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The theory of hindered rotation of diatomic molecular impurities at cubic sites in ionic crystals is
generalized to account for the orbital degeneracy of the molecule, with use of a crystal-field ap-
proach. This theory explains the observed (110) orientations of the molecular axis, the orientations
of the m. orbitals along either (110) or (100) axes, and the dominance of 90' tunneling in some
cases, even using only the lowest-order term in the octahedral crystal field (1=4j. It is shown that
the coupling of the degenerate orbital to the rotation in the crystal field generates an instability if the
molecular axis is parallel to a (111) direction, leading to a Jahn-Teller effect resulting from
rotational-electronic (rotronic) coupling. Analytic expressions for the lowest branch of the adiabatic
potential energy as a function of the orientation of the molecular axis are calculated for X, II, and 6
states, and the orbital wave functions are determined for II-state molecules. The case of a diatomic
molecular impurity at a site of tetrahedral symmetry is discussed.

I. INTRODUCTION

The hindered rotation of molecular impurities in crys-
tals has been studied for many decades. A considerable
amount of experimental information is available on
several diatomic molecular impurities in ionic crystals (for
a review see Ref. 1).

In a crystal, molecular impurities are not free to rotate,
but are constrained by the interactions with the crystal to
librate about one of a set of equivalent orientations which
correspond to minima of a multiwell potential energy.
The eigenstates (which have the symmetry of the site) are
a linear combination of the librational states for these
minima or, correspondingly, they are eigenstates of a hin-
dered rotator. Reorientation generally occurs via thermal-
ly stimulated transitions between the librational states.

Many theoretical studies' have been published since
the pioneering works of Hund (who calculated oscillatory
states in a one-dimensional double-well harmonic poten-
tial) and of Pauling (who investigated how the planar ro-
tational states of a free molecule are modified by a period-
ic potential). Devonshire presented a more complete ap-
proach, extending Pauling's model to the three-
dimensional case of a rotator hindered by a crystal poten-
tial of octahedral symmetry. This model considers only
the terms in the potential with the lowest-order angular
dependence (i.e., up to fourth-order spherical harmonics),
and predicts two possible inequivalent equilibrium orien-
tations for the molecular axis of a diatomic molecular im-
purity (depending on the sign of the fourth-order term),
namely, along the (100) and (111) axes of the lattice.
This model, which neglects any possible degeneracy of the
molecular orbital, is quite useful in the interpretation of
experimental data using molecular impurities in a nonde-
generate orbital state (X state). Indeed, the observed
equilibrium orientation of the molecular axis for these im-
purities is mostly parallel to a (100) direction of the crys-
tal, such as for OH, OD, or CN (Refs. g and 10)
in the alkali halides. In the case of SH in KC1, KBr,

and KI," (111)orientations have been reported. Howev-
er, Devonshire's model is unable to explain the (110)
orientations of OH in KI and NaBr, ' and of CN in
RbC1. '

Beyeler' extended Devonshire's model by including the
second-lowest-order nontrivial term in the potential ener-

gy, i.e., up to spherical harmonics with l=6, thus using
two adjustable parameters. As will be discussed in Sec.
III, this model still predicts ( 100) and ( 111) orientations
in most cases, but (110) orientations may occur for a
range of parameters. Thus this description seems to pro-
vide a consistent basis for the interpretation of the experi-
mental data on X-state molecules. However, when the
molecular impurity has a degenerate orbital state (a II
state in all cases experimentally studied) the results are
strikingly different. Kanzig first identified 02 mole-
cules substituting at a halide site in alkali halides, and
showed that the molecular axes were along the (110)
directions of the lattice. This proved to be the case for the
electronic IIg ground state of Oz, " '

S2
Se2, '2s SSe, ' s and Nz (Refs. 26 and 27) in the al-
kali halides. Molecular axis orientations along the (110)
directions were also found for Oz in SrO. No observa-
tion of any II-state molecular impurity in the electronic
ground state with an equilibrium orientation other than
(110) has ever been reported.

In the II„excited state, (110) orientations have been
observed for 02, S2, and Se2 in the alkali halides.
Only a few cases of molecular axis orientations other than
(110) for diatomic molecules in the excited II„state are
known, in particular (111) orientations for O2 in NaCl
and KBr. In the case of CsBr containing 02, the
equilibrium orientation is (100). In Beyelers model,
(110) orientations are due to rather large values of the
sixth-order term with respect to the fourth-order term in
spherical harmonics (see Sec. III). Since the higher-order
terms in the potential are thought to be small, they appear
to be an unlikely cause of the almost universal observation
of (110) equilibrium orientations for the II-state mole-
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cules 02, S2, Sez, SSe, and N2 in the alkali halides
and SrO. ' ' This strongly suggests that the coupling of
the degenerate orbital to the crystal must also be con-
sidered, and this is the goal of our paper.

In addition to the equilibrium orientation, much is
known about reorientation processes. The electron
paramagnetic resonance (EPR) spectrum of Oz in alkali
halides consists of six spectra corresponding to the six
(110) axes. Application of uniaxial stress partially lifts
the sixfold orientational degeneracy and the population
changes are observed by monitoring the intensities of the
EPR spectra. For a diatomic molecular impurity at a site
of octahedral symmetry and oriented along a (110) axis,
there are two possible reorientations between equivalent
(110) orientations, 60' and 90' reorientations, which can
proceed by phonon-assisted tunneling at low temperatures
and over-the-barrier hopping at high temperatures. The
relative tunneling matrix elements can be estimated by
measuring the reorientation times ~60 and ~90 at low tem-
peratures after removal of uniaxial stress. In the case of
O2 in KCl, ' and S2 in K.C1, KBr, K.I, RbI, and
NaBr, ' it is found that T6p ((r9O' indicating that the
matrix element for 60' reorientation is larger than for 90'
reorientation. However, experiment shows that 760' T90
for 02 in KI, ' and r9o. ((r6o in RbI:02

Dominant 90' reorientation is not compatible with
Beyeler's model, which predicts in all cases easier 60'
reorientation, but can be understood when the degeneracy
of the n orbital is taken into account.

In addition to molecular axis orientations and reorienta-
tion times, the orientation of the m orbital could be deter-
mined experimentally in a number of cases. The orbitals
were found to be parallel either to a (110) (Refs. 17—20)
or to a (100) (Refs. 17—20, 24, 25, and 38) direction,
both directions being orthogonal to the (110) orientation
of the molecular axis. This feature can also be understood
within a theory which includes the orbital degeneracy of
the H state.

In this work, we propose a theory of the adiabatic po-
tential energy for the hindered rotation of an orbitally de-

generate diatomic molecular impurity in a static crystal
field of cubic symmetry. The adiabatic potential energy is
calculated from the crystal field as a function of the
orientation of the molecular axis. The theory takes into
account explicitly the orbital degeneracy of the molecule.
For example, in the case of a H state, the theory predicts
that (110) equilibrium orientations occur readily, even

when only the lowest-order nontrivial term in the crystal
field is considered. There exists a coupling between the
rotation in the crystal field and the degenerate orbital
state. This coupling renders the (111)equilibrium orien-
tations unstable against a tipping away from ( 111) to-
wards (110), thereby lifting the degeneracy in a very
similar way to vibronic coupling in usual Jahn-Teller sys-
tems. This rotational-electronic, or rotronic, coupling is
responsible for the (110) orientations of the II-state
molecular impurities. [In a previous reference, the ef-
fect has been named "rotonic" (rotational-electronic).
However, because of a possible confusion with the word
"roton" (elementary vortex ring in superfluid He), we
renamed it "rotronic" ( rotational-electronic)].

II. GENERAL THEORY

The usual approach ' to the study of hindered rotation
of molecules in crystals is to treat the motion of the
molecular impurity as that of a free rotator perturbed by
the static crystalline surroundings. In crystal-field theory,
the ions of the crystal are treated as sources of an electro-
static potential which acts on the electrons of the defect.
Therefore, overlap effects such as covalent bonding are
not included. However, since many predictions are simply
a consequence of symmetry, the results predicted by
crystal-field theory are more general than their physical
basis. %"e will treat the hindering of the molecular rota-
tion as if it were the result of such a static crystal field.
In the absence of overlap and thus of covalency, the elec-
trostatic potential obeys I.aplace's eqUation in the region
of the molecular impurity, hence it can be expanded in
spherical harmonics. It is more convenient to replace the
complex spherical harmonics by the real axial harmonics
(sometimes referred to as "tesseral" or "zonal" harmonics)
defined by"

Z10—~10 ~

Zi' = [(—1) Y( +Pi ],
2

(»)
(lb)

Zi —— [(—1) Pg —Yg ],
2

(1c)

where m goes from 1 to l. The superscript c(s) indicates
a y dependence as cos(my) [sin(my)]. The general form
of the electrostatic potential in the region of the impurity
can be written as

V(r)= g r ~BioZio(8)
1=0

m=1
(2)

The outline of the paper is as follows. In Sec. II, the
expression for the static crystal-field potential at a site of
octahedral symmetry is obtained and used to calculate
general expressions for the orientation-dependent adiabat-
ic potential energy of a diatomic molecular impurity in
terms of the quantum number A—the orbital angular
momentum about the molecular axis. In Sec. III the
theory is first applied to the case of a X state (A=O) and
the results —which coincide with those of Devonshire
and Beyeler' —are discussed. Then, we consider a H-
state (A= 1) molecule and study in detail the predictions
of the theory (adiabatic potential energy, orientation of
the molecular axis, reorientation rates for 60' and 90'
reorientations, and orientation of the as orbital). The sec-
tion ends with a brief discussion of the predictions of the
theory when applied to b, -state (A=2) and to 4-state
(A=3) molecules. The application of the theory to other
possible cubic symmetries is contained in Sec. IV and the
results discussed for X- and II-state molecules. In Sec. V
we conclude with a comparison of the results obtained in
Secs. II—IV to experiment. The main mathematical equa-
tions needed to obtain the adiabatic potential energy in the
general case are given in the Appendix.
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and each term of the sum is real. The Bi are constants
which depend on the positions of the ions in the crystal.

Since the static potential is required to be an invariant
under all point-group operations of the molecular site con-
sidered, only invariant combinations of the Zi~ can be in-

cluded in Eq. (2). This is equivalent to saying that, for
fixed I, the Zi~ may be used as a basis for a reducible rep-
resentation of the point group. If the representation con-
tains I I (or I I+), then the corresponding combination of
the Z1 is an invariant term in V. For /=0, the term pro-
portional to Zoo ——(4m. )

'~ is always present. This con-
stant term produces a uniform shift of all levels, and
therefore can be ignored.

For 0 and O~ point-group symmetry, the invariant
terms up to 3=8 are

frame fixed in the molecule, and 8o, go specify the orienta-
tion of the molecular axis in the crystal. All other terms
in Vi give matrix elements equal to 0 because of their
dependence on p'. Explicit expressions for Vio VI, 2w and
Vi'zz are given in the Appendix for l=4, 6, and 8, as
functions of the rotation matrices [see Eqs. (A7)—(A9)].
As mentioned earlier, the quantum number A is the orbi-
tal angular momentum about the molecular axis. It is
equal to 0 for a X state, 1 for a II state, 2 for a 6 state,
etc. For simplicity, and because it makes no difference in
the form of the final expressions, we consider the degen-
erate state as arising from an electron in a single degen-
erate orbital. The wave functions for the degenerate orbi-
tal are denoted by +(r,8', qr'), proportional to cos(Ay')
and f'A(r, 8', Ip'), proportional to sin(Ay'). We need to cal-
culate all matrix elements of the kind

Vg(8, y) = [v 7Z4o(8)+ v 5Zgg(8, y)],
2 3

V6(8,y) = [Z6o(8) —v 7Z64(8, g)],
2 2

Vs(8, qr) = [3V 11Zso(8)+2v 7Zs4(8, q)
8 3

(4)

'Z,' (8,

where the indices i,j,k stand for s or c. Since Zi and
ZI'~ depend on q&' as cos( m&p') and sin( my') respectively,
it is straightforward to see that there are only two kinds
of nonzero matrix elements, namely

+~65Z8s(8, %)] .

Now, the potential (2) for octahedral symmetry takes the
general form

V(r)=
1=4,6, 8, . . .

Bir VI(8, q&) . (6) = &A I
r'Zi', 2A I 5~ ('

PA I
r'ZI*, 2A I

A'& .

We consider a diatomic molecular impurity in such a
crystal field. The expectation value of the electrostatic
potential integrated over the nonspherical charge distribu-
tion of the molecule gives a potential energy which de-
pends upon the orientation of the molecular axis. Thus,
in order to obtain the desired potential energies (which are
adiabatic potential energies in the sense used for other
descriptions of the Jahn-Teller effect), one must calculate
matrix elements of the crystal-field potential within the
degenerate orbital states and diagonalize the matrix. The
difficulty lies in the fact that simple expressions for the
crystal field are obtained in a coordinate system fixed in
the lattice (the cubic axes in all of the cases considered
here), but the wave functions of the orbitally degenerate
state are relatively simple only in a coordinate system
fixed in the molecule.

The main steps of this calculation are performed in the
Appendix. Upon transforming from the coordinate sys-
tem fixed in the crystal, in which the terms appearing in
the crystal field are given by Eq. (6) in terms of the
Vi(8, @) [see Eqs. (3)—(5)], to a coordinate system fixed in
the molecule, it can be shown that the terms which may
give nonzero matrix elements are those with m=o and
m =2A [see Eq. (A6)],

VI o(8o, g)o)Zio(8', q ') + Vi'2~(8o, g o)ZI'2„(8', 0 ')

+ Vi', zA(8O V o»I', 2~(8' V
'»

where 0',y' are the spherical polar angles in the reference

Thus the matrix for the crystal-field potential takes the
simple form

3+8 C
c' a —a (10)

1=4,6, 8, . . .
Big IOVIO (12)

1=4,6, 8,
Bly l, 2A Vl, 2A (13)

1=4,6,8,
B!gl, 2A V!,2A

The quantity A [Eq. (12)] will also contain an additional
term corresponding to the energy of the symmetric charge
distribution from the core electrons (those other than the
m orbital) and from the nuclei, which can be written as

QI Si Vio with SI proportional to Bi.
It is important to point out that the relevant parameters

where the first row (column) corresponds to the index c.
The eigenvalues of V give the adiabatic potential energies
as functions of the orientation of the molecule with
respect to the cubic axes of the crystal

g +(B2+( 2)1/2
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in our calculations are not the BI but the quantities

Cl =&lg lo+~l

Dl ~lgl, 2A .

(15)

It can be shown that, although the parameters B~ do not
form a rapidly decreasing sequence, the parameters C~

and Dl defined above do rapidly decrease as l increases as
long as the spatial extension of the molecular-charge dis-
tribution is smaller than the nearest-neighbor distance.
This justifies the truncation of the crystal-field potential
[Eq. (6)] to its first few terms. The final form of the adia-
batic potential energy is now, up to sixth order,

E+ ( &p, gp) =C4 V4p +C6 V6p + ' ' ' + t D 4 [(V4 2A ) + ( V4 2A )']+2&4D6( V4 2A V6 2A + V4 2A V6 2A )

+D6 [( V6, 2A )'+ ( V6,2A )']+2D4Ds( V4, 2A V8,2A+ V4, 2A V8, 2A )+
(17)

In order to determine the minima of the lowest sheet of
the adiabatic potential energy E (Op, pp), one must first
calculate all invariant combinations of the Vl' appearing
in Eq. (17) as functions of Ho and yp for the particular
value of A considered. Since very complicated functions
of Ho and q&p already result for 1=4, it is convenient to de-

fine the direction cosines of the molecular axis relative to
the cubic axes as follows:

I =san8p cosf'p,

721 =sanOp sanpp q

6 =cosOp .

(18a)

(18b)

The notations can be further simplified by realizing that
all functions of Hp and yo invariant in octahedral symme-

try can be written as combinations of the two functions

f4 mn +n l ——+I m

f6=( m n

(19a)

(19b)

Examples are given in Sec. III.
In addition to adiabatic potential energies —the eigen-

values E+ of the matrix for V, Eq. (11)—the eigenfunc-
tions (which are the associated electronic functions) can
easily be calculated as linear combinations of the basis
functions 1J/A and gA. If we denote with pA

—the eigenfunc-
tions corresponding to the eigenvalues E+, simple con-
siderations lead to

gA QAsina ——P'Acosa—, (20)

'(('A ='A«s&+ PA»n&

where the angle e can be shown to be

~ + (~2+ C2)1/2
tana =—

C
C

(g2+ C2)1/2

(21)

(22)

8 and C are given by Eqs. (13) and (14). Examples will be
discussed in the next section.

III. APPLICATIONS OF THE THEORY

A. Nondegenerate orbital state

The theory developed in the previous section can easily
be applied to the case of a X state (A=O). The matrix for

I

the crystal-field potential [Eq. (10)] reduces to a 1 X 1 ma-
trix, the DI are equal to 0 and the adiabatic potential ener-

gy is now given by [see Eq. (17)]

«()o 92o) =
1=4,6, 8,

(23)

where the Vlo are given in Eqs. (A7)—(A9) for I =4, 6,
and 8. With the use of the definitions of the rotation ma-
trices (see the Appendix), one obtains

v7- (1—5f4»2v'3 (24a)

V6p ——— (2 —21f4+ 23 1f6),1

4 2

~33
,4 (1—18f4 —52f6+65f4),2

(24b)

(24c)

where the Vlo are given in Eqs. (A7)—(A9) for I=4, 6,
and 8. With the use of the definitions of the rotation ma, -

trices (see the Appendix), one obtains

V7
+(()o 91o)= C4(1 5f4)—

2 3

+— C6(2 —21f4+231f6)+ . . (25)
4 2

It should be noted that this expression can be obtained
directly from Eqs. (3)—(6). For A=O, it is indeed not
necessary to rotate the potential V [Eq. (6)] and perform
the integration since the resultant potential energy of the
molecule, E (not just the crystal-field potential V), can be
written as a series of invariant terms in Zl (Ho, yp). The
Devonshire model is obtained by neglecting all terms ex-
cept for the first term in Eq. (25),

E =- C4(1 5f4) . —v7
2 3

(26)

As mentioned in Sec. I, this function adrnlts only two
kinds of minima: along the (111) directions for C4~0
[with E = —(~7/3~3)C4] and along the (100) direc-
tions for C4 &0 [with E =(1/7/2V 3)C4]. The (110)
orientations correspond in all cases to saddle points.
Beyeler' considered both C4 and C6 in Eq. (25) and dis-
cussed the influence of the third term ( l=8). The station-
ary points of such a potential energy were first studied in
1963 in conjunction with rare-earth ions. ' lt is easy to
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show that only three kinds of minima can occur, corre-
sponding to orientations of the molecular axis along the
(100), (110),or (111)directions. The stationary points
corresponding to (lln ) orientations are, in all cases, sad-
dle points. A detailed study of the various minima of the
adiabatic potential energy, Eq. (25), as a function of C4
and C6, is contained in Fig. 1 and Table I. As shown in
Fig. 1, (110) absolute minima can occur. for a range of
parameters. However, this requires a sufficiently large
positive value of Cs. In fact, since ( 100) minima are ob-
served much more often than (111) minima for
molecular-orbital singlets and hence C4. is usually nega-
tive, it would appear necessary to have C6 larger than

I Cq
~

if (110) minima were to occur because of the
sixth-order term in the potential. But, since the values of
the CI should decrease with l, this does not seem to be a
plausible explanation for the almost universal observation
of (110) minima for orbitally degenerate ions. Further-
more, as has been mentioned in Sec. I, there exist two ine-
quivalent types of reorientation between equivalent (110)
orientations, corresponding to a reorientation of 90' (e.g.,
[110]~[110])and of 60' (e.g. , [110]—+[101]). The 60'
reorientation dominates over virtually all the range of pa-
rameters for which (110) absolute minima occur. In re-
gion (3) of Fig. 1, the reorientation occurs via the subsidi-
ary minima along (111). In regions (1) and (2), the
reorientation occurs via the saddle point corresponding to
(Iln ) orientations in the I 110) planes, and these planes
link minima that are 60' apart much more effectively than

(5)

&II])

0

FIG. 1. Equilibrium orientations for a diatomic molecule
having a nondegenerate orbital state in a crystal field of cubic
symmetry as a function of the fourth- and sixth-order terms in
the potential energy [Eq. (25)]. The boundaries of the regions
are given in Table I. The solid lines separate the regions where

(100), (110), and (111) orientations correspond to absolute
minima of the potential energy.

those that are 90' apart, until very near the boundary of
region (1) with region (10), where Cs is comparable to

~
C4

~

and C4 is negative. Only in this limited region
could 90' reorientation be comparable to 60' reorientation.

TABLE I. Types of stationary points and their corresponding molecular axis orientations for an or-
bital singlet in an octahedral crystal field of fourth and sixth order [Eq. (25)]. The regions are shown in

Fig. 1. abs. max. (min. ) stands for absolute maximum (minimum), max. (min. ) for maximum
(minimum), and SP for saddle point.

(3)

(4)

(10)

Region (see Fig. 1)

1 v7C4 9 v7
S v6C, lov6'
12 v7
5 v6 C6 5 v6

C4

2 V6 C6 5

81v7 C4 7v7
20v6 C, 2 V6'
20 V6 C6 10 v6
81 V7 C4 9

1 v7 C4 9 v7
5 v6 ~C,

~

10 v6
12v7 C4 1 v7

7V7 C4 12v7
2v6 /c

I
5

81 v7 C4 7 V7
20 V6 ~C,

~

2 v6
20 V6 C6 10 V 6

C6&0

C6 &0

C6 &0

C6 &0

C4&0

C6 (0

C6 (0

C6 (0

C6 (0

( 100)

max.

abs. max.

abs. max.

abs. max.

abs. max.

min.

abs. min.

abs. min.

abs. min.

abs. min.

abs. min. abs. max.

abs. min. max.

abs. min. min.

min. abs. min.

SP abs. min.

abs. max. abs. min.

abs. max. min.

abs. max. max.

max. abs. max.

SP abs. max.

Stationary points
(110) (111) ( ltn )

SP

SP

SP

SP

SP

SP

SP

SP
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B. A=1: II state

All orbitally-degenerate diatomic molecular impurities
studied experimentally in octahedral sites in cubic crystals
(02, S2, Se2, SSe, and N2 ) have a ground state
with A= 1, i.e., a II state. The invariant terms in Eq. (17)
now include V4o, V6o, Vso [defined in Eq. (24)], as well as
terms within the square root. It is possible to show that
the invariant terms within the square root, up to twelfth
order (i.e., up to sixth order after taking the square root)
are

(V42)'+(V42)'= '3' ( 3f6+—f4»

V42V62+ V42V62 s (14f6 f4 33—f4f6—),
( V62)'+ ( V62)'

=
64 (96f6+f4 —418f4f6+1089f6),

~42 ~82 + ~42 ~82

35~11
( 9f6+3f—4+39f4f6 13f4)—3

6 2

(27)

(28)

Substituting these results into Eq. (17) yields an expres-
sion for the adiabatic potential energy which is valid up to
fourth, fifth, or sixth order.

1. Lowest-order terms

If one neglects all but fourth-order terms, the adiabatic
potential energy is

v7
E+(go to) = C4(1 5f4)—

2 3

+ ID4 I
( —3f6+f4)'"

3
(31)

The constant
I
D4

I
results from the crystal-field matrix

elements of the II state. For a singlet, D4 is 0. The orien-
tations of the molecular axis corresponding to minima of

FIG. 2. Equilibrium orientations for a diatomic molecule in a
II state if only the lowest-order nontrivial term (fourth order) in
the octahedral field is considered [Eq. (31)]. (111) minima
occur only if C4) 0 and D4 ——0. The boundaries of the regions
and the various kinds of stationary points are discussed in Table
II. The orientation of the ~g orbital is given in each region (see
Sec. III B3).

the lowest branch of the adiabatic potential energy, E
are shown in Fig. 2, and described in detail in Table II. In
regard to only absolute minima, the situation can be sum-
marized as follows.
If C4 (—(2/v 5)

I
D4

I
the minimum of E is given by

TABLE II. Types of stationary points and their corresponding molecular axis orientations for an orbital II state in an octahedral
crystal field of fourth order [see Eq. (31)]. The regions are shown in Fig. 2. The abbreviations are the same as those used in Table I.
In regions (1)—(3), the superscripts indicate the order in energy of the various stationary points.

(2)

(3)

(S)

(6)

Region (see Fig. 2)

~s
C4 6

vs I&4I vs(~ )6& C„&4( 31)

I
D4

I Ws
C4 4

C
Ws

C & S~

I
&41 ~s
C4 2

C4) 0

C4) 0

C4) 0

C4) 0

C4 &0

C4 &0

C4 &0

( loo)

abs. max. '

abs. max. '

abs. max. '

abs. max.

max.

SP

abs. min.

(110)

SP4

SP

SP

abs. min.

abs. min.

abs. min.

SP

Stationary points
(111)

max.

max.

max.

max.

abs. max.

abs. max.

abs. max.

abs. min. '

abs. min. '

abs. min. '

SP

SP

SP

SP

SP
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vv
~+ =&- =E& ioo& = - &4

2'V 3
(32)

vV
&+ =&- =&(ii» = — - C43v'3

(34)

As
~
D4

~

increases, (111) orientations become maxima
of E, the degeneracy is lifted, the molecular axis is tilted
away from (11 1) orientations towards (110) in a I110I
plane, and the minimum of the adiabatic potential energy
is given by [for

~
D4

~
&(v5/4)C4]

~7 ~35 D4
E =E(g& = — C4 — . (35)

3v 3 6v3 vsc4 —2~D4~

The corresponding orientation of the molecular axis is
now denoted by (lln)+ (see Table II), where

I'= —, 1+ (36a)sc, —2ID4I

which corresponds to (100) orientations, and the energy
is still doubly degenerate. In real systems, however, this
degeneracy would be removed by the vibronic Jahn-Teller
effect, which has not been included in our treatment.

If
2 4.

(D4I &C~& ID41
5 5

(110) directions correspond to equilibrium orientations
for the molecular axis. The degeneracy is lifted and

~35E—=E(iio&=—8~3 4v 3
(33)

For C4 &(4/~5)
~
D4 ~, the lowest branch of the adiabatic

potential energy corresponds to orientations of the molec-
ular axis which vary continuously from (111) towards
(110) as

~
D4/C4 varies. For D4 ——0, the energy is de-

generate and

FIG. 3. Constant potential-energy contours for a II state in

the cubic field given by Eq. (31) with
~

Dq ~/C4 ——
2o [region(1)

in Fig. 2]. Three absolute minima (full circles) correspond to the

(lIn)+ orientations [see Eq. {35)],three saddle points (crosses)

to the (110) orientations, three absolute maxima (circles) to the
(100) orientations, and the local maximum in the center
(square) is the (111)orientation. The three triangles show the
(I!n) orientations (see Table II) and correspond to saddle

points. The energy difference between two solid lines is given by

( E& )oo&
—E&g„& )/15, and between two dotted lines is by"+

( E& ioo&
—E&IIn &

comparable to 60' reorientation only in a very small re-
gion of the parameter plane, where Cs needs to be nega-
tive and comparable to

~
C& ~.

The case of II states is different: (110) minima readily
occur, already when only fourth-order terms in the crystal
field are included. In addition, 90 reorientation is com-
parable to or greater than 60' reorientation for

2ID4I
v5C4 —2 D4(

(36b)

Another similar stationary point, denoted by (1ln) in
Table II, occurs in the regions (1)—(5) in Fig. 2. The cor-
responding orientations are given by Eqs. (36) with the op-
posite first sign inside the parentheses. It is, however, al-
ways a saddle point and corresponds to a tilting away
from (111) towards (100). Clearly, if the coupling to
the II state is comparable to or larger than the coupling to
the average molecular-charge distribution, (110) minima
result even from the lowest-order terms in the potential
(fourth order). The tilting from (111) towards (110) is
illustrated in Fig. 3, which shows constant potential-
energy contours for one octant of the sphere projected on
the Illlj plane normal to the (111)axis through this oc-
tant. The values of C4 and D4 correspond to region (1) in
Fig. 2.

As discussed in the previous sections, (110) minima
for a X-state molecule could arise only from sixth- (or
higher-) order terms in the potential. In addition, 90'
reorientation between equivalent (110) orientations is

FIG. 4. Constant potential-energy contours for a H state in
the cubic field givenby Eq. (31) with

~
D4

~
/C4 ——1[region(4) in

Fig. 2]. Reorientation by 60 dominates via the saddle points
(triangles) corresponding to the (lln) orientations (see the text)
over 90' reorientation. The energy difference between two solid
lines is given by (E&]oo& —E& []p& )/15.
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Since the minima all lie in I 110} planes, we are only in-
terested in Eq. (37) for direction cosines I =m +n.
Evaluating V4z and V42 in these planes yields

V42
——0,

(38)

yc I2( 2 i2)
3

so that Eq. (37) becomes

tana= [ l (—n I )—(D—4/I D4
I

)1
I

n I —
I ]/0

0/[l (n i ) —(D4/—
I D4

I
)l

I
n I

I ] . —
35

FIG. 5. Constant potential-energy contours for a II state in

the cubic field given by Eq. {31)with
I

D4
I
IC4 ———

3 [region

(6) in Fig. 2]. Reorientation between two (110) orientations
(crosses) occurs via the saddle points corresponding to the (100)
orientations (circles), whether it is for 60' or 90 reorientation.
The energy difference between two solid lines is given by
~ E(jii) —E& iso) )/'&& ~

—~5&
I D4 /C4& —v 5/2 and near but less than the

value of — 5 [region (6) in Fig. 2]. Examples are shown
in Figs. 4 and 5. Figure 4 corresponds to

I
D4

I
/C4 ——1, a

value such that 60' reorientation dominates. In Fig. 5 on
the other hand,

I
D4

I
/C4 is equal to ——,', and 90'

reorientation dominates.
As mentioned in Sec. I, there is experimental evidence

for 90' reorientation times shorter than 60' for molecular
II states [Rbl:02 (Ref. 37)].

2. Contribution of higher order terms-

The inclusion of higher-order terms in Eq. (31) adds
considerable complexity. Explicit expressions for the en-

ergy can be written with the use of Eqs. (17) and
(27)—(30), and a few qualitative conclusions can still be
extracted. In particular, it can be shown that the effect of
sixth-order terms is to change the region of the (C4,D4)
plane in which (110) absolute minima occur. However,
the terms proportional to C6 and D6 contribute with op-
posite signs in the inequality determining the boundaries
of this region. Thus, as long as the sixth-order terms are
relatively small, their inclusion does not significantly
modify the earlier results.

C. A~ 1: h and @states

A =2: 6 state

If one considers only the lowest-order term in the crys-
tal field ( )=4), the adiabatic potential energy for a b. state
is given by

vv
E+ (8o,po) = C4(1 —Sf4)

2 3

+ ID, I
[(I-f )2-»f, ]'"

2 3
(40)

The essential difference with the corresponding function
for a II state [Eq. (31)] is that the degeneracy is also lifted
for ( 100) orientations.

The lower sheet of the adiabatic potential energy, E
has minima along (100) directions with

Thus, tana is either 0 or ae depending on the signs of D4
and n —I .2 2

For a (100) minimum, the double degeneracy remains
and this is manifest in Eq. (39) by an indeterminate ex-
pression, 0/0, for tana. For either (110) minima or
those tilted in a I 110} plane, n l is n—egative. Thus,
for D4 positive (negative), the value of tana is 0 (cc).
Hence we can write gi ——fbi if D4&0, and gi ——gt if
D4 & 0 [see Eq. (21)].

Because of the notation used to obtain the crystal field
in the molecular reference frame, f'i is a ir orbital oriented
along the (110) axis perpendicular to the I110} plane
containing the minimum. Consequently, fbi is a m. orbital
in the I 110}plane. Thus if D4 &0, the m. orbital is in the
I110} plane, whereas if D4&0, it is oriented along the

(110) direction (see Fig. 2).

3. Wave functions

If only the fourth-order term in the potential is con-
sidered, the expression determining the electronic eigen-
functions [Eq. (22)] is

I 42+(D4/ I
D4

I )[( I 42)'+( I 42) ]'"
tana =—

V42

V42
c 2 s 2 1/2I 42 (D4/ I D4

I )[(I 42 ) + ( I 42 ) ]

E{iool (~7C4 —~5
I D4 I

)
2 3

if C4 & ( I/~35)
I D4 I

. (110) minima occur for

1 5

~35 ID41&C4& ~3
with

=E{iip) = — (~7C4+ 3~5
I
D4 I ),1

8 3

(41)

(42)
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l'= —,
' 1+2

v 35C4 —
I D4

I

(44a)

n = —, 1 —4
v 35C4 —ID4

I

(44b)

As for a II state, for D4 ——0 and C4 & 0, the orientation of
the molecule is along (111) directions. For

I
D4

I
&0,

the minima tilt away from (111)with an angle increasing
with

I D& I
until they reach (110) for

I
Dq

I

=(v 35/5)C4, . This behavior is quite similar to that of a
11-state molecule in the sense that the coupling of the elec-

tronic orbital state to the hindered rotation of the mole-

cule {rotronic coupling) lifts the orbital degeneracy.

2. A=3: @state

For A&2, since all Z~2& are equal to 0 for 2A&I, off-
diagonal matrix elements of fourth order are all equal to
0, and the lowest-order terms within the square root of
Eq. (17) correspond to 1=6. Therefore, 4 states will
behave essentially in the same manner as the nondegen-
erate X states (see Sec. IIIA). Although terms with

I

Thus the region of the ( C4,Dq) plane in which (110) ab-

solute mimma occur is much smaller for 6 states than it
is for II states, although the parameter D4 is different in
the two cases [see Eq. (16)]. If C4 & (5/v 35)

I
D4 I, the

orientation of the molecular axis corresponding to abso-
lute minima is tilted away from (111) towards (110) in
a [110j plane. The minima of E are given by

~7 C
2~5 4

3v3 ' 3v3 ~35C,—ID, I

The corresponding orientations are (lln )+ with
r

higher values of I will still lift the degeneracy, this pertur-
bation wi11 be small.

IV. MOLECULAR IMPURITIES
AT TETRAHEDRAL SITES

The expression for the crystal field used so far [Eqs.
(3)—(6)] is valid for both 0 and O~ point-group sym-
metries, provided that only terms up to eighth order are
included. For example, a ninth-order term for 0 symme-
try is not present for O~. This term would contribute to
the adiabatic potential energy in the case of heteronuclear
diatomic molecules but not for homonuclear ones. Since
the term is ninth order, its contribution would be very
small.

In tetrahedral symmetry, however, there exists a third-
(and a seventh-) order term in the crystal field for both T
and Td point-group symmetries, an additional sixth-order
term for T and T~, as well as different higher-order
terms. Thus for homonuclear diatomic molecules, the
adiabatic potential energy is the same for 0, O~, and Td
symmetries since the odd-order terms do not contribute.
However, for heteronuclear diatomic molecules, all five
symmetries are different.

The theory developed in Sec. II applies to heteronuclear
diatomic molecules at sites of T and Td symmetries if the
third-order term is taken into account in the crystal-field
potential [see Eqs. (3)—(6)]. This term is

V3(o,y) =Z32(O, qr)

and can be rotated to the coordinate system fixed in the
molecule using Eq. {7). The sums in Eqs. (12)—(14) will
now include the additional term 1=3. If we consider only
terms up to 1=4, the equivalent of Eq. (17) for heteronu-
clear diatomic molecules in T or T~ symmetries is

Q+ ( Op& pp) =C3 V3p +C4 V4p + t D 3 [( V3 2A ) + ( V3 2p ) ]+2D3D4[ V32A V42A + V32A 4 2A ]

+D4[( V4, 2A)'+ {V~, 2~)'] j

+ [D3(1 4fg+9f6)+4v 35D3D4f3—(1—3f„)

(f2 3f ) j
1/2 (51)

For X states, the adiabatic potential energy is obtained

The new invariant terms for X and II states are

V3o( ~o 0'o) =v 15f3

( 32) +( 32) =1 4f4+9f6-

V32 V42 + V32 V42 =2~&&f3 {1 3f4 ), —

where [see Eqs. (18) and (19)]

f3 ——lmn . (50)
For II states, the adiabatic potential energy (up to fourth
order) is therefore given by

v7E+ ——v 15C3f3+ C4(1 5')—
2v 3

from Eq. (51) by setting D3 D4 0 Th——e pos——sib.le mini-
ma are then along ( 100) directions if C«0 and

C3
I

& (~35/2v 3)
I C4 I, and along ( 1 1 1 ) directions in

all other cases.
For II states, if only the lowest-order ( t=3) terms are

included, the minima are along (111)directions if D3 —0
(and C3~0). As

I D3 increases, the minimum-energy
orientations tilt towards (100) in a t110j plane. For

I
D3

I

=(v 15/4)
I
C3

I

the orientation is (100) and
remains (100) for larger values of

I
D3

I
.

V. DISCUSSION AND CONCLUSION

There is a large amount of experimental data on dia-
tomic molecular negative ions of the chalcogenides (02
S2, etc.) as impurities in the alkali halides. It is particu-
larly striking that, in their ground electronic state, these
Ilz impurities are always oriented along (110) axes,

whereas comparably abundant data on diatomic impurity
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ions in a X ground state (OH, CN, etc.) show that
(110) orientations are uncommon. In this paper it has
been shown that a coupling of the doubly degenerate orbi-
tal to the hindered rotation in the crystal field, which
must occur, explains the observed (110) orientations of
the H-state ions, and other observed properties as well.
Furthermore, the explanation only requires the lowest-
order term in the potential (l=4)—the term expected to
be the largest —without assuming specific values of
higher-order terms, as is needed to explain (110) orienta-
tions of X-state ions.

Degenerate electronic orbitals are usually coupled to the
crystal via the vibrations of the ions, leading to the well-
known Uibrational-electronic, or vibronic, Jahn-Teller cou-
pling. Such a coupling is also undoubtedly significant in
the case of diatomic molecular impurities having an orbi-

tally degenerate ground state. In this work, vibrations are
not accounted for; only the hindered rotation of the mole-
cule has been included. The results obtained are a mani-
festation of the Jahn-Teller effect in which the degenerate
orbital is coupled to rotational (instead of vibrational) de-
grees of freedom, leading to a rotational-electronic, or
rotronic, coupling. In this case, one cannot make the
small-amplitude approximation used for the vibronic cou-
pling. The analogous simplification for rotronic coupling
is accomplished by arguing that the rapidly varying terms
in the potential can be ignored, i.e., we kept only the
lowest-order terms in the spherical harmonics.

For octahedral sites, one finds that all of the observed
properties can be understood in terms of the simplest pos-
sible expression for the potential, involving only the
lowest-order (fourth-order) terms. The ( 110) equilibrium
orientations always result if the rotronic coupling is com-
parable to or larger than the coupling to the axially sym-
metric charge distribution of the molecule. Because of the
lower symmetry of this orientation, the degeneracy is lift-
ed. A splitting of the II~ ground state (as well as of the
II„excited state) has indeed been measured in some sys-

tems [Rbl:S2 (Ref. 21) and KI:S2 (Ref. 38)]. The am-
plitude of this splitting, which is about 0.06 eV, provides
an order of magnitude for the rotronic Jahn-Teller energy.

Because of the lifting of the degeneracy, the m orbital
must be oriented along a specific direction. Our theory
predicts that the only possible orientations of the erg orbi-
tal are along a (110) or (111)direction perpendicular to
the molecular axis, depending on the sign of the coupling
constant to the II state (, D4). Experimentally, (110)
orientations' of the mg wave function occur as fre-
quently as (100) orientations. ' ' ' ' Furthermore,
in agreement with experimental observations, the theory
predicts that 90 reorientation dominates 60 reorientation
for a significant range of parameters.

Although in their Hg ground state all H-state diatomic
molecular impurities in the alkali halides have (110)
equilibrium orientation, ' some are reported to have
(111) (Ref. 29) or (100) (Ref. 30) orientations in their
II„excited state, most being oriented along (110).

This can be understood if we assume that the rotronic
coupling is somewhat weaker in the excited state. The
theory then predicts that actual minima do not occur for
exactly (111)but rather for (lln ) orientations. If the tilt

angle is small, the difference would be difficult to detect
experimentally. In the case of ( 100) orientations, the rot-
ronic Jahn-Teller coupling does not lift the degeneracy.
Therefore, in real systems, a vibronic coupling will occur
and render the tetragonal symmetry unstable, lowering the
symmetry and lifting the degeneracy. This problem is
currently under study.

Another prediction which as yet has not been experi-
mentally substantiated is that (111) orientations of the
molecular axis are unstable: a molecule having (111)
equilibrium orientation without rotronic coupling to the
II state will be tilted away from the (111) towards the
(110) directions as the coupling increases, thereby lifting
the degeneracy. The limit of this tilting is the (110)
orientation.

When applied to a b, state at sites of octahedral symme-
try, the theory predicts very similar results: (111)orien-
tations are unstable and the molecular axis is tilted to-
wards (110). However, (110) equilibrium orientations
occur for a significantly smaller range of parameters for
5 states than for II states. Furthermore, the degeneracy is
lifted for all stable orientations of the molecular axis.

At sites of tetrahedral symmetry, the overall picture
remains the same for homonuclear diatomic molecules
since the lowest-order terms are identical to those in octa-
hedral symmetry. However, for heteronuclear diatomic
molecular impurities at sites of T and Td point-group
symmetry, there exists a third-order term (l=3 in spheri-
cal harmonics) which renders (111)orientations unstable
against a tipping towards (100) in a ( 110j plane.

Furthermore, one should point out that this theory not
only changes the interpretation of experiments on isolated
impurity ions, but also changes the understanding of their
cooperative behavior. In particular, there exists a consid-
erable interest in alkali superoxides and much is known
about these crystals. The alkali superoxides are roughly
crystals having the NaC1 structure, which is usually dis-
torted, with 02 ions replacing the halogen ions. They
have several structural phases which depend, in part, upon
the orientation of the 02 ions. It is generally recognized
that the Jahn-Teller effect plays a role in determining the
structure. However, it now seems that prior studies of
this problem have been incomplete. For example, Halver-
son argues that a Renner effect will cause a tilting of the
02 molecule from a tetragonal orientation. Within our
theory, no behavior quite like the Renner effect can occur,
and the closest we come to a phenomenon such as Halver-
son suggests is the ultimate instability of the (100) orien-
tations, when the rotronic coupling is sufficiently large to
yield (110)orientations.

Finally, we remark that in the high-temperature phases
of the superoxides, the Qz ions are approximately along
the (111) axes but disordered and undergoing a hindered
rotation. This appears reasonable in view of the instabil-
ity of the (111)directions for isolated ions. Hindered ro-
tation about the (111)direction should occur as suggest-
ed by Fig. 3.

In summary, the rotronic Jahn-Teller effect explains in
a straightforward manner much of what has been ob-
served for H-state molecular impurities in the alkali
halides, and must be included when describing the Jahn-
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Teller effect for molecular impurities having a degenerate

orbital state and undergoing hindered rotation.
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APPENDIX: ROTATION MATRICES
AND AXIAL HARMONICS

Let (x,y,z) be the axes for a coordinate system fixed in
the crystal (the cubic axes of the crystal) and used to
describe the crystal-field potential [Eq. (6)]. The coordi-
nate system fixed in the molecular impurity (x',y', z'), has
the z ' axis lying along the molecular axis. The polar and
azimuthal angles in this coordinate system are (9',y'. The
rotation between the two coordinates systems is described
by three Euler angles Oo, q'p, gp, which are usually defined
in the following manner.

(1) Rotation about z by pp:

(x1,y1 Zl

(2) Rotation about y1 by Oo:

(x liy1~zl )~(x2~y2 y1~z2) ~

(3) Rotation about z2 by rl'o.

(x2,y2, Z2) —+(x',y', z'=Z2) .

and

D "k(go, q p, gp) =e' 'e' 'd"„'(g,), (A2)

Now, z' lies along the molecular axis, and (Op, q2o) are the
polar and azimuthal angles of z' with respect to the lat-
tice. Since the molecule is symmetric with respect to Pp,
we can set Po equal to 0. The standard expressions for
writing spherical harmonics in rotated coordinate systems
use the rotation matrices D'

k
..

l

X mk(go po, go) &jk(8', qp') (Al)k=

where

d111 (8 ) y( I)t+m k[( +-)!( — )!(l+m)!(l—m)!]' '
[ ( 1g ]21 (2t+

(l —m —t)!(l+k —t)!t!(t+m —k)! (A3)

The sum runs over all possible values of t, i.e., from
(k ™)(or 0) up to (l —m) if k~0, and from (l+k) up
to ( l —m) if k ~ 0. The relations between axial harmonics
in both coordinate systems follow from the definitions
given in Eqs. (1) and (Al):

I

Zto(g, y) =DoII(go)Zto(8')+ g Dpk'( Op)Zf k(
8', q '),

2 1=1

where

D "o(gp) =(—I) d"'o(gp),

D~k (Oo) =( —1) [(—1) d k(gp)+dye, k(go)]

D'k'(Op) =(—I) [(—1)"d"k(gp) —d",' k(go)] .

Zt' (O, y) = ~2D' p(gp)cos(myp)Ztp(8')
I

+ g [D'k'(Op)cos(m pro)Ztk(8', qr')
k=1

Thus it is possible to write all terms of the crystal field in
the coordinate system which is convenient for calculating
matrix elements.

We are now interested in all matrix elements of the type

—D'k'(Oo)»n(map»lk(8, % )] ~

(A4B)

Z1 (8 qr) =v 2D o(go)sin(m qro)Zto(8')

l

+ g [D'k'(Op)sin(mqp)Ztk(8', y')
k=i

+D'k'(Op)cos(m yp)Ztk(8', qp') ], (A4c)

where the gz are wave functions for the doubly degen-
erate orbital states. The indices i,j,k stand for c,s.

In the present problem, the wave functions are charac-
terized by a dependence on y' as cos(Ay') for PA and
sin(Aq") for g~, and the quantum number A is equal to 1

(for a II state), 2 (for a 5 state), 3 (for a @ state), etc.
Since Zt' and Zt' are proportional to cos(mtp') and
sin(mq"), respectively, the only nonzero matrix elements
will be those with m =0 or m =2A. This selection rule
restricts all sums in Eqs. (A4) to the term k =2A. It is
now possible to write explicitly all terms of the expansion
for the crystal-field potential [Eqs. (3)—(5)] in the rotated
coordinate system. For l=4, 6, and 8 we have
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~l(8 (P) = ~lo(80 %'0)zio(8' m')

+ ~t, 2A ( 80 0 0)Z1,2A (8 'P )

+ ~t, 2A ( Oo go )Zl', 2A ( 8' g ),
~80 [3~11D pp ( 80 ) +2~14D 40 ( 80)cos(4yo )

1 (8)
8 3

[ )r 7D oo (Oo) +~10D4o (80)cos(4&p) ],2 3

[~7D() 2A (8() ) +~10D4 2A (8())cos(4(po) ]

+v 130Dsp (80)cos( 8+0)]

~8,2A [3~~~DO,2A(80)+2~14D4 2A( Op) cos( 4g) 0)

~4 2A = — -D4 2A(80)»n(4v o»s ~5 s(4)

2 3

p'60 —— [DI)0' ( 80)—~14D40' ( 80)cos(4yo) ],
2 2

~6, 2A 4 [D0,2A(80) 14D4,2A(80) os( 9 0)]

y's6
2A

— D4 2A(80)stn(49)0),s ~7 s(6)

2 2

(A7)
+v'130D s'2A (Oo)cos( 89)0)],

s, 2A [2~7D4, 2A(80)»n(4()oo)
8 6

+~65Ds'2A(80)sin(8@0)] . (A9)

F. Bridges, Crit. Rev. Solid State Sci. 5, 1 (1975).
~V. Narayanamurti and R. O. Pohl, Rev. Mod. Phys. 42, 210

(1970}.
3F. Hund, Z. Phys. 43, 805 (1927).
4L. Pauling, Phys. Rev. 36, 430 {1930).
5A. F. Devonshire, Proc. R. Soc. London, Ser. A 153, 601

(1936).
W. E. Bron and R. W. Dreyfus, Phys. Rev. Lett. 16, 165

(1966).
7W. E. Bron and R. W. Dreyfus, Phys. Rev. 163, 304 (1967).
R. Callender and P. S. Pershan, Phys. Rev. A 2, 672 (1970) and

references therein.
S. Kapphan and F. Luty, J. Phys. Chem. Solids 34, 969 (1973).
OF. Luty, Phys. Rev. B 10, 3677 (1974).
W. Kuch and K. Burr, J. Phys. Chem. Solids 42, 677 (1981).
S. Kapphan and F. Luty, Phys. Rev. B 25, 7780 (1982).

' R. W. Dreyfus, J. Phys. Chem. Solids 29, 1941 (1968); 30,
1903 (1969).

4H. U. Beyeler, Phys. Status Solidi B 52, 419 (1972).
~5W. Kanzig and M. H. Cohen, Phys. Rev. Lett. 3, 509 (1959).

W. Kanzig, Phys. Rev. Lett. 7, 304 (1961).
~7H. R. Zeller, Ph. 13. thesis No. 3996, Eidgenossische Tech-

nische Hochschule, Zurich, 1967 (unpublished).
H. R. Zeller and W. Kanzig, Helv. Phys. Acta 40, 845 (1967).

9K. K. Rebane and L. A. Rebane, Pure Appl. Chem. 37, 161
(1974).
L. E. Vanotti and J. R. Morton, Phys. Rev. 161, 282 (1967).
C. A. Sawicki and D. B. Fitchen, J. Chem. Phys. 65, 4497
(1976).

~W. Holzer, S. Racine, and J. Cipriani, J. Raman Spectrosc. 7,
22 (1978).
P. Matthys, F. Callens, and E. Boesman, Solid State Commun.
45, 1 (1983).

~4L. E. Vanotti and J. R. Morton, Phys. Rev. 24A, 520 (1967).
L. E. Vanotti and J. R. Morton, J. Chem. Phys. 47, 4210
(1967).

A. Hausmann, R. Hilsch, and W. Sander, Z. Phys. 179, 461
{1964).

~7L. R. Brailsford, J. R. Morton, and L. E. Vanotti, J. Chem.
Phys. 50, 1051 (1969).

8V. Seeman, S. Reifman, T. Lehto, and U. Haldre, Phys. Status
Solidi 8 102, 459 (1980).
M. Ikezawa and J. Rolfe, J. Chem. Phys. 58, 2034 (1973).
L. A. Rebane and Ar. B. Treshchalov, Izv. Akad. Nauk SSSR
Ser. Fiz. 40, 1926 (1976).

'A. B. Treschchalov and L. A. Rebane, Fiz. Tverd. Tela (Len-
ingrad) 20, 469 (1978) [Sov. Phys. —Solid State 20, 272
(1978)].

3 W. Kanzig, J. Phys. Chem. 23, 479 (1962).
G. Pfister and W. Kanzig, Phys. Kondens. Mater. 10, 231
(1969).
G. Pfister and M. Bosch, J. Phys. Chem. Solids 31, 2699
(1970).

35K. Bachmann, W. Kanzig, H. R. Zeller, and A. Zimmermann,
Phys. Kondens. Mater. 7, 360 (1968).
R. H. Silsbee, J. Phys. Chem. Solids 28, 2525 (1967).
M. Bosch, H. P. Dreyer, J. Muggli, and W. Kanzig, Solid
State Commun. 12, 1027 (1973).

38G. J. Vella and J. Rolfe, J. Chem. Phys. 61, 41 (1974).
M. T. Hutchings, Solid State Phys. 16, 227 (1964).

~S. L. Altmann and A. P. Cracknell, Rev. Mod. Phys. 37, 19
(1965).

4 G. T. Trammell, Phys. Rev. 131, 932 (1963).
4~G. Kemeny, T. A. Kaphan, S. D. Mahanti, and D. Sahu,

Phys Rev B24 5222 (1981)
43F. Halverson, J. Phys. Chem. Solids 23, 207 (1962).
~M. E. Lines and M. A. Bosch, Comments Solid State Phys. 11,

73 (1983).
45M. E. Rose, Elementary Theory of Angular Momentum (Wi-

ley, New York, 1957), p. 52.
~ S. Estreicher and T. L. Estle, Bull. Am. Phys. Soc. 29, 73

(1984).


