loss in the filled lower band. Using
(3.13), we see that these two terms cancel exactly in this
case, leaving
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@ zN+i const+2(& tl +~tlgn i) I
c. I

'

I
Ttzg(egg cg + i+en cpg i )

where E is the polaron energy. We use (3.22) and (3.23) to
relate ti „to

I c„ I
self-consistently,

P b,dgi
ti„=ti+A IC„ I, A=—,ti&0.

2 1+Phdgi
(3.24)

We can therefore focus on the motion of the excess
electron —the distortion being caused by the electron itself
through (3.23)—and ignore from now on the valence elec-
trons. Our treatment now follows closely that of Hol-
stein.

The coefficients c„ofthe electron wave function satisfy
the Euler equation generated by the above form of 8'ziv+i,

3. I'olaron bands

The localized states (3.27) are not yet complete solu-
tions 'of the polaron problem. Because of the translational
symmetry, the true polaron eigenstates should be Bloch
functions labeled by k, the total momentum of the elec-
tron and phonon system

4

=N ' ge 'P, (nii)X(np),
no

where X(np) is the vibrational wave function of the lattice
when the electron is in the state P, (np). The eigenvalues
corresponding to %k then form a band whose width is
substantially reduced with respect to the bare width
2B=2

I
tz I, since hopping integrals are multiplied by the

overlap between the lattice wave functions. One way to
determine the polaron band energy is, of course, to just
evaluate the expectation value

We then obtain

(&i, —A
I c„ I

)c„—,
' t, (c„+ i+—c„ i+ 2c„)=0, (3.25)

' 1/22'g(n —np) = sech

' 1/22'
I tz I

(n —np)

(3.26)

where ez ——(e—t i +tz) E is th—e polaron binding energy
referred to the bottom of the upper band at
e+(J)=e—ti+tz. Equation (3.25) can be solved by tak-
ing c„=(—1)"g„and using the continuum approximation,

d gn
gn+1+gn —1

—28'n-
dpl

The bound-state solutions (ez & 0) have the form

However, we prefer to calculate the polaron band disper-
sion in a different (though, in principle, equivalent) way.
Using Bloch eigenstates to represent the excess electron
wave function, we determine the polaron energies Ek by
solving the Dyson equation

Ek =e+(k)+'hk(Ek), (3.30)

~tpt ~e +cP L +cP

consisting of an electronic part,

(3.31)

where bk(Ek) is the real part of the electron self-energy,
after averaging over the state of the phonon system (at
thermal equilibrium). While this procedure is not really
more convenient than calculating ('Ilk IH I

q'k) in this
case, having established it it will be very convenient later,
for the problem of the electron-hole polaron.

We set our total Hamiltonian A „,as the sum

where the cell index np labels the (infinitely degenerate)
set of localized solutions, A, =pe+(k )c „c

k

(3.32)

P, (np) =g( —1)"g(n —np)
I n+ ), (3.27) of a lattice contribution

analogous of the upper Wannier states for the problem
without coupling. The polaron binding energy can be
determined using the normalization constraint

f dn g (n) = 1, which yields

(3.28)

Using A =0.49 eV, as given by (3.24), we find ez ——0.066
eV. The polaron radius

e

' 1/2

2' (3.29)

0
is then of the order of 7 A (approximately two surface
cells), confirming the intermediate-coupling nature dis-
cussed earlier. The envelope function (3.26) is shown in
Fig. 9(b).

and of a coupling term,

+
k, k'

In (3.32), c- creates a Bloch electron in the upper band,k

and e+(k ) is the corresponding energy, the lattice being
frozen in its ground-state configuration. Since we are in-
terested in states close to the band edge along the FJ
direction (see Fig. 7), we shall use the simplified disper-
sion e+(k) =fPk /2m,*, k being measured relative to the
J point. We take the effective mass m, to be 0.57mo, as
required by our band structure (3.2). In the lattice Hamil-
tonian HL, we have restricted our attention to the optical
mode modulating the dimerization along the chains,
which is taken to be Einstein-like, cok

—=coo, with coo given
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by (3.17). Finally, V- -, is evaluated as a function of the
k k'

derivative of the band energy at k=O (point J of the
SBZ), with respect to the lattice displacements, in the fol-
lowing way.

Let us call P(n) the dimerization amplitude operator in
cell n,

Vkk'=D

=iD(k —k')uk (3.35)

P(n) =gu (b" e "+H.c.),
q

(3.34)

fi

MCOp

' 1/2

+o(q ) .

If we call

de+(k =0)

the deformation potential, where L is the bond length, the
coupling Vkk is obtained as

where uq ——u~q u2q and u~q, uqq are the displacement
amplitudes of atoms 1 and 2 in the chain. In the simplest
model of a diatomic chain, we have

Vo Duo/I——. (3.36)

The deformation potential is easily derived from the
tight-binding energy to be

With our parameter values, uo ——(iii/Mcoo)' =0.095 a.u. ,
L=4.44 a.u. , and D=6.6 eV, this yields Vp ——0.14 eV.
We stress that in view of the large arbitrariness involved
in the approximation of replacing V--, by Vo, our nu-

merical results will have only order-of-magnitude signifi-
cance.

Our electron self-energy Xk(E) satisfies the approxi-
mate Brillouin-Wigner equation

For our purposes, the presence of the k-dependent in-
teraction Vkk. in this formula is rather inconvenient, turn-
ing the self-energy calculation into a somewhat extensive
numerical problem. For the sake of simplicity, we then
replace the true expression (3.35) with a crudely approxi-
mate k-independent value,

Xk«)=g I Vkk'I
k'

n (~k —k')+ 1 &(~k —k)+E—Ek —Mk k
—Xk'(E ~k k') E &—k'+ ~k' —k Xk'( + k' k)— (3.37)

where n(cok) is the phonon thermal-occupation number.
It is easy to verify that with our approximations, cok

—=toe
and Vkk =—Vo,' Xk(E) is also independent of k. This al-
lows the explicit evaluation of the sum over k' in (3.37),
which, of course, simplifies a great deal the numerical
iterative solution of X(E). The details of this calculation
are given in Appendix B. The resulting real and imagi-
nary parts of (3.37), b(E) and I (E), are plotted in Fig. 10
for T=O and 300 K. At T=O K the dominant feature of
b,(E) is the inverse-square-root singularity —related to the
one dimensionality of this model occurring at an energy
E slightly above the unperturbed band edge (the zero of
our energy scale). At the same energy E', I (E) (which is
zero below E') also has an inverse-square-root singularity,
and is then finite and positive at higher energies. In Fig.
10 we also show the graphical solution of the Dyson equa-
tion (3.30) for a few values of the electron bare energy
e+(k). The k =0 (J point) renormalized electron energy
Eo ——b, (EO) is —0.051 eV, which yields a polaron radius,
rz-(2m,

~
Eo

~
/A ) ', of the order of three unit cells,

in substantial agreement with the results of the preceding
subsection. The energy E' defined above is simply
E =Eo+ficoo. Because of the singular behavior of b,(E),
it is always possible to find a solution of (3.30) in the
range (EO, Ec+Rcoo), for any value of the bare energy
e+(k). The free-electron parabola e+(k) =Pi k /2m, is
modified into (a) a lower band compressed between Eo
and ED+%coo, and (b) an upper band which exists only for

I

I

lr
I
I

0.2--,'

T OK r. (ev)

02--

T- 300K

-0.2 ).0~
2 Eb+)

-0.2

--0.2

(a) (8

FIG. 10. Real (6) and imaginary (I ) parts of the electron and
hole self-energies, Eq. (3.37): (a) at T=0 K and (b) at T=300
K. The zero of the energy scale here is the bottom of the con-
duction band at J (on top of the valence band for the hole). The
intersections between the lines E—e (k) and 6(E) give the solu-
tions of the Dyson equation (3.30).

t

k & (2m,'E*/A')'~ and tends asymptotically to iri k /2m, *
for large k. The T=O K "polaron band structure" is
shown in Fig. . 11, where both bands —when coexisting-
are indicated. Noting that our starting problem has full
electron-hole symmetry, all results derived above for elec-
trons also remain valid for holes, once the sign of all ener-
gies is reversed.

At T~O K, phonon absorption processes also contri-
bute to X(E), as shown by (3.37). The calculated real and
imaginary parts of X(E) at T=300'K are shown in Fig.
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E (ev) (a) T=O K
E

E(ev) (b) T 300 K

with

~(k k') —~ lgei( k —k ') 1 w( 1 )

7
(3.40)

/k'

2+X(m )—C(0), 1 =0
w(1 )= m

—C(1), 1~0.

FlG. 11. Polaron bands along the chain direction I J, ob-

tained by solution of the Dyson equation as shown in Fig. 10:
(a) at T=0 and (b) at T=300 K. The dashed lines are the bare
bands, before coupling to the lattice. The solid lines show the
first, sharp polaron band. The hatched area is centered about
the midpoint of the second, broad polaron band, its width re-

flecting the corresponding energy width 21 .

10(b). At finite T, all singularities are smoothed out be-
cause of the finite value of I throughout the spectrum. A
cutoff wave vector appears, whereby the lower branch of
polaron states remains well defined only out to a certain
value, as illustrated by the graphical solution of the Dyson
equation in Fig. 10(b). This cutoff wave vector is as small
as -0.15 A ' at T=300 K, while the shift increases
gently from 51 to -60 meV.

C. Excitons

As a preliminary step for the calculation of the optical
spectrum, in this subsection we study surface-state exci-

tons, particularly, singlets of total momentum k = 0. We
shall be interested in the way such excitons are affected by
coupling to the surface lattice. To this end we must, how-
ever, first study excitons in a frozen lattice. To simplify
matters, we shall assume the electron and the hole to be
on the same chain. One further motivation for this as-
sumption is that the optical cross section for creation of
electron-hole pairs on different chains is exponentially
small due to the large interchain separation.

Using a standard approach, ' we expand the exciton
wave function in terms of singlet states g(k„kI, ) with an
electron in the upper Bloch state k, and a hole in the
lower state kl„

4(k=0)=pc(k')P(k', k') .
k'

The coefficients c (k) obey the equation

(3.38)

QI[e+(k) —e (k) —Ez]5kk + 8'(k, k') jc(k') =0,
k'

(3.39)

where E~ is the exciton binding energy and 8'(k, k') is
the sum of the electron-hole exchange and Coulomb in-
teraction potentials. For vanishing overlap between Wan-
nier functions of different cells, W(k, k') can be expressed
as

Here,

X(1)=Jd rd r'a+0(r )a 0(r )

2 a' r(r ')a+i(r ') (3.41)
ets/ r —r'f

is the exchange interaction between electron and hole
separated by 1, while

2
C(l )= fd "d r Ia+r( )

I ~a 0(r') ~'
e, r —r'

(3.42)

is the corresponding electron-hole Coulomb interaction.
In (3.41), eis-(e&+1)/2 is the background screening ac-
counting for bulk polarization effects not directly includ-
ed in our treatment, while e, in (3.42) should also include
the screening of DB electrons e =cps+(eDB —1). The
DB screening is known to be ineffective (i.e., eDii

——1) at
short and long distances, but can be significant at inter-
rnediate distances, where virtual transitions between DB's
can occur.

In order to calculate X( 1 ) and C( 1 ), we expand the
Wannier functions into DB orbitals, retain only two-
center integral terms, and evaluate the Coulomb interac-
tion between charge distributions centered at different
sites with the point-charge approximation, similar to what
was done in Sec. IIC for the buckling model. With the
above simplifications the central-cell potential W(0) be-
comes

IV(0) 2 U E~ 2 Vg( ~RQi R(g ~
(3.43)

where U is the intrasite repulsion, V, (R):—e /e, R, and
E~ is a lattice sum of dipole-dipole —type interactions,

EM= V. ( IRai —R021)

+ 2 I: V (
I Roi —R~ ~ I

)—V.(
I Roi —R~ i I ) I

m' (+0)

with V„(R):e /eisR. —
%'e take U=1.9 eV, as for the buckling model; the cal-

culated value of E~ is 0.62 eV, including both intrachain
and interchain contributions. We approximate the surface
screening function e, at distances of first, second, and
third neighbors using the expression suggested by Kel-
dysh '" and based on the macroscopic three-layer model.
In our case, we find e, =15.3, 12.8, and 9.6 for first,
second, and third neighbors, respectively. The resulting
exciton potential 8'( 1 ) along the chain is shown in Fig.
12(a).

We calculate the exciton binding energy E~ by direct
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FIG. 12. (a) Electron-hole —interaction potential (inverted)
for singlet excitons along the chain direction using V=1.9 eV,
E'bg 6.5, and DB screening evaluated according to the macro-
scopic three-layer model (see text). (b) Envelope function for the
lowest singlet exciton.

0 2 4

D. Excitonic polaron

The coupling of the exciton to the lattice in our model
is characterized by the polaron radii for the single (un-
bound) electron and hole being of the same order of the
exciton radius in the frozen lattice (see Secs. IIIB and
IIIC). In such cases a strong interference between the

diagonalization of (3.39) over a suitable mesh of k points
along the I idirection of the SBZ. The resulting value of
Ez is 0.20 eV, of the same order as other independent es-
timates for surface-state excitons. ' In Fig. 12(b) we
show the exciton envelope function in real space,

d(1)=N ' gc(k)e'"' '

k

representing the probability amplitude for the electron
and hole to be at distance 1. Our exciton is mostly local-
ized on nearest- and next-nearest-neighbor cells with an
average radius r,„,-4 unit cells.

The next higher (singlet) exciton state is found at an en-

ergy 0.86 eV, i.e., 0.16 eV above the lowest singlet and just
4 meV below the upper surface band edge, and is totally
insensitive to the details of the central-cell potential (e.g. ,
the value of U), as it is appropriate to large-radius exci-
tons. In contrast, the energy of the optically inactive trip
let exciton [which can be calculated in the same way as
the lowest singlet exciton, but excluding the exchange po-
tential from (3.39)] is strongly dependent on the details of
the potential in the central cell; in particular, large values
of U would tend to give a negatiue triplet excitation ener-

gy, thus implying in instability of the ground state
against triplet-exciton formation (i.e., antiferromagne-
tism). With our parameters values, the triplet binding
energy is -0.6 eV, resulting in a positive excitation ener-

gy -0.3 eV from the ground state. Interestingly, triplet
excitons also play an important role on the buckled sur-
face models. Del Sol'e and Chadi, ' in particular, noted
that with large but not unrealistic Hubbard U's, the buck-
led surface was also unstable against formation of triplets,
thus turning into a two-dimensional antiferromagnet.

electron-hole and the electron-lattice interactions can
occur, so that the two terms should be treated simultane-
ously. A similar situation occurred for the buckling
model, and actually the electron-hole and electron-lattice
couplings were both included in the minimization of the
total adiabatic energy (see Sec. IID). The approach used
for that case, however, is not convenient for the chain
model, essentially because the exciton and polaron states
extend over a large number of unit cells. For this reason
we use a k-space formulation consistent with the preced-
ing part of this section.

We proceed as in Sec. IIIB1, replacing the electron
Bloch states by exciton states .

I
k), where k denotes the

total momentum. We consider only the lowest (singlet)
exciton, since the energy separation of the next-excited
state as well as of the continuum is rather large compared
to the phonon frequency. We describe the exciton propa-
gation along the chain by the effective-mass dispersion

2
~CXC CXC +k 0

2m exc
(3.44)

where eo"'=Eg Ez—(=0—.7 eV with Eg ——0.9 eV and
Ett ——0.2 eV) is the exciton energy in the frozen lattice,
m",„,=m, +mk ( —1.14mo) is the exciton mass, and k is
the total momentum in the chain direction, measured rela-
tive to the J point where the minimum gap occurs. The
exciton Hamiltonian "orresponding to (3.32) in Sec
III 8—is then

(3.45)

dEgA= =2 (3.47)

where q& is the length variation of the short bond, while
the stretched bond has q2 ————,

'
q~ according to the con-

straint (3.8). With this approximation, V,„,=2 Vo
(=0.28 eV), where Vo is the coupling constant (3.36) for
a single electron or hole, and correspondingly the
exciton-polaron shift b,,„,is about 4 times the shift for the
electron-polaron or hole-polaron shifts [using (3.37), we
find 6,„,= —0.21 eV at T=O K]. We expect this value
to be an overestimate, since the choice (3.47) implicitly as-
sumes a complete overlap between the lattice distortions
induced by the electron and the hole separately. A correct
estimate should probably be intermediate between opr
value and that for a large-radius exciton (i.e.,
r,„,&&rz, r ), for which the polaron shift is just the sum

The lattice Hamiltonian A L is the same as in Sec. IIIB,
Eq. (3.33). The coupling of the exciton to the optical di-
merization mode is included by adding a term of the form

g Vkk'(b —k+k'+ bk —k')
I
k & &

k'
I

(3 46)
k, k'

Once again, we approximate the matrix element Vkk by a
constant V,„,—:Voo =(A/Mcoo)'~ A, where A is the
derivative of the exciton energy (at k =0) with respect to
the dimerization amplitude. A simple estimate for A
which neglects the dependence of the exciton binding en-
ergy on atomic displacements is
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4.0

I

i(E)
(srb. units)

T-2 K

I 1

i(E)
(arb. units)

T 152K

(b)

TABLE II. Position and half width I p=I (Ep) of the main
peak in the absorption spectrum of the dimerized chain model
of Si(111)2&(1 as a function of temperature, as given by Eq.
(3.37). In the absence of coupling to the lattice, the peak posi-
tion would be ep ——0.70 eV, Note that the values of Ep in this
table do not include the effect of the temperature dependence of
the reconstruction magnitude discussed in Sec. IV A. This addi-
tional effect is included in the values reported in Table EIE.

0.2 04 0.6 0.8

I

i (2)
(arb. units)

T-302 K

0.2 04 0.6 0.8

i(E)
(arb. units)

T-452K

j

E(siiij 2
152
302
452
602

Ep (eV)

0.49
0.49
0.45
0.40
0.35

r (eV)

1.5 ~10-'
9.1~10-'
4.4~10-'
8.8X10-'

0. 13

(c)—

WC (Lorentzian line shape) or SC (Gaussian line shape).
To calculate the line shape, we use

1. Etsiii) 0.2 04 0.6 0.8 E(ev)

Io l,„,(E)I (E)=
[E e()

' b,,—„,(E)—] +l,„,(E)
(3.48)

f

i

I E
(arb. units)

(e) -i

0.2 0.4 0.6 0.8 10 E(W)

FIG. 13. Absorption spectrum of the dimerized chain model
at various temperatures calculated according to (3.48). Note
that before these calculated line shapes can be compared with
experiment, the additional rigid blue shift discussed in Sec. IV A
must be considered. The origin of the oscillations is described in
the text.

of the shifts for the single (unbound) electron and hole
(in that limit, 5,„,——0. 1 eV for our model).

E. Absorption linc shape of the m.-bonded
dimerized chain model

The absorption line shape is strongly dependent on
whether the exciton is in a "free" (weak-coupling) or self-
trapped (strong-coupling) state. Toyozawa's criterion
for exciton self-trapping is V,„,~&8,„„where V,„, is the
coupling constant defined in Sec. IIID, and 8,„, is the ex-
citon effective bandwidth. In our case, a fair estimate for
8,„, is 8,„,——,

'
( t2

~

(-0.23 eV), since
~

t2 (
is the half

width of both the hole and the electron bands. This yields

Ve„,/B,„,—1, characterizing an intermediate-coupling sit-
uation. Accordingly, the absorption spectrum is expected
to be more complicated than for the limiting situations of

where A,„,(E) and 1,„,(E) are the real and imaginary
parts of the exciton self-energy calculated using (3.37).
Self-consistency modifies the simple Lorentzian shape
predicted by lowest-order (Rayleigh-Schrodinger) pertur-
bation theory (good for the extreme WC), giving rise to
multiple-phonon structures which can be interpreted as
indirect transitions involving phonon emission and/or ab-
sorption. Our calculated absorption spectra at various
temperatures are shown in Fig. 13. The overall shape of
the spectra retains the typical one-dimensional character
appropriate to our model. It is interesting to note that the
energy separation between the various phonon structures
approximately corresponds to twice the phonon frequen-
cy. The reason why these structures appear is because the
transition probability to exciton states of total momentum
k—=0 involving an even number of phonons in our
model —is very high, because the density of states of a
one-dimensional band is divergent at the edges. The ef-
fect of increasing temperature is a broadening and
smoothing out of the structures of the spectra, as usual, as
well as causing shifts towards lower frequencies. The po-
sition of the first peak —which should be identified with
the peak observed experimentally in Ref. 2, is given at
various temperatures in Table II.

IV EXPERIMENTAL CONSEQUENCES
OF THE EXISTENCE

OF SURFACE-STATE POLARONS

This section deals with experimental consequences of
the existence of surface-state polarons, as exemplified by
the models studied in the preceding sections. Here we wiH
discuss two classes of effects. The first class consists of
effects on optical absorption and luminescence from sur-
face states. The theory of these optical processes in the
presence of polaron effects is long understood, and
through it we can make, particularly for absorption, de-
tailed predictions on line shape and its temperature depen-



30 ELECTRON-PHONON COUPLING AND SURFACE-STATE POLARONS. . . 7085

dence. The effects in the second class are new and consti-
tute a rather more speculative part of this paper. They
concern (a) spectroscopic effects that might become visi-
ble in angle-resolved surface photoemission near EF and
in the new technique of scanning tunneling spectroscopy
of Binnig and Rohrer, and (b) possible Wigner crystalli-
zation of surface-state polarons on heavily doped semi-
conductor surfaces. A quantitative theory of these effects
has not yet been worked out at this stage, and we plan to
devote some work to it in the future. Nevertheless, it
seems of use to present here a first qualitative discussion
of these potentially interesting situations.

the total free energy F„, will, in general, be attained at
different effective reconstruction magnitudes, i.e.,

p( T) =Hi(T) —H2(T)

for buckling, or

P( T)= —&d i(T)

(4.1a)

(4.1b)

for a ~-bonded chain. The state favored at high T is one
that is "softer, " both electronically and vibrationally, and
thus has a larger entropy (like an expanded crystal in a
bulk case}.5 The free energy depends on the effective
magnitude P of the reconstruction in a way that can be
generally written as an expansion,

A. Temperature-dependent optical absorption;
strong coupling versus weak coupling

F,.„=F,+c(b,P)'+f(b,P)'+ ~ ~ ~, (4.2)

The optical-absorption calculation for the strong-
coupling Si(111}2X1 buckling model was outlined earlier
in Sec. II. A weak-coupling calculation of the optical ab-
sorption of Si(ill)2X1 in the m-bonded chain model is
correspondingly given in Sec. III.

For strong coupling, the absorption line shapes are
Poisson-like in shape, as in colour centers, as exempli-
fied by Fig. 6. The fine-structure oscillations in this fig-
ure are due to our assumption of narrow 5-function-like
phonon lines, and may or may not in reality be washed
out by finite phonon lifetimes. With increasing T, the
peak position approaches more and more closely to the
Franck-Condon limit for a "vertical" transition in a
configuration-coordinate picture such as that in Fig. 5.
As in F-center absorption, this implies a weak to negli-
gible blue shift with increasing T, associated with a
linewidth increasing asymptotically like v T. For the ac-
tual parameters describing our model of the buckled
Si(111)2 X 1 surface, this temperature-dependent shift
turns out to be essentially insignificant, as shown by Fig.
6.

In the alternative case of intermediate-coupled m-

bonded chains, the optical-absorption mechanism is more
closely related to that of bulk Si: transitions occur be-
tween the ground state and a fully relaxed excited state.
The peak position should shift towards the red, for in-
creasing T, as in bulk Si, due chiefly to the usual Fan '

mechanism of increasing self-energy with T. This absorp-
tion line is (motionally) narrow, and all line-shape ef-
fects are due to the electronic band dispersion, which is
strong in this case.

This contrasting temperature behavior of the strong-
and weak-coupling models is worth considering in more
detail as it may provide a useful clue towards identifying
the actual reconstruction mechanism of Si(111).

In addition to the "intrinsic" shifts discussed above —a
weak or negligible blue shift for 'buckling, or a Fan red
shift for m.-bonded chains —we must consider the concom-
itant effect of a generally temperature-dependent magni-
tude of the reconstruction itself. This is the equivalent of
lattice expansion in a bulk problem. The T=O K recon-
struction magnitudes $(0) and P(0) =Hf H$ for buck-—
ling, and P(0}= —b,d, g for the dimerized m-bonded chain,
are such as to minimize the total energy E, , at T=O K.
However, as T increases, the corresponding minimum of

where AP(T}:P(T) ——P(0). The presence of the anhar-
monic coefficient f implies that the distortion will vary
with increasing T, roughly in the form described by Kit-
tel,"

4P(T)= — kttT .
3

4c
(4.3)

For the case of buckling, we obtain, from (2.12), at T=0
K,

l C
Cb

4 a2
64t2a

C(H f+H$)(H f —H f)'
(4.4)

]6/ a
C(H f +Hf )(Hf —H$)"

For m-bonded chains, similarly at T=0 K, we have

E«, ,
'

y( —", —bd',—)+2(e+t,e '),
whence

(4.5)

5 2 I 3y+tiP f = tiP (4.6)

for buckling, and

2t2

( —", yP +2ti )'

for vr-bonded chains. With the present values of the pa-
rameters, C=52.8 eV, t=0 075 eV, Hf+H.)=1.65 A,
and Hf —H$=0. 33 A, one can extract an additional

with ti ——toexp( —Phd').
We note that the cubic anharrnonicity f has an opposite

sign in buckling (fb &0) and m.-bonded chains (f &0).
Hence, by (4.3) we expect the reconstruction magnitude P
to decrease with T in the buckling case, and to increase
for n.-bonded chains. The physical reason for this latter
increase is the nonlinearity of the electronic energy gain in
(4.5), due, in turn, to the exponential behavior of hopping
integrals.

In conclusion, the additional energy-gap shifts expected
from this mechanism are

EEg b —— (H i +H2 ) ktt TC g g 3fb
2Q 4c
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B. Luminescence

The emission behavior for a weak- and strong-coupling
system is very different. For weak coupling, absorption
and emission occur at the same frequency. For strong
coupling, the emission line is Stokes-shifted by an amount
-2SAcoo towards the red. If one includes finite carrier
lifetimes in a strong-coupling case, a two-lobed spectrum,
such as that discussed by Alr6bladh, may also be expect-
ed.

No experimental luminescence spectra of Si(111)2X1
are available to date. However, Evangelisti and McGrod-
dy have studied the closely analogous case of

TABLE III. Position of the absorption peak as a function of
temperature for the buckling and m-bonded chain models of
Si(111)2&1. In both cases, the calculated values include the
lattice-dilation effects and coupling to the vibrational modes.

2
152
302
452
602

%co~ (eV)
(buckling)

0.47(0)
0.47(0)
0.46(8)
0.46(5)
0.46(2)

fKop k (eV )
(m.-bonded chains)

0.49(4)
0.49(s)
0.46(5)
O.42(3)
0.38(o)

temperature-induced red shift of 1.72 X 10 T for the ion-
ic reconstruction, e.g., AE+b ———5 meV at T=300 K.
Since the Franck-Condon blue shift of Fig. 6 is negligible
in this case, we conclude that the weak red shift just cal-
culated is all one expects for buckling. On the other hand,
with m-bonding parameters of t~ ———0.9 eV, P=2.7 A
and y=22. 3 eVA, we expect an additional blue shift
of 5. 1X10 T, or Ahs ——+15 meV at 300 K. This
amount is not sufficient to offset the large red Fan shift
for this case. Table III summarizes the total changes in
peak positions expected as a function of T for the two
models of Si(111)2X1. The red shifts predicted for the
two cases are almost 1 order of magnitude different. It
seems possible that experimental investigation of this
point might bring further information on the actual na-
ture of this reconstruction, which is otherwise still uncer-
tain, since new evidence keeps appearing which conflict-
ing points sometimes towards m-bonded chains, ' ' or
towards buckling-type reconstructions, or neither. The
room-temperature absorption spectrum of the Si(111)2X1

surface is shown on Fig. 14. Its shape seems roughly
compatible, after damping is considered, with both the
buckling-model result of Fig. 6 and the m-bonded chain
model of Fig. 13. Its temperature dependence has not yet
been studied experimentally. However, very recent
polarized-light results seem to yield selection rules
which favor the n.-bonded chain model.

It is interesting that the T-dependent absorption spec-
trum measured very recently on a different surface, the
Si(111)7X7, shows precisely a red-shifting peak, with a
shift of about 40 meV between 15 and 30 K, which is
very similar to the predicted m-bonded chain value of
Table III for Si(111)2X1.

ll

z R/R
(a)

5.0-

2.0-

1.0-

0.0-

040.3 0.5 0.'6
ENERGY {eV)

FIG. 14. Room-temperature optical absorption (as given by
the change of reflectance upon oxidation) of the Si(111)2)&1 sur-
face (after Chiaradia et al. , Ref. 54).

Ge(111)2X1 and find no surface luminescence at fuu

larger than 0.2 eV. If this could be simplistically taken as
representative of the Si(111)2X1 as well, it would imply a
Stokes shift larger than 0.3 eV. Our estimated Stokes
shift in the buckling model is )0.4 eV, which would sug-
gest exactly this outcome. Hence a careful experimental
study of luminescence from Si(111)2X1 can yield crucial
information on the actual existence of such a surface
Stokes shift.

In the chain-model case, however, an alternative ex-
planation for the lack of luminescence could be thermali-
zation of electron-hole pairs created by light into triplet
excitons (of much lower energy than the singlets) whose
radiative decay is then forbidden, or very weak. Our esti-
mate for the relaxed triplet-exciton energy for the @-

bonded chain model is -0.1 eV, to be compared with the
value -0.45 eV for the relaxed singlet exciton.

C. Photoemission

Valence ultraviolet photoemission and x-ray photoemis-
sion spectroscopy (UPS and XPS) studies of surface states
on Si(111)have been very numerous —if somewhat confus-
ing' ' ' over the last decade. The view that a photoernis-
sion process must as a rule be assumed to be sudden from
the lattice point of view justifies the complete neglect of
all polaron effects -except for a broadening, of the kind
discussed by Hedin and Rosengren for a core line—in

photoemission spectra.
There may, however, be one kind of polaron side effect

that appears not to have been discussed so far. What
makes a photoemission process generally a fast one is evi-

dently not the high energy of excitation, but rather the
short lifetimes of the end products, i.e., the ele'ctron and
the hole. In particular, the hole inverse lifetime increases
very fast away from. the Fermi level. This suggests,
however, that sufficiently long hole lifetime could be
achieved when photoemitting from a narrow energy shell
around the Fermi level. The lifetime of a high-energy
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electron, however, will be generally short, if the corre-
sponding wavepacket crosses any amount of bulk. For ex-
ample, the plasmon mean free path at E= 100 eV is only
—5 A. If we, however, consider electrons photoemitted
from a surface state into a final state described by a
wavepacket whose trajectory moves away from the sur-
face without scattering further off the electrons of the
sample, it might be conceivable to attain a lifetime longer
than 10 ' sec. If this situation, admittedly rather specu-
lative, were achieved, then in surface photoemission from
a state very near EF a hole polaron can form, and the
hole-polaron shift would be transferred to the outgoing
electron. Thus the high-energy part of the photoemission
spectrum would not terminate at the "bare" Ez, but
would extend above it with a tail, or an extra peak, reach-
ing to a higher "renormalized" EF——E~+E&,~. For
strongly coupled polarons, such as those discussed in Sec.
II, E~& is a measurable quantity of -0.4 eV. The distin-
guishing feature of this phenomenon should be a very
weak k-vector dependence of the apparent "band" energy
close to EF, reflecting the heavy polaron masses of the
strong-coupling case. Instead, the angular photoemission
intensity would decrease as one moves away from k =k~,
reflecting the localized nature of the hole.

An effect of this kind may already have been observed
in photoemission from the chalcogenide layer corn-
pounds. It seems possible to envisage a similar explana-
tion for the peak just below EF seen by Himpsel et al. '

on the Si(111)2X1 surface. In this interpretation of their
data, the peak at —0.75 eV would constitute the bare
surface-state "band. " The peak at —0.15 eV would be the
"polaron" peak, which is stronger at point J, in agreement
with the fact that the Fermi level of the bare band is
closest to EF at that point. The extracted hole-polaron
shift of 0.6 eV is of the right order of magnitude for a lo-
calized hole, for which our model gave OA eV.

D. Surface-state —polaron effects
in scanning tunneling microscopy

The great usefulness of tunneling of electrons from a
sample surface to a metal tip in the study of surface struc-
ture has been recently demonstrated experimentally.
The tunneling process occurs between electron states on
the metal tip and the outermost surface states protruding
towards the tip. If V is the voltage drop between the tip
and the surface, then tunneling will occur from surface
states lying within a depth V from the Fermi surface. In-
cidentally, this implies that this experimental technique is
potentially extremely interesting when used to study spec-
tra taken as a function of V (positive V would bring infor-
mation on the filled surface states, negative V on the emp-
ty ones). To this date no such study has yet been pub-
lished, although it seems possible for this technique to
develop into a powerful new form of spectroscopy of the
surface electron structure (while real-space scanning has
already been shown to yield a valuable microscopy of the
surface atomic structure).

Surface-state —polaron effects may be expected to play
an interesting role in the future interpretation of the volt-
age surface-state spectroscopy suggested above. Let us

consider, to start, the case of V positive, when an electron,
originally belonging in a filled surface band, tunnels away
from it to flow into the metal tip, leaving a hole behind in
the surface state. Two extreme types of situations can be
envisaged. If the electron stripping process is "fast," the
lattice has no time to adjust and form a polaron around
the hole. Then the hole energy will be uninfluenced by
polaron effects, which can thus be ignored. This is the
straightforward analog of a Franck-Condon transition,
such as that described for optical absorption, or a photo-
emission process. If, on the other hand, the electron strip-
ping occurs slowly enough, the surface lattice will have
time to form a polaron about the hole, whose energy will
then be shifted upwards by the amount calculated in the
preceding sections.

The relevant question is then how "long" does it take
for a surface electron to tunnel from the surface state into
the tip? This question, as it turns out, has been rather ex-
tensively discussed in the literature, with somewhat vari-
able conclusions. Following Leggett, one may define
two kinds of times in the problem. One is ro fi/1, with——

I'-constXexp[ d(2m—p/A )'~ ]j,
for a barrier of height P and thickness d. Another is
r~ ——d(m/2P)' . The time r~ is the "bounce time" over
which a successful tunneling event takes place; the time ~0
is the average time one has to wait for a successful at-
tempt which can clearly be very much longer than ~~. For
d of a few angstrorns and P-5 eV, r& is of the order of
10 ' sec. We note that this value is about 2 orders of
magnitude shorter than the typical lattice readjustment
time.

It is at present unclear to us whether the relevant time
scale to discuss possible surface-polaron formation during
tunneling is ~0, or ~~, and this problem will require a
separate investigation. The viewpoint that all holes are
the result of only successful attempts, each of which lasts
the short time ~&, would lead to the conclusion that pola-
rons have no time to form and are irrelevant to tunneling.
If, alternatively, we consider that electrons do leave the
surface state anyhow, to venture, successfully or not, into
the tunneling region with time scale ro, then a surface-
state polaron may be ready around the hole if ro& 10
sec, or not ready if ra& 10 ' sec. In this case, what ap-
pears to be a rather sudden shift of hole energy should
show up, in the voltage spectroscopy suggested above, as a
function of surface-tip distance d, i.e., of current, which
depends exponentially on d.

E. Wigner crystallization of carriers in surface states

It is well known that the surface states of semiconduct-
ors can be replenished, or emptied of electrons, by varying
the bulk doping level. In particular, it is known from
studies of band bending that on the Si(111)2X1 surface
electrons as many as n -5&10' /cm can be driven into
the upper surface-state band or out of the lower
surface-state band —by strong bulk n doping, or p doping.
This is quite a large density, and it may not be totally
academic to speculate about the state of these excess
surface-state electrons. A mean distance of the order of
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0
10 A is already substantially smaller than the average dis-
tance of two surface defects on a good-quality surface,
and so defects can be approximately ignored. In the ab-

sence of polaron effects, one would normally expect two-
dimensional electrons of this density to be fluid at T=O
K. In fact, here,

r, -(m'/ea&V'mn )-3
(if e-6 is an effective surface screening, ae is the Bohr
radius, and a mass m*=1 is assumed). The effect of
strong electron-lattice coupling, however, is that of enor-

mously increasing the effective electron mass. The hole-
polaron mass for the buckling model of Sec. II, for exam-

ple, was -4000. An electron, or a hole, trapped inside a
small polaron of this kind, is essentially a classical object.
Classical two-dimensional electrons will "Wigner-
crystallize, " neglecting other effects due to long-range
fluctuations, all the way from T=O K up to a melting
temperature T~, given approximately by

I = (k~ TM ) '(e /e)v'nn —130. .

From this, we estimate a melting temperature as high as
25 K. Although residual quantum effects may reduce this
temperature, it is nevertheless still substantially higher
than two-dimensional melting temperatures seen for elec-
trons on liquid-He surfaces, of order of 0.4 K. In con-
clusion, we suggest that excess surface-state electrons or
holes that are responsible for band bending in a doped
semiconductor may be self-trapped polarons and, hence,
essentially classical objects. As. such, they should crystal-
lize at sufficiently low temperature. The crystalline state
might become observable experimentally. For example,
deformation potentials generate a coupling mechanism be-
tween the two-dimensional plasmonlike modes of this
crystal and the Rayleigh wave of the semiconductor. In a
way similar to that of electrons on He, this mechanism
would lead to folding of the Rayleigh wave from
K=6=4m(n/2v 3)'~ -0 5A ' .back to k =0. In anal-

ogy to that case, mixing with the plasmon would make
this mode, of frequency as high as 15 meV, optically ac-
tive and thus observable with either ir absorption or high-
resolution electron-energy-loss spectroscopy.

V. CONCLUDING REMARKS

The main aim of this paper has been to introduce the
concept, and show the relevance of, polaron effects on
electrons that belong in surface states.

This has been pursued by direct study of prototypical
situations. For this purpose, the 2 && 1 reconstructed
Si(111) surface has been selected, as a system that has re-
ceived very considerable attention in the past and for
which polaron effects, not discussed before, may be of
considerable importance. Among the existing models for
the reconstructed surfaces, we have chosen the most popu-
lar, i.e., buckling and m-bonded chains. Polaron effects
are shown to be very important in either model, and quan-
titatively more than an order of magnitude larger than in
bulk Si, or about as important as in a three-dimensional
ionic crystal.

Since strict surface-state transport will probably never
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APPENDIX A: ESTIMATE FOR THE NUMERICAL
VALUES OF THE, PARAMETERS C g AND Ho

IN THE BUCKLING MODEL

In order to determine quantitatively the equilibrium
values of H~ and H2 given by Eqs. (2.13), we must speci-
fy the parameters C, y, and Ho. For C we simply take
the value C=52.8 eV, corresponding to e&

—e, =4.4 eV, a
value introduced empirically by Pandey and Phillips to
fit other accurate bulk and surface-state calculations. The
elastic constant y and the reference height Ho are, in fact,
properties of a hypothetical Si(111) surface which (a) has
no electrons at all in the DB state, and (b) is ideal, i.e., un-
reconstructed. We determine them in the following way.
Suppose we start with Si(111) in this hypothetical situa-
tion, and then "pour in" the 2N surface electrons while

keeping the surface unreconstructed. The total-energy
change per atom is then

8'(H) = , y(H —Ho ) +e(H), —

where e is the energy of one electron per DB,

e(H) =e~ —(C/2)(H/a)

Minimization of (Al) yields

(Al)

ya Ho
Ho —— (A2)

ya —C
0

If we fix Ho 0.79 A, the expected inter——layer spacing in
the absence of relaxation, then (A2) connects y and Ho.
For a small uniform displacement Q from equilibrium,

be measurable, the main impact of surface-state polarons
should be on the spectroscopy of surface states. We have
concerned ourselves here mostly with optical absorption.
A careful polaron study of the electron-hole pairs has
been carried out in this light, and a detailed analysis of
the absorption line shape is presented, which also brings
out interesting differences between the two reconstruction
models. A short discussion at a much more qualitative
level is given for surface luminescence, photoemission,
and scanning tunneling spectroscopy, as well as for a pos-
sible classical crystallization of a dense system of surface-
state polarons. Our hope is that this paper will stimulate
new experimental efforts aimed at elucidating the impor-
tance of these polaron effects in surface-state spectros-
copy.

Note added in proof. In a recent paper, F. Flores, C.
Tejedor, and E. Louis [Proceedings of the 17th Interna-
tional Conference on the Physics of Semiconductors (un-
published)] have considered a related problem of surface-
state —electron-phonon coupling together with electron-
electron interaction. Their results show that the presence
of electron-electron interaction does add new interesting
features to the problem.
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the total energy (Al) becomes

g (Hp+ Q) =const+ —,(y —C/a )Q (A3)

—,(y —C/a )=—,Mcop,

where M is the atomic mass. We take %cop ——50 meV, a

We can relate y —C/a to the frequency cop of the surface
phonon characterizing the outward-inward relaxation
mode of the surface by

value of the order of a general short-wavelength phonon
in sihcon, and also close to the experimental value of the
s«ace-phonon energy observed on Si(111)2X1.6s

yields ya —C —250 eV, and from (A2) we obtain
Ho ——0.65 A. Comparison with Ho ——0.79 A shows that
"pouring in'* one electron per DB has produced an out-
ward surface relaxation. This was, of course, to be expect-
ed since outward relaxation of the first layer, by Eqs. (2.1)
and (2.2), increases the s admixture in the DB wave func-
tion relative to p„and e, is about 4 eV lower than ez.

APPENDIX 8: CALCULATION OF THE SELF-ENERGY (3.37)

For cok
—=cop and Vkk = V (independent of k and k '), Eq. (3.37}can be rewritten in a slightly more convenient form,

X(E)=
~
V~'(n„, +1)g . +

~

V ['n.,

xg E ~„.+e p a(E+—e p) i r(E+.f2cop)
k '

where we have taken into account the independence of Xk(E) on k and used X(E}=b,(E)+iI'(E). For our dimerized

chain model the sums over k reduce to one-dimensional integrals from —m/a to m/a along the I J direction of the
SBZ. For the simple effective-mass dispersion ek =k /2m, these integrals can be carried out analytically. However,
before writing their expressions —which are quite cumbersome —it is convenient to establish a few notations. Separating
the real and imaginary parts of X(E) on the left-hand side of (81), we can write

Q(E) =—,[(1 +n„)h)( E) +n„h (zE)],1 iV/ (82)
2 (er fugp)'

I'(E)=—,[(1+n„)l~(E)+n„ I 2(E)), (83)
4 (eL, %cop)'~

where eL,
——A n /2m*a . Let us next define (i = 1,2)

y;(E)=argA;(E),

Q, (E)=
~
~, (E}

~

-',
R;(E)=Re[A; '(E)],
I;(E)=—1m[A; '(E)],

where

Ai(E)= 1

E flop —k(E —Atop) —i r(E —r p)

and

Ag(E) = 1

E+mp b,(E+r, ) &. r—(E+m,)—
We start with I;(E),which has a somewhat simpler expression,

~p . si, +2(el, Q; )' 'cos(q; /2) +Q;I;(E)= sin(y;/2)ln +2 cos(y;/2)(8;+m. /2)
Q; EL, —2(e'I Qg ) cos(gg /2) +Q

with

(84)

(85)

(88)

(89)

(810)

8;(E)=tan
2(er, Q;)' sin(q&;/2)

For the two terms contributing to b.(E) in (82), we find

~p R;+Qc
sin(p;/2)ln

l
6;(E)=

where

eL, +2(er, Q;)' cos(y;/2)+ Q; cos(y;/2) R;+ . (8)+m/2) —8(+ —8;
e'L, —2(eL, Q;)'~ cos(tp;/2)+Q, . sing; Q;

(811)

(812)
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, ( )'/z+(Q;)'/2cos(p;/2)
8;. (E)=tan

(Q; )'/ sin(p;/2)
(813)

~e recall that all terms, such as Q;, R;, q);, etc. in (810) and (812) are functions of E through (84)—(87).
The expressions (82) and (83)—with (Blo) and (812)—are already in a fo~ which can be easily programmed for a

numerical iterative solution, starting, for instance, from h(E) =0 and I (E)—:y « 1 (a small but finite value of y is, of
course, necessary to avoid divergencies). To test the convergence we monitored the value W of the integral of the spectral
function,

dE
[E—A(E}]'+I'(E)

Good convergence ( & 10 ) usually requires about 20 iterations.
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