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In this paper we study the phonon dispersion in superlattices consisting of alternating layers of
semiconductors. First the parameters in the adiabatic bond-charge model are obtained. Then it is

shown that an excellent approximation to the dispersion curves of the bulk semiconductors can be

obtained first by a zeroth-order calculation which includes only short-range forces and Coulomb in-

teractions between ions and bond charges in the same and neighboring layers, then by a first-order

perturbation to include the effect of the remaining forces. Thus it is possible to obtain the complex

phonon dispersion relations via the eigenvalue method in the zeroth-order calculation. The eigen-

mode displacements of the superlattice are obtained by matching the eigenvectors associated with

complex phonon branches at the interfaces, and the superlattice-phonon dispersion curves including

the effect of interlayer Coulomb interactions are calculated in the first-order approximation. The
results for the superlattice phonon frequencies compare ver'y favorably with the existing experimen-

tal data.

I. INTRODUCTION

With modern technologies, superlattices made up of al-
ternating layers of semiconductors have been fabricated in
the laboratory. Considerable effort has been spent to
understand their electronic properties. ' However, only
very little work has been done on their phonon properties.
The problem was first considered by Rytov in a continu-
um model. Later, Barker et al. took the lattice into ac-
count by using a simple linear-chain model with short-
range forces to calculate the phonon dispersion curves of
the A1As/GaAs(001) superlattice. However, as pointed
out by Merlin er; al. , the long-range Coulomb interaction
cannot be neglected in obtaining the dispersion curves. In
this paper we shall present a method which takes both the
presence of a lattice and the long-range Coulomb interac-
tion into account.

We first adopt a model for the phonon calculation of
bulk semiconductors. Once this is done, we may try to
solve the superlattice problem in a straightforward
manner with use of the force constants of the known
model by writing the equations of motions for the ions of
the superlattice, and then solving for the frequencies in
the same way as for a bulk material. However, this
method, though simple, has the drawback that the size of
the matrices increases linearly with the superlattice unit-
cell length. The calculation soon becomes difficult and
even numerically intractable.

The similarity of a phonon-dispersion-relation calcula-
tion with the electronic band-structure calculation in the
tight-binding approximation suggests that we may try to
solve the problem using the idea of complex band struc-
ture. ' However, finding the complex phonon dispersion
relations of a realistic phonon model is not. a trivial task
because of the existence of the long-range Coulomb in-
teraction.

In this paper we shall show that we can treat the prob-
lem by a perturbation method, using a zeroth-order

model, in which the Coulomb interaction between any two
layers of ions is truncated at a short distance, and with the
remaining Coulomb interaction treated as a perturbation.
We find that the dispersion curves for the bulk obtained
in this way are extremely close to those obtained by a full
calculation. With this, we can proceed in a way analogous
to the electronic "complex band-structure" calculation to
obtain the complex phonon dispersion and the associated
eigenvectors in the zeroth-order approximation, then
match them at the boundaries, and finally reinstate the
remaining long-range Coulomb interaction using a first-
order perturbation theory. This is the procedure that we
shall follow.

In Sec. II we first review the adiabatic bond-charge
model, " which we adopt for describing the lattice
dynamics. Thenaj, ustification for our approach of treat-
ing the long-range part of the Coulomb interaction as a
perturbation is presented. In Sec. III we calculate the
complex phonon dispersion relations in the zeroth-order
approximation and discuss the results. In Sec. IV the
complex phonon dispersion relations are used to calculate
the phonon dispersion relations for the A1As/GaAs(001)
superlattice for a particular case in which the wave vector
is in the z direction. Section V constitutes a summary of
our results.

II. REVIEW OF THE ADIABATIC
BOND-CHARGE MODEL

FOR III-V—COMPOUND SEMICONDUCTORS

We shall adopt the adiabatic bond-charge model
(BCM) for the description of the lattice dynamics which is
an extension of Martin*s simple bond-charge model. ' %'e
shall not dwell on the merit of the BCM over the more
conventional shell model for semiconductors' since the
reasons have been discussed in detail in the original
works. ' " We shall just give a brief review of the model
itself for convenience of later reference and establishment
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of notation.
Martin' showed that in III-V—compound semicon-

ductors there are two kinds of bonding forces: metal-like
and covalent. In the BCM the former is represented by a
nearest-neighbor interaction potential p;; between the
ions, while the latter is represented by interactions involv-
ing the bond charges (BC's), whose positions divide the
bond length between the cation and the anion (hereafter
referred to as z=1 and 2, respectively) in the ratio 5:3.
Thus if to is the bond length, then the two ion —bond-
charge distances are r( ——to(1+p)/2 and r2 ——to(1 —p)/2,
respectively, where p=0.25. The charges of the ions are
Z( ——Zq ——2Z, and that of the BC's is —Z (see Fig. 1). In
the adiabatic BCM, the BC's are allowed to move adiabat-
ically.

We shall denote the two ion —bond-charge potentials by
p& and $2. Any two BC's i,j, centered around a common
ion cr, interact with each other and with the ion via a
Keating potential, '

are force constants, and a is the equilibrium value of
~
X; X~l ~, i.e., a( ———,

' [to(1+p)/2] and
2 1

aq ———,[to(1—p)/2] . The BC's also interact directly with
each other via a potential g( or P2, depending on whether
they are centered around ion 1 or 2. %'e shall follow Rus-
tagi and Weber' and assume that 1it'( ——p2 ——0 and
P&' ———fz = (82 8( )/—8. Here, and henceforth, all
derivatives are evaluated at the equilibrium distance be-
tween the ions or BC concerned.

We write the Coulomb interaction energy per unit cell

(2Z) e
&M

e to

where e is the dielectric constant and nM is the Madelung
constant for the model. The equilibrium conditions for
the minimization of the total energy per unit cell (4) with
respect to t0 and p are given by

Vbb —,8——(X; X~l+a()) /4a~,

where X;,X J are the distance vectors at any given in-
stance between ion o (a =1,2) and bond charges i,j, 8 where

()@

~P p =0.25

2Z e+=44&(r&)+46(r2)+44;;(to) —~~ +6[v"'+ v"']+6 yet0
bb bb (

2 ~6 + 2

and

I
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From (1) we obtain

(2)

4 p(l, ~;l', l(') =
+le, a I'a', P

is the ath component of the position vector of the
ion ~ or BC ~ in unit cell l, and k is the wave vector. The
equation of motion is then

«MZ e

dP g t0
M„co u~(l, ~)= g +~tl(l, ~;1',lr')u p(l', ~') .

I',~', P
(6)

Following Rustagi and Weber, ' we take the additional as-
sumption that (1+p)P(+( I —p)$2 ——0, and obtain

With the displacement u~(l, k) of the ion ~ in unit cell l
associated with the jth mode written as

01 1 —p d&M

1+p dp
(3)

u (l, l() =e' " ' "'"e (l(
~
k,j),

and using definition (5), we can rewrite (6) as

(7)

I+p «bt Z—2
r2 1 —p dp et 0

(4) M.~ e~(~
~
k,j)= g D~tl, etl(~'

~
k,j),

k
D —g @ gl l(. l& lr&)e

—I k [ x (I)—x (l )1

I'
(5)

where x(l) =x(l, 1) is the lattice vector in the lth unit cell,

At p=0.25, aM and daM/dp are numerically determined
to be 4.779 and 2.764, respectively. Hence, the (indepen-
dent) parameters of the model are P;";, P&', Pz', 8&, 82, and
Z /E Together wit. h (2)—(4), and g I' and f2, we can
write the force-constant matrices between the ions and
BC's as shown in Appendix A. The dynamical matrix is
then

from which co ( k ) can be obtained by diagonalization. ' "
Table I shows the parameters of the model for seven

III-V—compound semiconductors. The parameters for
GaP, GaAs, GaSb, and InSb are adopted from Ref. 10.
The InP parameters are obtained by fitting to the known
frequencies at the I, X, and I. points of the Brillouin
zone. The results, accompanied with the data from Refs.
15—17, are shown in Fig. 2. The agreement is very good.

For the other III-V compounds, in particular A1As,
which is of interest here, the available experimental data
are too scarce to allow the previous procedure. However,
we observe that there is a discernib1e trend of the parame-
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TABLE I BCM parameters for some III-V—compound semiconductors, given in units of e /U„
where v, is the unit-cell volume.

Ion-ion

3 4f-I

Ion —bond-charge

3 4z'
bond-charge —ion —bond-charge

1 82 Z2/e

A1As' 5.80 2.27 15.48 5.79 8.54 0.180

GaPb
GaAs"
GaSb~

6.04
6.16
6.77

2.40
2.36
2.37

17.91
16.05
13.10

5.2
5.36
6.28

10.0
8.24
7.08

0.203
0.187
0.160

InP'
InAsd
InSb~

7.16
7.31
7.47

2.95
2.64
2.32

21.62
17.86
14.09

3.43
3.99
4.56

8.37
7.30
6.24

0.249
0.210
0.172

'Parameters for AlAs are interpolated from the GaAs and (interpolated) InAs values, from Eq. (10), for
which the value y=0.76 is obtained by fitting the I -point frequencies and acoustic frequencies at point
X (Ref. 20).
"Parameters for GaP, GaAs, GaSb, and InSb are adopted from Rustagi and %eber (Ref. 10).
'Parameters for InP are obtained by fitting to the known frequency at points I, X, and I..
Parameters for InAs are interpo)ated from the InP and InSb values, from Eq. {9b).

1IGaAs 2 (~GaP+~Gasb) ~ (9a)

where Pz denotes any one of the six BCM parameters list-
ed in Table I, for semiconductor compound S. We believe
that the same (approximate) relation holds with substitu-
tion of Ga by In in Eq. (9a), and thus we have obtained
the corresponding parameters of InAs listed in Table I, by
using

1

~InAs 2 (~InP +~Insb )

The phonon dispersion curves of InAs calculated in the
[$00], [g'0], and [g'g] directions are shown in Fig. 3, to-
gether with data at I from Ref. 18 (see also Ref. 19). We
see that the calculated frequencies are very close to the ex-
perimental data, despite the fact that (9) may seem rather
naive.

We may well suppose a similar equation for the rela-
tions between the parameters of semiconductors of the
same anion but different cation constituents. We propose
that, for some y between 0 and 1,

ters as we move vertically down the Periodic Table and, in
fact, we find, to a good approximation,

l2-

N

M
O

10 t-
+

1 1 —y
~A1As ~GaAs ~InAs

3'

We obtain y by varying it to fit the I'-point frequencies
and acoustic frequencies at the X point. (In Ref. 20 the
optical frequencies at X are also available, but we do not
use them in our fitting for reasons which shall be men-
tioned below. ) We obtain y=0.76 and thus the parame-
ters for A1As listed in Table I with use of Eq. (10). The
calculated phonon dispersion curves in the [$00], [g'0],
and [g'g] directions are shown in Fig. 4. There is good
agreement between the calculated frequencies and the ex-
perimental data, except for one optical frequency at point
X. We have, in fact, tried to fit the six parameters of the
model to the six known frequencies. We are unable to ob-
tain a good fit within the domain where the parameters

O

CX
0)
0

a( )

FIG. 1. Unit cell of a III-V—compound semiconductor in the
BCM. It consists of cation 1, anion 2, and BC's 3, 4, 5, and 6.
Anions of three neighboring unit ce1ls, labeled 2', are also
shown, with position vectors relative to the cation given in units
of a/2, where a is the lattice constant of the conventional (cu-
bic) cell.

+~+

[Coo] x [(Co] I [HC] L.

Reduced Wave-vector Coordinate( g )

FIG. 2. InP phonon dispersion curves calculated by the
BCM. Experimental data (marked + ) from Refs. 15—17 are
included for comparison.



SUNG-kit YIP AND YIA-CHUNG CHANG 30

N

cu
C3 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~InAs ~ ~ ~ e

N

O InP

0r , [goo] x [(go] r [ggg] L

Reduced Wave-vector Coordinate (g )

FIG. 3. InAs phonon dispersion curves calculated by the
BCM. Experimental data (marked ~) from Ref. 18 are included
for comparison. 0

[goo] x [g~o] r [gr~] L
Reduced Wave-vector Coordinate ( g )are physically reasonable. In fact, there is also confusion

about which of the two optical frequencies at point g is
transverse or longitudinal (see Ref. 3). The optical-
frequency data at point X of Ref. 20 is thus in doubt.

It was shown by Weber" that, for the group-IV elemen-
tal semiconductors, a model with only some short-range
part of the Coulomb force included can also fit the experi-
mental data quite well. We shall now investigate a similar
question for the III-V—compound semiconductors. We
shall only include the Coulomb interaction between an ion
and its nearest BC's, and also among BC's which sur-
round a common anion or cation, ignoring all the rest.
This can be done with the replacement

2Z'

FIG. 5. InP phonon dispersion curves calculated in various
stages: the zeroth-order approximation (dashed lines), the first-
order approximation (solid lines), and the full calculation in the
BCM (dotted lines).

and with all of the Coulomb interaction ignored. For the
first derivatives of the potential, we shall choose the new
values such that the equations corresponding to (1) are
satisfied. The necessary replacement is found to
12~~4.614 and do M/dp~2. 461. This ensures the stabil-
ity of our model so that the frequencies obtained are real.
The result for InP is shown in Fig. 5. We do not obtain
good agreement, as expected, because the crystal is hetero-
polar. Polarization, and hence electric field, is set up due
to the relative displacement between the ions and BC's
when the lattice vibrates. In particular, due to the absence
of this long-range macroscopic electric field, the optical
frequencies at point I become degenerate.

To see how the results can be improved, we break down
the full dynamical matrix into two terms,

Z2

eI (4to/1/6)[(1+p)/2] I
41,2~ P1,2+

l4

l2"-

IO
OJ

O (0) (&)+aP ' DaP ' +~aapK K K K
, jK K

ALAs

The first term is the dynamical matrix of the short-range
force-constant model just mentioned, and the second term
includes the remaining corrections (both the long-range
Coulomb terms, the change in the short-range forces men-
tioned in the last paragraph, and changes necessary due to
translational invariance ). We now try to treat the second
term as a perturbation. With the unperturbed solution
chosen to have the orthogonal property (with respect to
the semidefinite matrix of the masses M„), i.e.,Roo] x [ggo] r [g~g] L

Reduced Wave-vector Coordinate (g ) y M/[~~ (&
L

~ J )] & (&
L

~ j)=~JJ'
cc,aFIG. 4. AlAs phonon dispersion curves calculated by the

BCM. Experimental data (marked ~) from Ref. 20 are included
for comparison.

where (0) denotes the unperturbed solution. We can show
by perturbation theory that, to first order,
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k
, ) + y y„[ ' '(

~

j)]'(D'"), "'( '
~

j') .
v, a x', P

(12)

Although the zeroth-order solution is degenerate at point
I, no degenerate perturbation theory is needed since the
displacement there can be separated into a longitudinal
and two orthogonal transverse modes. The result of the
calculation is also shown in Fig. 5. The result agrees quite
well with the curve of the full calculation.

We see that the long-range part of Coulomb forces in
the BCM cannot be neglected, but can be treated as a per-
turbation, and a first-order perturbation theory is good
enough for most purposes. In the next section we will
show that by including the intraplane Coulomb interac-
tion in the zeroth-order dynamic matrix and treating the
remaining long-range interaction as the perturbation, we
can obtain a phonon dispersion relation in nearly perfect
agreement with the full calculation.

III. COMPLEX PHONON DISPERSION RELATIONS

to make the replacement aM~5. 326 with da~/dp un-
changed. For the Coulomb interaction, a sum over all
ions or BC's in a layer is needed. This is done in Appen-
dix C.

To ill'ustrate the suitability of this mode1 for calculating
heterostructure phonon properties, we first calculate the
phonon dispersion relation of a bulk material in first-
order perturbation theory, analogous to what we did in
Sec. II. Figure 7 shows the unperturbed and perturbed

IO

8

CU

—6

A. Method

In the preceding section we showed that we can calcu-
late the dispersion curves first with short-range terms
only, and then perform a perturbation. Thus we can use
the eigenvalue method to obtain the complex phonon
dispersion relations in the zeroth-order approximation.
However, for the purpose of studying phonon dispersion
relations of heterostructures, we try to avoid the degenera-
cy of the optical-mode frequencies at the I point for the
unperturbed solution encountered in the preceding section.
To do this we imagine that our bulk material is anisotro-
pic, with the z direction (the direction perpendicular to
the interface in a heterostructure of interest) as the special
direction. In this paper we shall confine ourselves to the
[001] case, although the method is readily applicable for
other directions as well. Now, we include in our zeroth-
order calculation the Coulomb interaction between (1) an
ion layer and its two nearest BC layers, (2) any two neigh-
boring BC layers, (3) any two BC's in the same layer, and
(4) any two ions in the same layer. This is illustrated in
Fig. 6.

As in Sec. II, we use the parameters in Table I, while
modifying the first derivatives of the potentials so that the
crystal has a minimum energy. Tltis is discussed in detail
in Appendix B. The result is that in (2)—(4) we only have

0r X
Reduced Wave-vector Coordinate ($ )

l4-

IO-
h4

C4

AIAs

a, l "L

5,6 i~i ~ 4,5 i 3,6 45
s $ lb I/Jf%% J \ J 4 J 4-JII I

nl

short-range only

short-range 8 Coulomb

Ions ~ bond charges

FIG. 6. Schematic diagram of the coupling between layers of
ions and BC's due to the short-range and Coulomb interactions
included in the zeroth-order model. The dotted lines at top
denote the couplings due to short-range interactions only, and
the dashed lines at bottom denote the couplings due to boih
short-range and Coulomb interactions.

'r X

Reduced Wave-vector Coordinate (()
(b)

FIG. 7. Phonon dispersion relation of (a) GaAs and (b) AlAs
along the [00$] direction calculated in three stages: the zeroth-
order approximation (dashed lines), the first-order approxima-
tion (solid lines), and the full calculation in the BCM (dotted
lines).
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frequencies for GaAs and A1As along the [00$] direction
and the result of the full calculation. We see that the per-
turbation itself is small. Therefore, the first-order-
perturbed frequencies and those of a full solution agree al-
most perfectly, except for a very slight discrepancy for the
transverse-acoustic branch (the rest agree so well that we
cannot even show the difference in the figure). For other
directions, we find similar agreement, although not as per-
fect. As an example, in Fig. 8 we plot the unperturbed
and perturbed frequencies for GaAs along the [$00] direc-
tion and the results of the full calculation. Because of the
anisotropy introduced in the model, the transverse modes
that are degenerate in the full calculation now split into
two branches, and the unperturbed frequencies are quite
different from those in Fig. 7(a).. The perturbed frequen-
cies, however, are still very close to those obtained in the
full calculation. The success of this first-order perturba-
tion theory shows that the displacement vectors are suffi-
ciently accurate. This is important since they will be used
in our calculation of the superlattice phonon modes when

we match the displacements on the boundaries between
two materials. In addition, we see that a higher-order per-
turbation theory is not necessary.

We can now apply the eigenvalue method to find the
complex phonon dispersion relation. We write the dis-

placement of the ath ion or BC as (dropping the k,j in-

dices in the eigenvector)

cu 6
O

a. 4
U

Reduced Wave-vector Coordinate (r )

FIG. 8. Phonon dispersion relation of GaAs, along the [$00]
direction, calculated in three stages: the zeroth-order approxi-
mation (dashed lines), the first-order approximation (solid lines),
and the full calculation in the BCM (dotted lines).

u (l,a)=e (a)e '' e (13) k„k~~0=+Hp, p('),
sc' p

(14)

where l3 denotes the layer position; k((, R)) are the wave
vector and unit-cell position vector, respectively, projected
in the x-y plane. (Here, and henceforth, all distances are
measured in a/2 and wave numbers in 2tr/a, where a is
the lattice constant. )

Transposing the mass terms to the right-hand side in
the equation of motion (8), we obtain

kz, k
H

are functions of co and can be' written in the polynomial
ofm

k„k~) l3+1
H p

l 3
——13 —1

Cap( I, tr; I', a') e
l l, l2

( —1)
k

i(
. k

ii—ik m'
(O)

H+p e +H&pK K

k
~~I.

x (l) —x (l )]~~ 2 Ikz(l3 l3 )~—
6&&, M co e

'3 3

(1) ik m+Hp, e (15)

It can be shown from (15) that H' ' is adjoint to H'" (i.e., [H'"] =H' ") and H' ' is hermitian. To simplify (14),
we break down the 18-dimensional space into two nine-dimensional subspaces, which are associated with (1~=1,4,5) and
(a.=2,3,6), respectively. With this decomposition, we find that the matrices H take the form-(see Fig. 6)

and

-9X9-Q
( —1)H

Q Q—9X9 —9X9

~11 ~12
(0)

—9X9 —9X90 0
H(1)

I (') O 9X9
(16)

(17)
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here h' ", h'", and H,i are 9&(9 matrices. We define the displacement vectors in the two subspaces (labeled 1 and 2) as

e1=(&~(1)i&y(1)y &g(1)i &~(4), ey(4), e, (4), e„(5),e~(5), e, (5))
(18)

e 2
——(e„(2),ey(2), e, (2), e„(3),ey(3), e, (3), e„(6),ey(6), e, (6) )

Then, (14) becomes two coupled matrix equations,

1)
—ink

h e 62+H 1161+H 12''2 =09X1
i~k~

@21e 1+Q 22e2+h e el 09x1

Solving for e 'e
1 in (20) and substituting the solution in (19), we obtain

e *e1———(h"') '(H 21e1+H 22e2)

and

ink
(H 12) H 11(h '") 'H 21e 1+(8 12} [H 11(h } If 22 h ]e 2

(19)

(21a)

(21b)

Before discussing our results of the complex phonon
dispersion relation, we shall first present a general discus-
sion of their symmetry properties. From the definition of
the dynamical matrix (5), we can show that

D~p, ——D~p (22)

Da =Dp
K K

(23)

where we have used the symmetry properties of
N~p(l, v;1',a'). Using (6) and (22), we have

k
Mkco2e*(~

~
k,j)= g D~p „~ ep(~'

~
k,j)

Thus,

i~k
which, together, is an eigenvalue equation for e

Thus, for a given kll and co, we can solve for the values
ink

of e ' and, hence, the complex k, values and also the
eigenvectors e1,e2 by diagonalizing a 18&18 matrix. '

The 18 solutions will be labeled j=1, . . . , 18 (branches
corresponding to a given co not to be confused with

modes of a given k in Sec. II).
The above calculation applies only when the inverses of

H"' and H12 exist. However, this does not hold for the
entire kll plane. In particular, for kll

——(k„,k~) =(0,0), we
have the point group C2„as the symmetry group of the
wave vector, and one can show that both H'" and H 12

are singular. Thus, modification of our method is neces-
sary. The details are given in Appendix D. We find that
in this case phonon modes of different symmetries are
decoupled; they are labeled A1, A2, B1, and B2. The six
A1 modes are longitudinal modes. B1 and B2, each con-
taining five modes, are two degenerate sets of transverse
modes. One 81 and one B2 mode correspond to the non-
physical solutions k; = + oo. The remaining two 32
modes involve BC displacements only and have no physi-
cal significance.

B. Results and discussions

co (k,j)=co ( —k*,j) . (24)

Using the reality of A@2, (8},and (23) for normalized eigen-

vectors e (a
~
k,j} (note that they are not necessarily

orthogonal for complex k), we obtain

co (k,j)=co (k*,j) . (25)

=co (kll, —k, +ik;)

=o) (kll, —k„—ik;) .

Hence, for a given kll and co, the complex k, solutions
can be grouped in the form +k„+ik;.

We now give the results of our calculations of the com-
plex phonon dispersion relations of some III-
V—compound semiconductors for the (001) orientation.
We shall refer to the solution k, (co ), for fixed kll and co,
as the complex branches, and label them by j.
(j =1, . . . , 18 for kll&0; j=1, . . . , 6 for A1 symmetry
and kll ——0; j=1, . . . ,4 for 81 or 82 symmetry and

kll ——0). We classify these complex branches as follows:
(i) a real branch ( k; =0);
(ii) (a) an imaginary branch of the first kind (k;&0,

k„=0), and (b) an imaginary branch of the second kind
(k;&0, k„=k,„=2vrla) [sometimes we shall not distin-
guish between (a) and (b), and refer, then, to just imagi-
nary branches]; and

(iii) a complex branch (k„&0, k;&0).
In Figs. 9—11 we plot some of the complex phonon

dispersion relations for GaAs, AlAs, and Inp. Imaginary
branches of the first kind, real branches, and imaginary
branches of the second kind are plotted in the left-hand,
middle, and right-hand panels, respectively. The complex

Equations (24) and (25) hold for the complex phonon
dispersion relations in general. ' For the (001) orienta-
fion,

'

the crystal has the reflection symmetry

x,y~ —x, —y. Hence, for real kll, (24) and (25) lead to
(writing k, =k„+ik; and dro'pping index j)

co (k)l, k„+ik; ) =co (kll, k„ik;)—
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FIG. 10. Complex phonon dispersion relation for AlAs(001).
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branches are plotted with their real part in the middle
panel, while their imaginary parts are plotted in the left or
right panel, according to which of the methods gives
clearer topological features. Because of the symmetry re-
lation (26), only the phonon branches with k„)0 or k; & 0
are plotted.

We shall follow the terminology of the electronic com-
plex band structure and consider the complex dispersion
relation to be sets of (continuous) complex functions
k, (co ); we call these functions real lines. These real lines
are observed to obey the same rules as for those in the
electronic case. ' These rules are the following:

(i) Real lines cannot terminate nor branch, nor can two,
or more coalesce into one.

(ii) Real lines cross each other with only vanishing pos-
sibility, except when (a) k, is real or (b) when k„=O or
k,„[possibility (b) was left out in Ref. 6 and was dis-
cussed in Ref. 8].

(iii) A real line may loop back to the real k, axis, and in
doing so may enclose a branch point in the complex k,
plane, and join a maximum of co(k, =k„) of one real
branch to the minimum of the next real branch of
co(k, =k„).

(iv) The case corresponding to (iii) for k, =ik;, k„=O,

or k,„. For the k~~
——0 cases, the branches of different

symmetries are independent of one another. Hence they
may cross, while those of the same symmetry cannot [see
Figs. 9(a), 10(a), and 11(a)]. This independence is de-

stroyed for any arbitrary small value of k~~ [property (ii)]
[see Figs. 9(b), 10(b), and 11(b)].

For the k~~
——0 transverse case, all branches are doubly

degenerate. Starting at low frequencies we find a real
branch and an imaginary branch of the second kind.
They connect to each other at the point X and turn into a
conjugate pair of complex branches, which, in turn, are
connected to each other at the minimum of a real [see Fig.
11(a)] or imaginary branch [see Figs. 9(a) and 10(a)].
Above the optical branches, only imaginary branches are
found. For the longitudinal case, we find that the
longitudinal-acoustic (LA) and -optical (LQ) (real)
branches are connected by an imaginary branch of the
second kind at point X. The. LO branch turns into an
imaginary branch of the first kind at point I . In addi-
tion, we find an imaginary branch of the second kind with

large
~ kz ~

which does not connect to any other branch in
the, frequency range of interest. As mentioned previously,
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the A2 branch is independent of co. This branch (marked

A 2) is also plotted in Figs. 9(a), 10(a),, and 11(a).
The features of the complex phonon dispersion curves

for k
~
~& 0 are much more complicated. Not many

features are common to all materials studied. Because the
symmetry is reduced, the degenerate transverse branches
now split. They may connect to each other, or even to the
branches which correspond to longitudinal branches and
the nonphysical A2 branch when k~~~0 [see Figs. 9(b),
10(b), and 11(b)]. We also now have 18 solutions for k,
for fixed k~~ and co2. The change in topology of the
branches when k~~ deviates slightly from (0,0) is illustrat-
ed in Fig. 11, taking InP as an example. A comparison of
Fig. 11(a) with Fig. 11(b) shows that most of the main
features at low frequencies remain unchanged, except for
the aforementioned splitting. At higher frequencies we
find crossing of longitudinal branches and transverse
branches when k~~

——0; when k~~&0, these branches break
away from each other to avoid crossing and result in very
different topologies. Upon going from k~~

——(0.1,0) to
(0.2,0), not much change is observed, except for a max-
imum (marked A) and a minimum (marked 8) of an
imaginary branch of the first kind in Fig. 11(b) which
coalesces and disappears [near a frequency (9—10)&10'
Hzj. The complex branches that connect to the minimum
and the maximum now just connect to each other and
form one continuous line, as shown in Fig. 11(c).

Our previous analysis has demonstrated that two corn-
plex phonon branches must approach the limit k;=+ oo

as k[~ 0. Thus only 16 branches are found for k~~
——0.

This interesting feature is also illustrated in Fig. 11. Note
that the imaginary branch marked with an arrow moves
toward larger values of k; in Figs. 11(b) and 11(c) as k~~

becomes closer to zero, and eventually disappears in Fig.
11(a).
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FIG. 11. Complex dispersion relation for InP {001). {a)

kI~
——{0,0), {b) k~~

——{2m./a){0.1,0) and {c) k~~={2m./a}{0.2,0}.

IV. PHONON DISPERSION RELATIONS
FOR A1As/GaAs(001) SUPERLATTICES

Having obtained the dispersion relations for complex k
and the associated displacement vectors, we are now ready
to calculate the phonon dispersion relations for the super-
lattice, by "matching" the displacements of the ions and
BC's across the interfaces. The same concept should ap-
ply for any superlattice, but we shall just perform the cal-
culation for AIAs/GaAs(001) superlattices.

First, we perform the zeroth-order calculation with in-
teraction between ions and BC's of the same range as
described in Sec. III. %'e need to know the force con-
stants among the ions and BC's when the ions are in the
superlattice. In principle, this can be obtained by a micro-
scopic theory. However, for our purposes we shall make
some assumptions about the force constants. We assume
that the charges of all ions and BC's take their values as
in their corresponding bulk material, except that of the in-
terfacial As, which is taken to be Zz+Zz, where A and
8 denote AlAs and GaAs, respectively. Recall that our
unperturbed calculation involves only short-range forces
between neighboring layers of ions, and we assume that all
force constants keep their zeroth-order bulk values except
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(i) between the interfacial As ion and other ions and BC's,
(ii) among the interfacial As ions in the same layer, and
(iii) among layers of BC's in the immediate vicinity of the
interfacial As ion.

A consideration of the equilibrium condition of the Al
and Ga ion nearest the interfacial As ion shows that PI"
(P;; ) between Al (Ga) ions and these As ions must be the
same as in the bulk. We assume that the same holds for

and P,' . For the parameters Pz",', Pg', PA„and
gz, involving the interfacial As iona (th'ese parameters
play no role in the minimization of energy), we simply
take the average between those of the two bulk materials.
We assume that the Coulomb interaction between the in-
terfacial As ion and its nearest BC layer in material A,
and that between any two BC's in this layer, are associat-
ed with an effective dielectric constant e~. Similarly, a
corresponding quantity is defined for material B. The in-
teraction between the two layers of BC's on opposite sides
of the interface is associated with a dielectric constant e,

t

which we have taken to satis fy

2 1 +
B

where e~ and e& are the bulk dielectric constants,
e„=10.1 and e~ = 13.1. The dielectric constant for
Coulomb interaction between any two As ions in the in-
terface is also taken to be e. We choose the remaining
force constants Pz, ', PP,

' involving the interfacial As ion
such that the total energy is minimized with the BC's still
remaining at the position specified by @=0.25. (Note that
both GaAs and A1As gave the same lattice parameter. )

Now we consider the minimization of the energy with
respect to the displacements of the BC's in material A
along the z direction nearest the interfacial As ions. Us-
ing the results of Table II (note that it is now necessary to
include the "background" terms due to uniformly charged
sheets), we found the condition

el 2 2

2.32 —4.35 — +Zg Zg
5.79 ~3m.+

4 e
ZA +Z8

ZA
2.29

(28)

2 2

go 6A

Zg
(Z~ +Za)

ZJp

Eg
—7.91

ZA
(29)

Combining (27)—(29), we find that the energy is mini-
mized when

Consider the displacement eigenvectors for the superlat-
tice for a given k~~ and co . For those ions inside a partic-
ular material a., we can expand the displacement eigenvec-
tor in terms of the eigenvectors associated with the com-
plex branches, f~ '(l3, a

~ j), of that material cr at the same

k(I and co as

1 1=0.098 and, =0.077 .
E'g

(30)

1g (I / ~)—e I e' g C f (13 IC~g) ~.
CT)J

PA, and P&, are obtained by substituting these values
[Eq. (30)] back into (28) and (29).

It should be noted that we did not "derive" the force
constants and the dielectric constants at the interface; we
simply tried to find the values such that our model would
yield physical results (co &0). In principle, we should
also consider minimization of energy with respect to dis-
placements in order directions. In view of a similar
analysis for the bulk in Sec. III, this consideration will, at
most, lead to a small modification in the force constant,
and shaH be ignored.

With knowledge of the force constants we can now
determine the phonon dispersion relations in the superlat-
tice. We still have translational symmetry in the x-y
plane, and by considering a fixed ktI, we reduce the prob-
lem to that of a one-dimensional chain. The translational
period in the z direction is increased. We shall label the
superlattice unit cells along the z direction by integers L.,
and the unit cells of each material by I, with the z com-
ponent l, =1, . . . , n, where o.=A or 8 denotes the two
materials (see Fig. 12).

(31)

where Cz
' are the expansion coefficients, and q is the su-

perlattice wave vector in the z direction [in units of
2vrl(nz+nz)aj. We choose j so that we have decreasing
k;(j) with j (recall that k, appears in groups +k„+ik; ),
and we write

L=O

GaAs A)As
I

GaAsAiAs

I~l~i
L

I
~ ~

i
I

B cr~ A

~3 Bf3= 1

0AI As Ga
FIG. 12. Schematic diagram ' for an ( nz /nz )

AlAs/GaAs(001) superlattice. I. labels the superlattice unit cell
and I3 labels the principal layer.

A)'where P&"' is the unperturbed bulk value of P& in A. A similar formula holds for material B. Minimization with respect
to the displacements of the As ions along the z direction yields the condition
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e ' ' e (v~ j) for j=l, . . . , X/2,iIk ~ (j)j(l3 —1)m

f ( 2 I
J') = .[k&o&1P)11

e * ' e (~ig) forg =N/2+1, . . . , X,
(32)

where the e (a
~
j) are the solutions obtained as in Sec. III,

and N is the number of solutions. In (31) we have chosen
the origin of the expansions so that the function f~ ' al-
ways decay away from the origin, and the coefficients
Ci

' will be expected to have the same order of magni-
tude. The equations of motion for the ions and BC's near
the interfaces will allow us to determine the expansion
coefficients Ci

' and q.
We first consider the case where h'" is nonsingular

(i.e., k~~&0 or Ai modes for k~~
——0). We shall use the

notation established in the preceding section. The equa-
tions of motion for the independent displacements
v 1 '(l2) and v 2 (ls) in the superlayer layer /2 of material
o. are given in the form of (19) and (20). Those equations
for ions and BC's which interact with their neighbors
with the same force constants as in the bulk are automati-
cally satisfied when we use the transformation

'v (~)(I )
'F (n)(I

v 2 '(l2) F2 '(12)
(33)

where C'~1 is a (2v) X 1 column vector with elements C' '
J

defined in (31). (v=9 for k~~&0 and v=3 for the Ai
modes with k~~

——0. ) F 1
' and F2 ' are vX(2v) matrices

with elements fl '(12,~
~
j). The expansion (33) is applic-

able for the displacements of all layers. This can be seen
from applying the transfer-matrix method since here we
have only modified the interactions between the interface
layer and a neighboring principal layer.

The equations of motion corresponding to (19) for
L, =0, l3 ——1, and o.=A and 8 are given by

iqnh ( —1) (—B)( )+H (A) (A)(1)+H (A) (A)(1) 0

(34a)

h BA v 2 (nA )+H 11 v I (I)+H 12~v 2 (1)—Q

(34b)

Similarly, the equations of motion corresponding to (20)
for L, =O, o=A, and I3 ——nA, and I.= —1, o=8, and
l3 ——nB are given by

H 21'v '1"'(nA )+H 22'U 2"'(nA )+ h ABv'1 '(1)=0~)&1 (35a)

H21~v 1 ( B)+H222v2 (nB)+e ~kBAv I (1) Q &(1

(35b)

T

~11 ~12

~ 21 ~22

C(A)

(B) 02vX1 &

where

H (A)F (A)(1)+H (A)F (A)(1)

Y 11= H (A)F (A)( )+H (A)F (A)(n )

—AB —2 ~B eI ( —1)F(B)( )
iqvr—

—12
P

(1)F (B)(I)
h ' „"F'"'( „)

Y21= L(1)F(A)(1) q
BA 1

and Y22 is in the same form as Y 11 with the index A re-
placed by B. Equation (36) is a polynomial equation of
e 'q, w'hich can be solved for each fixed value of co .

We can solve the problem, for a given k~~, by fixing co

and calculating the possible real values of q which satisfy
(36). This procedure avoids a self-consistency calculation
as used in Ref. 7, and is more efficient in obtaining the
phonon dispersion curves. However, it has the disadvan-
tage that, since the phonon branches for the superlattice
are quite flat, it is not easy to locate the branches by find-
ing the co which allow real q's. This problem is particu-
larly serious in the high-frequency region and when the
number of layers of the superlattice is large, in which case
we expect flat phonon branches.

Note that we have used the information from two inter-
faces to obtain the matrix equation (36). It is also possible
to relate C'"' to O'B' using only the information from one
interface, say, the one between I.= —1 and 1.=0. How-
ever, the matrices involved would contain very large and
very small numbers when the superlattice unit cell be-
comes large. This would cause serious numerical prob-
lerns in solving q.

For the case where the phonon branches are dispersion-
less, we will fix q and search for the zeros in the deter-
minant of the matrix Y in (36) as a function of co . In
principle, this can be done by varying m until one eigen-
value of the matrix Y vanishes. In practice, the solutions
are very difficult to find because the eigenvalues of the
matrix Y are not smooth functions of co . Furthermore,
since Y is not Hermitian, its eigenvalues are, in general,
complex. This makes it difficult to find the zeros by an
interpolation method, which usually works for real func-
tions. To circumvent the difficulty, we multiply the ma-
trix Y in (36) by a matrix Gt to obtain a new matrix X,
where

where H» and H 22 are modified from their bulk values,
H» and H 22, due to the presence of interfaces. With the
use of (33), the two sets of equations [Eqs. (34) and (35)]
can be cast into a (2v)-dimensional matrix equation, where

0

g f—8
(37)
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'
y (A)(1) P (8)(1)

Gg —— (g)( )
and G~ ——

a, ]c,13

f~ '(13,v ~g)P~ (a, l3), O'=A, B (38)

where the g' '(lr, l3) denote the "old" basis vectors. We
find that the eigenvalues of X are smooth functions of co,
and because they are real, it is quite easy to find the zeros
by an interpolation method. It should be noted that some
"extra" solutions may be found which correspond to the
zeros of

It can be shown that the new matrix X is Hermitian. In
fact, X is simply the dynamical matrix with the mass
term subtracted (D m„—co I), transformed in the "new"
basis defined by

l2—

IO—

N

OJ 8-O

O

~ 6-
CJ
0)

U

AIAs-GaAs Superlattice
(2/2)

transverse modes
l2

IO—

longitudinal modes

det(G)=det(G&)det(G&) .

These solutions must be discarded if they do not satisfy
(36). In all cases it is vanishingly possible to find
det(G) =0 and det(x) =0 simultaneously. Thus it is safe
to discard all the roots of det(G). The method discussed
above is a generalization of the method reported in Ref. 7.

The kII ——0 cases again need special attention and are
treated in Appendix D.

So far we have only obtained the unperturbed solution.
We now proceed to add the correction due to interlayer
long-range Coulomb interactions. Because of the compli-
cation of the periodicity and dielectric constants, it is tedi-
ous to include the correction due to all other layers. Thus,
in the perturbation, we shall simply include the Coulomb
interaction between all layers of charges with interplanar
distance & a /2. The Coulomb force between ions or BC's
is divided by the "dielectric constants" according to the
same rule as described in the beginning of this section.
We assume that the "correct" first derivatives of the
short-range interaction potentials are the same as those of
the full BCM. Care is taken to modify the dynamical ma-
trix elements of an ion or BC with itself, due to transla-
tional symmetry (see Appendix A). We remark that our
ways of includirig the perturbing Coulomb forces are not
unreasonable as the Coulomb matrix elements are ex-
tremely tiny for interlayer distances & a/2; for the short-
range interaction potentials we believe that they will be
near their bulk values, provided the superlattice layers are
not too thin.

The result of the calculation for a (2/2) and a (5/2)
A1As/GaAs(001) superlattice for the k~~ ——0 case is illus-
trated in Figs. 13 and 14, respectively. Upon comparison
with the phonon dispersion curves in Fig. 7, we note that
the superlattice branches always appear in frequency re-
gions where at least one of the bulk materials has a real
branch.

In the region where the phonon frequencies of the two
materials overlap, the qualitative behavior of the superlat-
tice phonon dispersions can be inferred from the "branch
folding" of the phonon curves of the bulk materials. In
this case, the "mini gaps introduced by the superlattice
are negligibly small for reasonably large unit-cell sizes (see
Fig. 14). In the frequency region where only the phonon

Wave vector q

X I'
Wave vector q

FIG. 13. Phonon dispersion relation of (2/2) AlAs/

GaAs(001) superlattice for k~~ =4. (a) Transverse and (b) longi-

tudinal modes. Dashed curves, unperturbed; solid curves, per-

turbed.

modes of one material are allowed, the superlattice pho-
non displacements will be confined in one material, and
the dispersion of the phonon frequencies depends on the
ratio of the decay length to the width of the barrier ma-

l4

l2—

AIAs-GaAs superlattice
(SZ2)

transverse modes
l2

longitudinal modes

10-

l4

OJos

Wave vector q
X I

Wave vector q

FIG. 14. Phonon dispersion relation of (5/2) AlAs/
GaAs(001) superlattice for k~~ ——0. (a) Transverse and (b) longi-
tudinal modes. Dashed curves, unperturbed; solids curves, per-
turbed.
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terial. It is interesting to note that we are in the case
where the two materials involved have no overlap in opti-
cal frequencies. Thus all the superlattice optical modes
are confined in either material. Furthermore, because the
decay length (A,:—1/k;) of the optical modes is shorter
than two layers [the decay length can be inferred from the
complex phonon dispersion curves in Figs. 9(a) and 11(a)],
these modes are nearly dispersionless [see Figs. 13 and
14]. The transverse-acoustic modes with f)2.4)& 10' Hz
and the longitudinal-acoustic modes with f)6.3&&10'
Hz are also confined in the A1As layers. These modes
have larger dispersion than the optical modes, because the
decay lengths at these frequencies are longer [see Figs. 9(a)
and 10(a)];

Recently, Raman measurements on a large number of
GaAs/Al„Ga& „As superlattices have been report-
ed. ' ' The measured phonon frequencies for acous-
tic modes are found to be in good agreement with the
model of a layered elastic continuum. ' The optical
phonons are less well understood, although a large bulk of
experimental data is available. We can compare our
theoretical predictions with the existing experimental data
for the optical modes. In Fig. 15 we plot the squares of
the zero-wave-vector optical-phonon frequencies for
AlAs/GaAs superlattices as functions of the inverse

'square of the GaAs thickness (d&). The thickness of the
AlAs barrier is fixed at four layers (11.3 A). Because of
the short decay lengths of the optical-phonon modes, the
increase of the A1As-barrier thickness has almost no ef-

feet on the GaAs-like optical-phonon frequencies. The
solid straight lines represent the results predicted by tak-

ing the small-q limit of a linear-chain model,

lvr
N =COL —Vz

where I is the folding order, cot is the bulk longitudinal-
optical- (LO-) phonon frequency, and U, is the longitudi-
nal sound velocity, which is adjusted to fit our results.
We have included in this figure only the four lowest-order
frequencies. The experimental data obtained by Colvard
et al. are superposed. All experimental data are rigidly
shifted up by 0.22/10 cm so that the lowest-order
LO-phonon frequency for one sample (with nine GaAs
layers) matches our theoretical prediction. This artificial
shifting is not unreasonable because both our theoretically
predicted and the experimentally measured phonon fre-
quencies have some uncertainties. There is, in general,
good agreement between the experimental data and our
theoretical predictions. It is interesting to note that all ex-

cept one experimental datum are associated with odd-
order foldings (I=1 or 3). The even-order LO-phonon
modes may be forbidden in Raman scattering because
their displacement 'eigenvectors have odd parity under the
reflection with respect to the x-y plane. The same
behavior was also noted for the longitudinal-acoustic-.
(LA-) phonon modes.

In Fig. 16 we plot the squares of the zero-wave-vector
optical-phonon frequencies for A1As/GaAs superlattices
as functions of the inverse square of the A1As thickness

I5IZI09 8 7 6 5 4
t I I 1 I 'l l I

(AIAs}4- (GaAs)~ Superlattice
9—

l5I2I09 8 7 6 5
I t I t I I t I

(AIAs)~ —{GQAs)4 SuperIottice
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O
7

3
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E
CP

Q
Al
3

50

FIG. 15. Squared optical-phonon frequencies of (A1As)4/
(GaAs) {m =4—15) superlattices plotted as functions of the
inverse square of the CiaAs thickness ( d

& ): longitudinal
( —~ —- —.); transverse {-&(-X-); linear-chain model ( ).
The experimental data are taken from Ref. 25.

0 2 6 S
d ~(~& ~A ~}

2
FIQr. 16. Squared optical-phonon frequencies of (AlAs) /

(GaAs)4 ( m =4—15) superlattice plotted as functions of the in-
verse square of A1As thickness (d2); longitudinal ( ——~ —~ );
transverse (- )& - )(-); linear-chain model ( ).
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(d2); the GaAs-barrier thickness is fixed at four layers
(11.3 A). Again, the solid straight lines are predictions
from a linear-chain model at the small-q limit. Unfor-
tunately, the experimental data of A1As-like optical-
phonon modes are too scarce to allow a meaningful com-
parison here.

V. SUMMARY

We have used the BCM as an interpolation scheme to
obtain the dispersion curves of some heteropolar semicon-
ductors. We have shown that the dispersion curves can be
obtained quite accurately, using a perturbation approach,
whereas in the zeroth-order approximation only interac-
tion between a finite number of adjacent ions or BC layers
exists. Thus, in the zeroth order, we can apply the eigen-
value method to find the complex phonon dispersion rela-
tions of the bulk materials, and then, by matching these
solutions at the boundaries, we can find the phonon
dispersion relations for the A1As/GaAs superlattices.
The correction due to the remaining Coulomb interaction
is included in the first-order perturbation theory.

We find that at low frequencies the acoustic-phonon
branches are approximately those from a simple "branch
folding, " but this fails to hold at higher frequencies. In
the latter regions phonon modes are found to be very flat.

All optical-phonon branches are found to be dispersion-
less along the z direction since they are well confined in
either material. The theoretical predictions for the
optical-phonon frequencies are found to be in good agree-
ment with the existing Raman scattering measurements.

The same method can be extended to superlattices along
other directions, and for superlattices made of other semi-
conductors. The method can also be extended to surface-
phonon calculations in materials including long-. range
Coulomb interactions. We plan to treat these applications
in future research work.
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T
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4 p(l, 3;l,6)= — v( p) 51

51 51 ~1

4 p(12;l, 3) and 4 p(l, 1;l,2) have the same form
as @ p(l, l;l, 3), with a),P1 in (Al) replaced by a2, P2 and
a', P', respectively; 4 p(l, 3;l', 6) is associated with pz, v2,
62, and A,2, where l3 and l6 label the BC's surrounding ion
2 (see Fig. 1). The force-constant matrices for the other
pairs of ions or BC's follow from symmetry considera-
tions. The self-interaction force-constant matrix is ob-
tained by the requirement of translational invariance,

g e!„@~p(l,a-, l', i(') =0 .
1', ]c'

(A3)

From (A3) we obtain (and analogous formulas for oth-
ers)

k
(l &.l~ &~)e i k [ x (—!)—x (!')]n

Ap ~ K ~ exp
I'

ink
Note that the dynamical matrix is a polynomial in e
The Coulombic part of the dynamical matrix is obtained
by Ewald's transformation. The constants introduced in
(Al) and (A2) can be expressed in terms of the parameters
of the BCM through simple differentiations. We find

3 tp

a1= —,yl'+ — +, P, = —,y)' ——2 P', B), 1 P'1

3 I" ) 2 3 P']

8]
2

4 p(l, l;l, l)=4(a'+a1)5 p,

4~p(1, 3;1,3)=[(a)+a2 ) + 2((L(,1+p2) + (A) +A2) ]5~p

+ [(P(+P2)+(v)+vz)](1 —5 p) .
I

We adopt the following convention for the dynamical ma-
trix (with distances measured in a/2 and wave numbers in
2m /a):

APPENDIX A: DYNAMICAL MATRIX OF THE BCM

We use the notation of Fig. 1. The general form of the
short-range (SR) part of the force-constant matrices are

Pi=&& = +4 2' 4

and similar equations for parameters associated with ion
2.

APPENDIX 8: CALCULATION OF COULOMB ENERGIES BETWEEN LAYERS OF IONS
IN THE ZEROTH-ORDER CALCULATION

In this appendix we calculate the Coulomb energy between an ion l, a and the ion or BC l', ~' of some fixed layer 1'.
Our method described here is similar to that used by Tong and Maradudin for evaluating the Coulomb part of the
dynamical matrix in a surface-phonon calculation. We start with the Poisson sum formulas:
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—(2m +x)2t —irk(2m)e e
4t

1/2

exp
—m. (k+m)

4t
eim(k+m)x- (81)

—(2m —1+x)2te ittk—(2m —1) g ( 1)m
4t

1/2

exp
2 2—m (k+m); (k+ ),

4t
(82)

which can be obtained by Fourier-transforming either side of the equations. Differentiating (81) and (82) with respect to
x yields

g (2m +x)e —(2m+x)2e ittk—(2m)

' 1/2

exp
2 2~ (k+m), , (k+ )„

( +01je
4t

(83)

y (2 1+ )
—(2m —1 ~x) 1 tk—t2(m—1) y ( 1)m

2t 4t

1/2

exp
2 2—rr (k+m), , ; (k+ )„+m je

4t
(84)

while differentiating with respect to t yields

—m (k+m)
exp

4t

1/2

2 + 2 —(2m+x)2t —ink(2m) 2t )r (k +m)2m+x' e e 4t' 4t
in(k+ rn)x (85)

2
I/2

1+x )2e —(2m —1+x) te ittk(—2m —1) g ( 1)m
2t —K (k +m)

2t 4t

—m (k+m)
4t

(86)

We also record some integrals which shall be used below:
' 1/'2

t t"-'e-I'"-&'=2 — Z„2 y, ,y) 0
0 y

dt e- "e-~'"'= e-( ~~
~

a
~
~0

t I/2

dt e 'e I'/4t= v~e ( ~'
~l3~ ~0

() r. 3/2
[ P /

f dtt' e 'e ~ "'= 3(1+ /aP/)e ( ~~, /a/&02faf'

(87)

(BS)

(89)

(810)

(811)

and the relation

2
IC2(z) =—I(. 1(z)+Ep(z) . (812)

We shall choose the basis vectors for the fcc lattice as

a1 ——(a/2)(1, —1,0), a2 ——(a/2)(1, 1,0), a3 ——(a/2)(1, 0, 1),
and write a lattice vector as

X(l)=l(a1+ l2 a2+ l3

The Coulomb energy between a charge l, a. and a layer of charges l', t(' with fixed l', 3 is

Z]cz~'e 1

i
X(l, t~) —X(l',a')

i

(813)

We note this is a divergent series, and thus calculating it in a direct manner does not work. We need to carry out a
transformation analogous to Ewald's transform in three-dimensional space. By translational symmetry, it is sufficient
to consider I=0, the origin. We then have

x(0,)()—x(l', a') =(a /2)(11 + l2 + l3, l2 —l1, l 3 )+(a /2)(x, y,z),
where we have defined

x(~)—x(v') =(a/2)(x, y, z) .
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By a change of variables,

l3 — l3 y l2 — l2 +l] t l] — (l] +l2+l3 )

one can show that summing over l],lz is equivalent to summing over l, and l2 with the restriction that l]+12+l3 be
even integers.

Thus (813) becomes

Z„Z„e 1S=
ea/2 [(l, +x) +(l2+y) +(l, +z) ]'

Z„Z„e' f dt expI —[(l]+x) +(12+y) +(l3+z) ]'/ }t
ea /2

ZZ e 1~3+ ) ( ~n ) ( + y)( 2 2) —]/2
2 2 1/2

~„e e P1 + Pl
6'Q

7

(814)

where

[1+(—1) +"]/2 for l3 even,

[(—1) +( —1)"]/2 for l3 odd,

and we have made use of the integrals (811),(81), (82), and (89). The superscripts ( r) in the first two lines remind us of
the aforementioned restriction. The sum in (814), as it stands, is infinite (m =n=0 term). This is simply because of the
fact that a charge standing in front of a uniformly charged sheet has infinite energy. We shall define these functions

f(d)(2e /ea) to be the energy of a unit charge standing a distance d in front of a uniformly charged sheet if unit charge
density f (d) is infinite, but which shall cancel out at the end of our calculation. By the physical definition off(d) (now

a /
I

13 +z I ), we see that it is just the average of S over all x,y, i.e., the m =n'=0 term in (814)~ Thus,

2 '
—~~ T +z j

(m2+n2) ~2 ~]
I
l + I )+ g f e 3 ettt(nUt+tty) (815)ae m, n

where the prime over the summation sign indicates that the term m =n =0 should be omitted.
If T3+z&0 (i.e., when the two charges are not on a common sheet), the sum in (815) is rapidly convergent and can be

evaluated numerically.
For the case l3+z=O, i.e., l3 ——z=O, we need a further transformation. First note that the factor f „just restricts our

sum to m+n even. Thus,

2Z~Z)c'eS=
QE'

(r) 1
e ltt(ntx +ny)+f (0)

(m +n )'

f(0 dt t —]/2 ~ ~ —(4m +4n, )t itt(2nx+2ny)+e
ea

1 2l 7Tlfp.(~0) 2In
I

1 f «t '" g expI —4[(m —1/2) +(n —1/2) ]t jexp[i~(2m —1)x+(2n —1)y]r(-,' ) m, n

2Z&zk'e 00 2 ~ 1f(0)+ g —cos(2mny)+ f dt »2ea n=1 t ]/2

oo —4m 2t

4tg cos(2mmx)e

1/2

exp
n(y+n)—

4t

1/2
—4(m —1/2) t+ ( —1)"cos[(2m —1)]rx ]e 4t

&(exp
—m (y+m)

4t

2Z~Z~t e
f(0)+ g n 'cos2]my+2 g g IKO(2m'. Iy+n I

)cos(2m@x)
n=1 m =. 1 n

+(—1)"Ko((2m —1)]r Iy+n
I

) cos[(2m —1)]rx]) (816)
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where we have used (811), (81), (82), and (87). The series
in (816) is rapidly convergent if y&0. Thus we can use
(816) for 13

——z=O, as long as ~&v'.
For the case I3 ——0 and K =~', we are unable to

transform the sum S into a rapidly convergent series. We
evaluate it in a straightforward manner by summing over
concentric circles of more and more distant neighbors,
while subtracting a uniformly charged neutralizing disk
with a radius equal to the furthest neighbor included and
with a charge equal and opposite to the ions included in
the sum. The sum still shows substantial oscillation even
when we sum up to radius -400a/2. Fortunately, this
uncertainty only affects our aM slightly (about 1%) and
does not affect daM/dp at all (see below), and thus is suf-
ficiently accurate for our purposes.

The column headed Ec in Table II gives the Coulomb
energy (in units of 4Z e /a) after subtracting the uniform
background terms f(d). The error for (lg, x,a')=(0, 1,1)
indicates the mentioned uncertainty (roughly). Those
terms not recorded can be obtained by symmetry argu-
rnents.

One can verify that the uniform background termsf ( d) exactly cancel out in our zeroth-order calculation, by
using the fact that f (d) —f (0) is linear in d. This is
partly the reason for including the Coulomb interaction
between layers of ions in the particular way described in
Sec. III. Had we included the interactions in a different
way, such that some uncanceled f(d) terms are left over,
we would obtain infinites for our zeroth-order calculation
and an infinite perturbation term for P,';, P'&, and Pz.

As we see in Eqs. (3) and (4) of Sec. II, we also need the
rate of charge of the Coulomb energies with respect to the
change in p (p=0.25 for equilibrium positions). We
evaluate (815) and (816) for two nearby p values; the
derivatives are evaluated numerically. %'e note that the
l3 ——0, K =K' term does not contribute to the derivative, as
noted earlier. The results are presented in the column
headed dEc id@ in Table II.

In principle, we should also need a minimum of energy
with respect to displacement of the BC perpendicular to
the bonds ( sz a /2). Thus we also investigate the change
in energies when a single charge at 13,&=0,3, is displaced
perpendicular to the bonds. Note that the crystal in
equilibrium is invariant under the reflection o.d, with
respect to the plane containing ion 1 and BC's 3 and 6 (see
Fig. 1). Thus the total Coulomb energy is an extremum

TABLE II. Coulomb energy E, with the uniform back-
ground excluded between a charge O, K and a layer of charges
l', K' with fixed l3 and its derivative with respect to p, dE, /dp
for III-V zinc-blende compounds (p=0.2S). The energies are
Ineasured in 4Z e /ea.

dEc/dp

TABLE III. Change of Coulomb energy between a charge
(l,K)=(0,3) and a layer of charges I', K' with fixed l3 (excluding
the background terms) with respect to the displacement (s&)
perpendicular to the bond, dE, /ds~. The energies are measured
in 4Z e /ea.

I', K'

0, 1

0,2
0,3
0,4
0,6
1,4

dEC /dsi

—1.24
1.84
0.0
0.2

—0.65
—0.18

TABLE IV. Coulomb energy between a charge (O, K) and a
layer of charges (l', K') with fixed h3 for group-IV semiconduc-
tors in the BCM (p=0.0). The background terms are excluded.
The energies are measured in 4Z~e/ea.

for displacements normal to the crd, plane. Therefore, we
need only consider the change due to the displacement
( s J a /2 ) in the o d, plane and perpendicular to the bond.
This can be done by slightly modifying the previous
rnachine program, except when l3 —0 and ~'= 3 or 6. For
these cases the component of displacement along the z
direction produces an extremum by symmetry, since it is
originally lying in the plane of the charges (3 and 6 in Fig.
1) with which it is interacting (ignore the term due to the
fact that it 'is an unstable equilibrium). The remaining
displacernent in the plane can be evaluated again by a
slight modification of the previous machine program. (In
fact, by symmetry, the term with v'=3 is identically
zero. ) The result with background terms excluded is in-
cluded in Table III.

We note also that the total of the uniform background
terms under the change of positions of the BC is an (un-
stable) extremum, and thus we omit it entirely in the
present problem. Summing up the terms of Coulomb en-
ergies with the results in Tables II and III, we find
a~ ——5.326 and doM/dp=2. 764. BE/Bs~ =0.07(Ze /
ea), which is much smaller than the other terms entering
into our calculations, and can be ignored. Thus, in the
zero-order approximation, we need only the new values of
a~ and du~/dp in (2)—(4), and no further short-range
forces need to be introduced.

For reference, we record the corresponding results for
group-IV semiconductors in the BCM (@=0.0) in Table
IV, which would be useful for covalent semiconductor
surface-phonon calculations. We find aM =5.006,
du~/dp=0. 0, and BE/Bs~=0. The latter two follow
from symmetry.

0
0
0
0
1

0

1

1

2
3
3
3

—S.34+0.2
—0.069
—0.91
—0.03
+ 0.09
—0.30

0
0.7

—3.34
—0.03

0.66
0.83

I
I
3
3

K

—S.34+0.02
—0.336
—0.007
—0.403
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APPENDIX C: COULOMB MATRIX ELEMENTS

Below we shall show the Coulomb matrix elements between layers of ions considered in Sec. III. In this case the
Ewald transformation is not applicable. The method we shall use is similar to that in Ref. 27. Thus in most cases we
simply record the results, and only for cases where the method is different shall we elaborate on our procedure. The no-
tation is as in Appendix B.

The Coulomb matrix elements (in units of e /U„where U, is the unit-cell volume) are, for l3lc+l3 Ic',

3( I + r)~(1+r )iI 5~i3r—

3' ' 3' 1 ] [(l) +x) +(lq+y) +(l3+z) ]'
—i k((. x(F)

(Cl)

where r) ——x, r2 ——y, r3 ——z, and the suffix (r} represents a restriction that l) +lz+l3 be even. In what follows we shall

drop the labels k)(, l 3,Ic, l3', Ic'. We shall consider three different cases:
Case I: l3 +z&0. We define

g(m, n)—:expI —m llq+z
I
[(k(+m) +(k2+n) ]' JexpIin[(k)+ m}x+(kq+n)y]I,

where k, and kz are the x and y components of k)~. Then, we have

C =2m g f (k)+m) [(k)+m) +(k2+n) ] ' g(m, n),
m, n

C„y ——2m g f (k)+m)(k2+n)[(k, +m) +(kz+n) ] ' g(m, n),
m, n

l3+z
C„,=i 2~ g f „(k)+m) '

g(m, n) .
m, n r3+Z

Cyy and C», are identical in form to C~ and C~ with the interchange of x and y, and the interchange of k) and k2,

C = —(C +Cyy) .

(C2)

(C3)

(C4)

(C5)

Case II: ls ——l3, z=0, but Ic&tc'. In this case, I&+x,lz+y never vanishes. Thus we can use (Cl) and (812) to obtain

2 '"'
d 3/zr2 i

— 2,i-,2, [(I(+x) +(12+y) ]t i'(k)T+k2[2)

1(z) r, , r,

2t n. (k(+m)—
( —1) ' dr r3~' —(&~+y)'

4t

Adopting (81), (82), (85), and (86) for the sum over l) gives
r

1/2
—7p (k]+m) /4t —(rp+y) t i7rf(kj+m)x —k2Ej]

e e e

With use of (87) and (811),we obtain

'«) +m)'&o(~
I lz+y I I

k) +m
I

}e
m, Tj

Similarly, for C„y we obtain

2 3~2. — — . —[(];+x) (l +2)'+]yt t(k, ];+nk2[;)C„=—, d [ l

(C6)

Adopting (85) and (86) for the sum over l), and using (87), we obtain

mTj l2 +3 im[(k) +m)x —k~T~]Cy=i2~' g ( —1} '(k)+m)
I
k)+m

I
— &)(~l ki+m I I i2+y I

}e
m, T2 li3+y I

From (Cl), we have

C =Cy =0.
C~ is identical in form to C~ in (C8) with x,y interchanged and k), k2 interchanged,

C = —(C +Cyy) . (C8)

Case III: 13=13 and Ic=Ic'. In this case we have x =y =z=0. This is the same situation as in Ref. 27. Thus we

have, by translationa1 invariance,
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II
( g )

II

I3,~, lz, ~ ~ l3,~, l3, ~
I3', a"~13,a.

where C"p is given by (Cl) with the omission of the 1&
——lz ——0 term. We have

Cxx 3 [gl(kl~kz) Tgl(kz~kl)+gz(kl~kz) Tgz(kz~kl )] ~

where

(C9)

(C10)

and

OO 00 +n
g, (k&,kz):—g g cos(2zrmk&) m (kz+n) Ko(2m'

i
kz+n

~

)+ K., (2m'
i
kz+n

i
)

m=1 n= —oo
m

gz(k], kz)—:g g {—1)"cos[(2m —1)nk]] m (kz+n) Ko{(2m —l)~
i
kz+n

i )
m=1 n= —oo

2m
i
kz+n

i+ Ki{(2m —1)m
i
kz+n

i
)

2m —1

T

C„"'=4m g g (ki+m)
i
ki+m i Isin(2nmkz)K, (2nm

i
ki+m

i
)

n=1 m= —oo

+ ( —1) sin[(2n —1)vrkz ]K& ((2n —1)n
i
k & +m

i
) ] (Cl 1)

(&) (&)
C„y ——Cy, ——0.

C»»" is given by (C10) with k& and kz interchanged, and

(C12)

and

H
'

HHaP 3 5 ~ aP 6 4 ~ aP 6 5

can be obtained by the following symmetry argument: If
R is a symmetry operator which transforms si,a, ~z, P
and k into a i a', ~z, P' and R k, respectively, then

T

I . I
Ki K2

k
=Dip

Ki K2

Thus,

APPENDIX D: THE SPECIAL CASE OF k
ii

——0

In this appendix we shall show in some detail the modi-
fications necessary for the calculation of the bulk complex
phonon relations and superlattice dispersion curves when

kII Oe

First, we show, due to symmetry, that H'" and H &q

are singular. We then make use of the very same symme-
try to provide the modification necessary to our method
of calculation. The general form of H "& is

r

a bi b2
(&)

H~P 3 4
= b3 c d

b4 d e

(&)
H~p 3 5

——bi a b2

d b4 e

(1)
Hap 6 5 ~ Hap 6 4

follows from

(I) '
(1)

H~P 3 4, H P

respectively, by changing the signs of the xz, yz, zx, and
zy components. In our model, we also have

k
ft

k
ll

With these observations and some algebra, we can show
that deth'"=deth' "=0. Thus our previous method
does not apply. A similar argument shows that
detH i2

——0. In fact, if we have a strictly short-range i.n-
teraction model (such as that in Sec. II), h~'i is singular
for the entire k„=k» line in the kii plane.

Thus for the kii
——0 case, the modification of our

method is necessary. We observe that the source of the
trouble is'symmetry: for k~i

——0, the BC's K=3,6, K=4,5
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are, in a sense, "equivalent" to each other, and thus lead
to linear dependent rows and columns in the matrix h"'.
Thus we proceed by applying group theory to eliminate
the "redundant" degrees of freedom. Consider the 18 dis-
placements e»(lr). They form a basis for a 18)&18 repre-
sentation of the group of the wave vector k=k, z, C2„.
The character table is presented as Table V. From that,
we can decompose the 18& 18 representation into

631+222+5B1+5B2 .

The displacements associated with these irreducible repre-
sentations are [in the form (e„(1),e~(1), e, (1), e»(2),
. . . , e,(6))], for A),

A)
A2

BI
B2
e (z)

1

1

1

1

18

C2z

1

1

—1
—1

—2

Oda

1

—1

1

—1

1

1

—1

1

4

TABLE V. Character table of the group of the wave vector
k =k,z, C2„. The notation is that of Ref. 29.

(0, 0, e, (1), 0, 0, e, (2), e„(3),e»(3), e, (3), e (4), —e»(4), e, (4), —e»(4), e (4), e, (4), —e»(3), —e»(3), ez(3)), (Dl)

for a, ,

(0, 0, 0, 0, 0, 0, e„(3), —e„(3),0, e„(4),e„(4),0, —e (4), —e„(4),0, —e„(3), +e (3), 0),
for B),

(e» ( 1 ), F» ( 1 ), 0, e» ( 2 ), e» ( 2 ), 0, e» ( 3 ), e„(3 ), e, ( 3 ), e» (4 ), e» (4 ), 0, e» (4 ), e» ( 4 ), 0, e» ( 3 ), e» (3 ), —e, ( 3 )),

(D2)

(D3)

and for B2,

(E(1»), —e'»(1), 0, e»(2), —e»(2), 0) e»(3), —e„(3),0, e»(4), —e»(4), e, (4), e»(4), e»(4), —e»(4—)& e»(3)) —e»(3), 0) .

(D4)

A1 corresponds to longitudinal modes. B1 and B2 corre-
spond to (degenerate) transverse modes. The "longitudi-
nal" and "transverse" modes are defined according to the
directions of the ionic displacements. Numerical solu-
tions show that the displacements of the BC's are not
"pure" in these modes. For A2 symmetry, we find that
the adiabatic condition leads to two purely imaginary
branches which are independent of co . Furthermore, be-
cause these modes have symmetries different from the
others, they play no role in the superlattice dispersion-
relation calculations and are physically irrevelant.

We are now ready for the complex phonon-dispersion-
relation calculation for k)(

——0. First, consider the A (

case. The displacement vectors of the 31 mode are deter-
mined by six independent components which we denote by
the set

Sg ——
I e, (1), e»(4), e, (4), e, (2), g„(3),e, (3) J

[see (Dl)]. The equation of motion for the A) mode is
given by

+1 0
0= g g (FX'p')', e ' e~(a.'),

a= —1 K', P

where e (a) and ep(lf') belong to the set S~. We have
r

Q
(~(cr) )eff

K K

the "effective" dynamical matrix defined by

0 (e) 0
(H' p))'", = g H(ff) „sgn(sc', p;~",p"),

tl IN I
K pPP

(D6)

where the )f",p" label the components off ()f") which are
related to ep()f') by the symmetry operations of C2„, and
sgn(~', p;I(.",p")=+1 according to Eff()f')=+op-()f"), as

required by symmetry [see (Dl)]. Equation (D5) contains
all independent equations in (14), as one can convince
himself that (i) if (f,a is related to ~,a by a symmetry
operation, then the equation of motion of l~, a in (20) is
the same as that of z, u, and (ii) if e~(v) =0, then (D5) is
automatically satisfied as

0
(~(n) )eff ()

for each ep()f') belonging to S„, and thus no further re-

striction of ep()f') is needed. With the decomposition

~,(1) ~,(2)

e) ——e„(4), e 2
—— ~,(3)

e, (4) e, (3)

and following the same argument in deriving (21), we ob-

tain a 6X6 eigenvalue equation [in place of (21)]. For
ik ~

each co, we obtain six eigenvalues for e ' and six eigen-
vectors.

For B) (or B2) symmetry, we have, according to (D3)
[or (D4)], five independent displacements,



30 THEORY OF PHONON DISPERSION RELATIONS IN. . .

e i
——e„(4), ez ——

e,(4)

e„(2)
e„(3)

However, now h' "and H 12 are 3/2, matrices H 11 is a
3&3 matrix, H22 is a 2&2 matrix, and h"' and-H21 are
2X3 matrices. The equation corresponding to (19) can be
inverted to obtain (omitting the superscript effl

i~k 1 [ 1 )
iwk'ei —— H ii —(h ez+H ize ez),

and, from (20),

(1) i'ez= —H;, (h e e, +H»e, ) . (D8)

From these, we eliminate e 1 to obtain, with
U:—h'"H 11'H 12,

'( '
) = U '[H —(h"'H h'

—1 ink
+H ziH ii H iz)le

—U H21H11 h e2( —1)

ink=M 11e '@1+M 12@2 .

Thus we have the eigenvalue equation
P

i~k ink
~2 M 11 M12 e ~2

Szi
——

I e„(1),e„(4),e, (4), e„(2),e„(3)I .

Equations corresponding to (D6), (15)—(17), (19), and (20)
can be written, with the decomposition [in place of (18)]

model, each superlayer contains two principal layers. The
number of independent displacements in the two principal
layers are denoted by p and v, respectively (see Fig. 17).

Thus in the A1 case, we have p=v=3. In the B1 or
Bz case, we have p=3, v=2. Let v i(/3) and v z(/&) be

p X 1 and vX 1 column vectors of the displacement in the
two principal layers (p=1,2) of superlayer /3. We can
write the equations of motion corresponding to (19) and
(20) as

h' "v z(/3 —1)+H iiv i(/3)+H ]zv z(/3)=0 &&i

Hziv i(/3)+Hzzvz(/z)+h"'v i(/z+ 1)=0»&i

(D10)

(Dl 1)

v z(/3 —1) v z(/3)
zB

v i(/3) v i(/3+1) (D12)

where

where h ' " and H12 are p&(v matrices, . H11 is a p&p
matrix, H z, and h'" are vXp matrices, and H zz is a
v Xv matrix. When /z =v, we can solve for either
v z(/3 1 ) or v z(/3 ) from (D10), and also either v i(/3 ) or
v i(/3+1) from (Dl1), and obtain the transfer matrices in
the usual form, as in Ref. 30. When p & v, the situation
becomes quite different. Given v z(/z —1) and v i(/z), the
equation of motion (D10) overdetermines v z(/z), since
there are p equations for v unknowns. Similarly, given
v i(/3 ) and v z(/z ), the equation of motion (Dl 1) under-
determines v, (/3+1). This makes the argument in Ref.
30 inapplicable.

To obtain the transfer matrices in our case, we combine
(D10) and (D11) to obtain

1 0—2X2 —2X2 E'2 0~x~ H21 H22 h'+'

in.k
with four eigenvalues for e '. Equations (D9) and (D7)
then determine e2 and e1.

This result may seem somewhat astonishing at first,
since we have five "independent" displacements for either
B, or Bz symmetry. To clarify the situation, we derive a
different eigenvalue equation using the transfer-matrix
theory. We define "principal layer" and "superlayer" in
the same way as in Ref. 30 for discussing electronic struc-
tures in the tight-binding approximation. In the present

TF

h' " H11 H12 Op~q
(D13)

,
v i(/3+1) v, (/3)

TF
v z(/3+ 1) v z(/3)

where

(D14)

is referred to as the "backward transfer matrix. " The first
matrix on the right-hand side of (D13) is invertible, while
the second is singular with p —v zero eigenvalues. This is
due to the existence of a p&p null matrix inside a
(p, +v) X (p+v) matrix with p )v. '

A "forward transfer matrix" T can be similarly de-
fined by

JL~- I

P=~ i P=~
I

'W ~ ~ 'W

4,5 i3,6

P=~ i P=~
I

1 4 ~

4,5 i3,6 4,5

L~+ I

P f ) P P

~l
I
i 3,6

H 12 Qp)&p

—vQv0 H22
(D15)

FIG. 17. Schematic diagram for the principal layers (labeled
with @=1,2) and superlayers (labeled with l3 —1, l3, and l3 + 1);
T and T denote the forward and backward transfer matrices
which describe the propagation of transverse phonon modes.
Only the transfer following the direction of the arrows is al-
lowed.

A schematic diagram of the above relations is given in
Fig. 17. We note that TB and TF are not simple inverses
of each other. In fact, both TB and T are singular ma-
trices, with p —v zero eigenvalues. The zero eigenvalues

ik m —ik min e * (for T~) and e ' (for T~) correspond to com-
plex k, solutions with k; —+ ~ and —~, respectively.
These solutions are nonphysical and, hence, are not need-
ed in the calculation of heterostructure phonon properties.

We now discuss the extension of the superlattice pho-
non calculation with k

~ ~

——0. For the A i case the k
~
~& 0
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method needs only trivial modifications, as described in
the text. For the Bz case we find that expression (33) does
not apply to the displacements of the first layer in each
material (i.e., v I ', cr =A, B) for all L, as shown by a con-
sideration of the properties of the forward and backward
transfer matrices. In other words, the basis (()J.(cr) defined
in (38) is not complete for the expression of the displace-
ment eigenvector of the superlattice. We must also in-
clude the "old" basis vectors at l3 ——1, g' '(1) with
a.,a= l,x, 4, x, 4, z. The equations of motion (34) and (35)
are still valid for the Bz case. However, we need addition-
al equations to relate v I '(1) to C'"' and C'~'. We use
the equations of motion corresponding to (Dl 1) for L =0,
l3 ——1, tT=A, B, and (33)—(35) to obtain a 14)& 14 matrix
equation,

0
Y 23 = iqn y„(1)n BA

(A) (A)Y3t=H u F2 (1),

0
Y24= ~ (B)

21

Y32 h Iieet F2 (nn)e

(A)Y 33 —H

( —1) (A) (B) (B)Y41 h Bg F2 (ng ) Y42 —g ]2 F-, (1),
(B)Y44=~11

and Y22 is in the same form as Y» with the index A re-
placed by B.

As in the previous case, we can multiply the matrix Y
in (D16) by a matrix Gt to obtain a Hermitian matrix, X
where

where

Y11

0

0 Y13 Y 14

Y22 Y23 Y24

0Y31 Y32 Y33

Y44Y42 0Y41

g(A)

C(B)

(A)(1)

v (8)(1)—1

(D16)

with

0GA 0

0 GB 0

0

—3X30 0 I 0

—3X30 0 0

H '"'F '"'(1)+h ' "F'"'(2)
lt= g(A)F(A)( )+II(A)F(A)(n )

F (")(1) F ( )(1)

F(A)(n )
~ GB= F(B)( )2 2 &B

Y13——

~(A) 0
0. Y14= ~ (1)n AB

and I 3x3 is a three-dimensional identity matrix. We can
then proceed in the same way as in the previous case to
find the solutions.
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(1981).
Any (p+v))&(p+v) matrix with a p&(p nu11 matrix entry
can be rearranged in the following form:

A 8 D E
n na-xp C — 0(p -)x 0(p -)x(p -)

where D is a v&v matrix, E is a v)&(p —v) matrix, B is a
p&(v, and C is a vgv matrix. It is obvious that the deter-
minant of the matrix is det(D)det(C)(p —v) zeros.


