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We have examined the structural and electrical properties of an extended defect in silicon: the 90°
partial dislocation. We present a detailed atomic geometry for this defect. The geometry was deter-
mined by using an approximate geometry from electron microscopy and by optimizing this approxi-
mate geometry to minimize strain energies. We have calculated the electronic states associated with
the defect from the optimized geometry. We performed this calculation with a semiempirical pseu-
dopotential and a peripheral-orbital method. We find, in qualitative agreement with experiment,
two defect bands: One occupied band in the lower-half of the band gap and one empty band in the
upper-half of the band gap. However, given the dispersion and weak localization of these bands, it
is doubtful whether the bands correspond to those determined experimentally by either capacitance
or photoconductive measurements. It is most probable that localized states occur at kinks or anti-

phase defects.

I. INTRODUCTION

The question of whether dangling bonds exist within
the core of line defects in semiconductors is not a new
one. Although the idea of dangling bonds along the core
of the dislocation originated with Shockley' and Read?
over 30 years ago, the actual existence of defect-associated
dangling-bond states has yet to be resolved despite consid-
erable effort. The motivation for this effort should be
clear. Numerous properties of semiconductors depend on
the nature of defect states. For example, models for
recombination, luminescence, and lattice friction are
strongly dependent on whether dislocations contain dan-
gling bonds and on whether the defect states are deep or
shallow.’

While the details of dangling-bond states associated
with the dislocation cores have not been resolved, contem-
porary developments have brought us much closer to an
answer. These developments include improved experi-
mental techniques such as electron microscopy, catho-
doluminenscence, temperature-dependent electron-beam-
induced conductivity, and scanning deep-level transient
spectroscopy.* In addition, new theoretical techniques for
handling the electronic structure of defects have been
developed. These techniques include those developed ini-
tially both for point and line defects.>®

The aim of the experimental and theoretical work has
been to determine the atomic and electronic structure of
line defects. With respect to atomic structure, the situa-
tion is similar to that found in surface studies, i.e., no ex-
perimental technique now exists which can yield, in a rou-
tine fashion, accurate structures for nonperiodic, or par-
tially periodic structures. This situation is likely to be im-
proved, however, in the near future with the development
of the scanning tunneling microscope and UHV
transmission-electron microscopy.” For line defects, the
experimental difficulties in obtaining structural and spec-
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tral information from a single isolated dislocation of
known character and state of dissociation are consider-
able. The further separation of effects intrinsic to the
dislocation core from those due to the decoration by im-
purities raises even more fundamental unresolved prob-
lems.

While first-principles theoretical techniques now exist
which are applicable to line and planar defects, their im-
plementation is by no means routine and, to date, no such
calculations exist. For the electrical properties, current
theoretical methods are adequate for spectroscopic deter-
mination, provided that accurate structural data exists.
Thus, from a theoretical point of view, the chief difficulty
in describing the line defect is the lack of structural infor-
mation.

In this paper, we consider the structure and the electri-
cal properties of the 90° partial dislocation in silicon. The
low-temperature deformation of silicon and germanium
produces predominantly dissociated screw dislocations
(consisting of two 30° partial dislocations) and dissociated
60° dislocations (consisting of one 90° and one 30° partial),
each with a total Burgers vector of the (3)[110] type on
the (111) slip plane.® Dislocations running in other direc-
tions can be considered as kinked segments of these types.
Thus, the fundamental dislocations are the 30° and 90°
partial dislocations. We have dealt with the 30° partial
elsewhere.” Here we concentrate on the 90° partial dislo-
cation.

The 90° partial appears to be more difficult to describe
than the 30° partial. A few calculations®® exist which at-
tempt to determine the atomic geometry of the core.
While these efforts are in general agreement in suggesting
that the 90° partial has a larger strain field associated with
the core geometry as compared to the 30° partial disloca-
tion, the detailed geometry has been somewhat controver-
sial. It has been claimed® that the geometry is unstable
and will not reconstruct when valence-force-field descrip-
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tions using anharmonic contributions are considered.
Others,’ using similar methods, have suggested that it will
strongly reconstruct (regardless of the precise nature of
the valence force field). Independent of this controversy
is the fact that neither calculation has presented explicit
coordinates for the partial dislocations.

Another area of some controversy, involves the role of
Peierls distortions. It is not clear whether a Peierls
transformation is possible in this structure, although it
has been suggested to be an important factor. In addition,
the position of the theoretical defect bands for the 90° par-
tial dislocation has not been decided conclusively. More-
over, experimental work on the 90° partial, while in
reasonable agreement, has not yielded a consistent place-
ment for the defect bands.

In this paper, we present for the first time an explicit
set of atomic coordinates for the 90°-partial dislocation.
We hope that these conditions will be the subject of an ex-
perimental verification when the state of the art allows
the direct measurement of defect coordinates. Moreover,
we present a new method for determining these coordi-
nates. Our method is based on the use of a “mean-field”
determination of the coordinates in a valence force field.
Also, by using a semiempirical pseudopotential calcula-
tion to calculate the electronic structure we avoid the mul-
tiparameter tight-binding scheme used in previous discus-
sions of these systems. Our results suggest that the 90°
dislocation has, at best, weakly localized states and that
any strongly localized states must occur at kinks or phase
boundaries along the dislocation line.

II. ATOMIC COORDINATES OF THE 90°
PARTIAL DISLOCATION

The atomic coordinates for the core of the 90° partial
dislocation are not directly accessible. Nevertheless, it is
possible to determine a reasonable geometry. We start by
using near-atomic-resolution electron micrographs.>!©
These experimental high-resolution micrographs suggest

the geometry for the 90° partial indicated in Fig. 1. The
]
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FIG. 1. Model of an unrelaxed 90° partial dislocation. The
dislocation runs in the [110] direction. With no relaxation
atoms 2,2’, and 6,6’ are not tetrahedrally coordinated.

geometry corresponds to the glide model for the 90° par-
tial. The partial dislocation may lie on either the closely
spaced (111) glide planes or the more widely spaced shuf-
fle planes.’°~!> Based on recent experimental work'® the
glide model is favored and is the model upon which we
shall concentrate. Unfortunately, the subangstrom details
of the core-charge distribution on which the electronic
structure depends are not resolvable using current electron
microscopes, which, at best, reveal structural detail down
to about 2 A and which produce images depending sensi-
tively on the electron-optical parameters and specimen
thickness.

To clarify our discussion we have numbered the atoms
in the model shown in Fig. 1. The chief features of this
configuration are that atoms 2 and 6 (or 2’ and 6’) are not
tetrahedrally coordinated. The bond length is much
larger than the crystalline bond length for silicon (e.g.,
~10% larger than the ideal) and the bonding angles are
far from the tetrahedral angle (e.g., ~ 165° as compared to
109.4°). In order to optimize this geometry we have al-
lowed the atomic coordinates to relax. In doing so we
have used a valence force field based on a modified Keat-
ing potential.’> We use the expression given by Mark-
lund?® as derived by Koizumi and Ninomiya.!'* The elastic
strain energy per atom is given by
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where 7 is the crystalline bond length for silicon, T;,T;
are vectors connecting the specified atom with its four
nearest neighbors, and «, B, v, 8, and € are parame’cers.15
These parameters have been fit to the known elastic con-
stants of silicon. The sums in Eq. (1) are over nearest
neighbors. The expression attempts to incorporate both
bond-stretching and bond-bending forces with a proper
treatment of anharmonic terms. This description has
some shortcomings, e.g., it predicts zero-stacking-fault en-
ergy (since a stacking fault involves second-nearest neigh-
bors), the question of incomplete coordination is ambigu-
ous, and the anharmonic terms may be overestimated.

[

Nonetheless, we find that the resulting atomic coordinates
are reasonable. Moreover, the errors we make in the
geometry of this order are probably comparable to the er-
rors arising elsewhere, e.g., our electronic structure calcu-
lations are based on semiempirical potentials which are
not exact.

Before minimizing the energy expression in Eq. (1),
given approximate coordinates from electron microscopy,
we need to make a further approximation. Namely, we
choose to confine our defect within an artificial superlat-
tice. This configuration allows us to consider a finite sys-
tem. We have considered two supercells: one with 24
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atoms and one with 48 atoms. We would like to use as
large a supercell as possible in order to minimize interac-
tions between dislocations in the same and neighboring
cells, yet small enough to allow accurate electronic struc-
ture calculations to be performed. We found that 24
atoms yielded a reasonable structure, but some discernable
interactions between defects remained. Our 48-atom cell
is probably the smallest cell which will yield accurate re-
sults. We embed two partial dislocations with opposite
strain fields (i.e., Burgers vector) within the supercell.
This results in a negligible strain field on the border of the
unit cell. Moreover, it allows us to invoke inversion sym-
metry when obtaining a solution of Schrodinger’s equa-
tion.

The optimization process is nontrivial as we wish to
minimize the strain energy for each atom. Since we have
48 atoms in our unit cell, we would, in principle, have to
consider a 144-parameter space minimization.'® In order
to make the problem tractable, we have proceeded in a
mean-field manner. We first construct a matrix of fixed
coordinates from the electron-microscopy work. The
coordinates of a given atom were examined and an at-
tempt was made to minimize the strain energy as given by
Eq. (1). That is, using the forces derived from Eq. (1), we
moved the atom within the fixed matrix to minimize the
net force. After the given atoms’ coordinates were al-
tered, these coordinates were saved for future use and the
procedure was repeated for another atom. When all the
atoms in the matrix were examined, another matrix was
set up with the saved coordinates and the process repeat-
ed. We constrain the atomic motions for each iteration to
be small, e.g., typically 1% of the bond lengths. Thus, a
number of iterations, typically ten, was performed until
the coordinates converged. The advantages of this pro-
cedure are as follows. (a) It preserves the initial symmetry
of the system. We need not be concerned with
symmetry-breaking alterations of the coordinates as the
atom moves in a fixed matrix which possess the correct
symmetry. (b) It does not matter in which order the
atomic coordinates are altered.

In Fig. 2 we present a model of the optimized 90°-
partial-dislocation geometry. The key feature of our re-
laxed model is that all the atoms are now truly fourfold
coordinated, i.e., all four neighboring atoms are within a
few percent of the ideal bond length. However, some of
the bond angles are considerably distorted from the
tetrahedral angle. In Fig. 3 we present a projection of our
unit cell with all 48 atoms indicated. The 90° partial
dislocation is characterized by the intersection of a five-
fold and sevenfold ring. The fivefold ring is composed of
atoms 2-3-4-5-6-2 and the sevenfold ring contains atoms
1-2-6-7-8-9-10-1. This is a significant configuration as
five- and sevenfold rings are thought to be a dominant
component in amorphous semiconductors.!” In Table I
we give a tabulation of the coordinates for the 90° partial
dislocation. We also give the strain energies as computed
from Eq. (1).

The strain energies given in Table I must be considered
approximate since the description of bond-bending and
bond-stretching energies are approximate. With this
caveat in mind, several features can be noted. First, the

(a)

(b)

FIG. 2. (a) Diagrammatic sketch of a relaxed 90° partial
dislocation. In this model, atoms 2,2’ are allowed to bond to
6,6’ to form fivefold (2-3-4-5-6-2) and sevenfold rings (2-6-7-8-
9-10-1-2). (b) Projection of the atomic double layer containing
atoms 1-2-6-7-7'-6'-2'-1. Note how the sixfold ring (1’-2-6-7-6'-
2'-1') is significantly distorted from the bulk crystalline configu-
ration.

strain field falls off fairly rapidly. At a distance of two
bond lengths away from the core atoms (2 and 6) the
strain energy is reduced by an order of magnitude, e.g.,
atom 20 has a strain energy of 0.05 eV as compared to the
0.5-eV strain energy at the core. It is clear that some of
this rapid decrease may be an artifact of the imposed in-
version symmetry of the two partials within the supercell.
However, similar results were obtained for the core-strain
energies for the 24-atom unit cell. In any event, the

FIG. 3. Projection of the atomic positions listed in Table I
onto a plane perpendicular to the line-defect direction. This su-
percell contains two 90° partial dislocations. Atom n is related
to atom —n by inversion through the origin. Atoms 2,6 or
—2, —6 are located at the dislocation core. The extra half-plane
of atoms contains 4,5,6.
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TABLE 1. Atomic coordinates (in A) of the relaxed 90° par-
tial dislocation within a supercell configuration. There are two
dislocations in the supercell with a center of inversion at the ori-
gin. The numbering of the atoms is the same as in Fig. 3. The
supercell is an orthorhombic cell with the following dimensions:
a=26.11 A, b=9.40 A, c=3.84 A, a=90°, $=90°, and ¥y =90".
The strain energy (in eV/atom) from a valence field force, Eq.
(1), is also given.

Atom X Y V4 E
1 4.37 0.10 2.31 0.20
2 5.29 —0.85 0.47 0.50
3 4.59 —3.04 0.13 0.27
4 6.63 —-3.95 —0.07 0.18
5 7.61 —3.09 1.81 0.11
6 7.43 —0.82 1.44 0.48
7 8.55 0.10 —0.39 0.12
8 8.59 2.46 —0.12 0.05
9 6.31 3.13 0.04 0.14

10 5.08 2.36 2.01 0.20
11 2.97 3.32 1.99 0.06
12 1.79 2.60 0.06 0.13
13 1.14 0.33 0.09 0.14
14 2.09 —0.54 2.04 0.15
15 1.43 —2.80 1.97 0.14
16 0.29 —3.56 0.02 0.11
17 3.48 —3.79 2.04 0.08
18 9.82 —3.74 1.85 0.05
19 10.85 —2.86 —0.06 0.01
20 10.82 —0.52 —0.11 0.05
21 11.93 0.33 1.83 0.03
22 11.95 2.68 1.89 0.02
23 9.69 3.32 1.82 0.05
24 13.03 3.53 —0.02 0.02

strain-field perturbation on the atomic coordinates is ex-
pected to be of longer range than the range of significant
perturbation on the electronic structure. With respect to
the magnitude of the strain energies, the core strain is not
small; however, it is in accord with typical surface energy
strains.!? Unlike the work of Marklund,? but in accord
with the results of Lapiccirella and Lodge,’ we do find a
stable configuration with the force field of Koizumi and

TABLE II. Comparison between structure determined by
present method to that calculated by Marklund (Ref. 8). The
atoms are numbered as in Fig. 3. Bond lengths are given in
terms of the experimental bond length of crystalline silicon
(ro=2.35 A).

Bonding atoms Present model Ref. 7
Bond length
2-6 l.OOro 1.01"0
1'-2 1.02r, 1.037,
1-2 0.97"0 0.977‘0
Bond angles
1'-2-6 133.7° 135.0°
1-2-6 91.7° 95.5°
7-6-2 96.2° 95.3°
7-6'-2' 138.2° 135.0°

Ninomiya.!® In fact, our final configuration is somewhat
similar to the one Marklund obtained with the Keating
potential. In Table II we compare our bond lengths and
angles to his work. The largest differences from
Marklund’s work is on the order of 1%; the bond angles
differ by a few degrees. In fact, the differences in our
bond angles from Marklund’s, e.g., the angles subtended
by atoms 1'-2-6 and 7-6’-2' as in Fig. 2, arise from some
asymmetry resulting from our supercell configuration
rather than an intrinsic feature of the defect. (It was
necessary to distort some of the bond lengths and angles
to create a periodic structure.) We view the differences,
i.e, typically 1% in the bond length and 3° in the bond an-
gle, to be well within the uncertainties of force-field
descriptions.

III. ELECTRONIC STRUCTURE
OF THE 90° PARTIAL DISLOCATION

A. Computational methods

Given the atomic coordinates in Table I we have per-
formed a numerical solution of the one-electron
Schrodinger equation to determine the existence of any lo-
calized states. For the 30° partial, we found® that the
reconstructed defect resulted in no localized states. How-
ever, here the deviations in bond lengths and angles (in
contrast to the 30° partial) are sufficiently large so that lo-
calization of states along the defect core is possible.

Owing to the size of our unit cell, and to uncertainties
in the atomic coordinates, a fully-self-consistent treatment
of the 90° partial dislocation was not performed. Instead,
we used a semiempirical potential for silicon determined
from atomic, bulk, and surface considerations. The con-
struction follows the work of Kane.!* The form of the
potential is taken to be

V)= 3 VAF—R—-7,),

K
Ty

2
Ver)= 3 a;exp(—B;r?),

i=1

where R is a lattice vector, the parameters a; and b; are
given in Table III, and ?u locates the atomic sites in the
unit cell. We have assumed that this potential is transfer-
able from the crystalline site to a defect site. In order to
test the transferability of the potential, the Si(111) surface
has been computed by using the potential at both bulk and
surface sites.” No significant differences were found be-
tween this method and a fully-self-consistent treatment,’
i.e., the surface bands determined by the two procedures
differed by less than ~0.2 eV.

The basis functions we use for the solution of

TABLE III. Potential parameters (@; and b;) as defined by
Eq. (2). g; is in units of rydbergs and b; is in units of (a.u.)~2

a; b,’

—7.744 0.38
10.362 0.76
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Schrodinger’s equation are expanded in Gaussians; with
the potential in Eq. (1) expressed in Gaussians, all the ma-
trix elements required can be evaluated analytically. The
basis functions we employ are of the form

®,,(K,7)= 3 expli K-(R+7)f(F—R—7,) , 3)
R

where v indicates the orbital type. The f, are given by
FP)=g,(Plexp(—ar?), 4)

where g, are polynomials of s, p, and d symmetry. We
use two s-like orbitals,?® three p-like orbitals, and five d-
like orbitals per atom. The decay constant a was set
equal to 0.186 as suggested by Kane.'* Our method
differs significantly from other approaches, e.g., Mark-
lund,?! in that we calculate the Hamiltonian matrix ele-
ments without recourse to an empirical scaling formula or
extensive parametrization.

With ten orbitals per atom and 48 atoms in our super-
cell, we would need to diagonalize a 480480 matrix.
While a matrix of this size can be handled with contem-
porary computers, we employ Louie’s method of peri-
pheral orbitals?? to reduce the matrix size by a factor of 2.
Louie has shown that by properly treating the s, p, and d
orbitals, one may treat the d orbitals in a modified form
of Lowdin’s perturbation theory. In this method, only the
s- and p-orbital contributions are handled directly; the d-
orbital contribution is treated in a perturbative fashion.
Hence, our Hamiltonian matrix reduces to a 240X240
matrix. The computational time is reduced concurrently
for the diagonalization process.

B. Results and discussion

By summing over all occupied states we can determine
the valence charge density surrounding the partial disloca-
tion. This charge density is obtained from a Fourier ex-
pansion of the Gaussian orbitals. We can use the density
to give an impression of the bonding associated with the
defect and to obtain a qualitative picture of the magnitude
of the perturbation of the dislocation on the crystalline
properties. In Fig. 4 we present the calculated valence
charge density for the (110) plane containing the defect
core. It is apparent that some significant distortion from
the ideal crystalline charge density exists. The bonds
within the core of the defect are decidedly weaker in
terms of the magnitude of the bonding charge, i.e., the
maximum charge density along the bonding direction is
considerably reduced from its bulk value. Moreover, the
fluctuations in the charge density are smaller than the
bulk; the charge density is more uniform and, hence, more
metallic. While the perturbation is significant, the extent
of the dislocation’s disruption on the bonding is fairly
short ranged. We have allowed seven bond lengths be-
tween core atoms within the supercell; the perturbation
appears to “heal” by this distance. We also note that the
density is not ideal away from the defect. This is a result
of the strain field and small deviations from the
tetrahedral bonding angles and from the ideal bond
lengths.

By examining the degree of localization of each state

3 r,;,@ ‘

FIG. 4. Total valence charge density for the 90° partial dislo-
cation. For the purposes of constructing the density, we have
summed over the densities in several planes, averaged it, and
plotted it in the (111) x-y plane. In this manner we may com-
pare the density to the atomic positions in Fig. 2(b). The con-
tour spacing is in units of 0.25 with the charge normalized to
one electron in the unit cell. The plane of the page is (111) and
the vertical axis runs in a [110] direction.

within the defect core, it is possible to determine the na-
ture of the defect bands associated with the dislocation.
Owing to the significant perturbation of the total charge,
we expect that defect bands may exist within the optical

&
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FIG. 5. Energy-band spectrum of the dislocation states and
the projected crystalline band structure. The top of the valence
band is taken to be the zero reference. Two defect bands intrin-
sic to the 90° partial dislocation are indicated in the band gap.
The lower band is completely occupied; the upper band is emp-
ty.
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gap of silicon. In Fig. 5 we present defect energy bands
for the dislocation. We find two bands: one occupied and
near the top of the valence band, and one empty and near
the bottom of the conduction band. We find a gap of
about 0.7 eV between the bands. Thus we find that the
bonding along the dislocation is semiconducting as op-
posed to metallic. The perturbation of the dislocation,
while weakening the bonds, does not result in unsaturated
bonding.

Both defect bands are weakly localized near the zone
center and become most strongly localized at the zone
edge. The empty band clearly becomes resonant with the
bulk states near the zone center. We can follow it for
several electron volts above the valence band before it be-
comes essentially a bulklike state. The interaction be-
tween the two defects within our supercell lifts the double
degeneracy of the defect bands, i.e, if the supercell were of
infinite extent and we separated the two partial defects by
an infinite amount, we would expect two degenerate bands
for each defect band. For the case at hand, the degenera-
cy is lifted by about ~0.3 eV. For the sake of clarity, we
have illustrated the center of mass of the defect-
defect—interaction—split bands.

Our results appear consistent with experimen in
that we find a semiconductorlike behavior along the dislo-
cation. If we had found metalliclike behavior, i.e., frac-
tionally occupied bands, then one would expect the possi-
bility of a strong spin signal in resonance experiments.
This has not been observed. It has been suggested that
filled and empty defect bands exist along the dislocation.?3
While this is in accord with our theory, it is by no means
clear that the bands we find are in agreement with the ex-
periments. First, the gap we find and the quantitative
placement of the bands seems at variance with those pro-
posed by Mergel and Labusch.?®> Second, the bands we
find are fairly broad. The occupied band has a width of
about 1.4 eV and the empty band one of at least 1.0 €V. It
is doubtful that such bands could produce the sharply de-
fined features observed. This conclusion has also been
reached by Jaros and Kirton** on the basis of their exam-
ination of how dangling bonds interact in crystalline sil-
icon. They argue that dangling bonds associated with line
defects will always result in defect bands broader than
those observed by capacitance measurements. A more
likely origin of defect-associated states is from extrinsic
effects such as impurities or from kinks along the defect.
Another possibility is the existence of dangling-bond
states at antiphase boundaries, i.e., antiphase defects. A
complete description of the antiphase defect is given by
Hirsch.?> These defects correspond to a phase-boundary
dangling bond which exists between regions of different
relaxation symmetries. For example, it is possible for re-
laxation to occur where bonds from atom 2 exist with
equal probability to atom 6 or to atom 6. Domains may
exist where 2-6 bonding regions adjoin 2-6’ bonding re-
gions. In these regions, atom 2 may have neighbor atoms
(6 and 6') which are fully coordinated; atom 2 would ex-
hibit a dangling bond which corresponds to an antiphase
defect. It should be possible for this dangling bond to
propagate along the dislocation line and to form a soliton-
like disturbance. We expect this possibility to be greater

t4,23

for the 90° partial dislocation than for the 30° partial
dislocation based on the greater strain field which we find
for the 90° than for 30° partial. Moreover, we find that
the 30° partial does not form localized states as does the
90° partial. This suggests the bonds along the 90° partial
are weaker and that dangling-bond propagation is more
likely.

It has been proposed that the 90° partial undergoes a
Peierls-type structural transition.’>?® We find no evi-
dence for this possibility in that the bonding along the de-
fect is saturated. If we had found our valence-force-field
model could not yield a saturated configuration for the
90° partial dislocation, a classical Peierls model would be
appropriate as the dangling-bond band would be half-
filled. Moreover, Altman®’ has noted that the periodicity
along the line defect does not double upon rebonding.
Thus, he argues that a Peierls model, while appropriate
for the 30° partial dislocation, is not appropriate for the
90° partial dislocation.

(o)

FIG. 6. Charge density of two dislocation states at the zone
edge (k,=m/c). The contour spacing is in units of 4.0. The
charge is normalized to one electron per unit cell (2, =942.47
A%. (a) Occupied defect-band-state charge density. (b) Empty
defect-band-state charge density. Directions as for Fig. 4.
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By considering the wave functions for the defect bands,
we may plot out the probability densities for these bands.
The probability densities (or in the case of the occupied
band, the charge density) give (gives) information on the
origin of the defect bands. The densities are illustrated in
Fig. 6 for the empty and occupied bands. The wave func-
tions were taken at the zone edge where the bands are
most localized; however, away from the zone edge, the
states are quite similar, but less localized at the defect
core. We find that a rather simple interpretation can be
made for these defect states. Consider the case before any
relaxation. Suppose we examine atom 2, although the dis-
cussion would hold equally well for atom 6. Initially, be-
fore relaxation, atom 2 will be equidistant from atoms 6
and 6'. The bond lengths, however, are about 10—15 %
greater than the ideal length. As we relax the atomic po-
sitions and move atom 2 toward atom 6, a bond will start
to form between atoms 2 and 6. If we were to form a per-
fect crystalline bond, no defect state would exist. Howev-
er, the 2-6 bond is not perfect and does not result in a
state which merges with the bulk continuum. This is the
origin of the occupied band. The distance between atom 2
and atom 6’ is such that a bond does not form; however,
this interaction is significant enough to localize an empty
band below the conduction-band minimum.

It should be possible to excite states from the occupied
defect band into the empty band. Although we have not

calculated a dipole matrix element, from Fig. 6 it appears
that a significant overlap can occur. We also note that
the direction of the dipole should be along the dislocation
line.?® This result is consistent with recent catho-
doluminescence measurements from individual disloca-
tions of a known Burgers vector is diamond.”’ However,
luminescence polarized along the dislocation-line direction
has also been observed from screw dislocations (which
consist of two 30° partials), so that another mechanism is
also possible. Decoration by donor-acceptor pairs of vari-
able spacing along the dislocation line has been proposed?
to account for the polarization result and large observed
emission linewidth, but has not been considered here for
silicon. An experimental test of the model described here
will be possible in the near future when the infrared
luminescence which has been identified as arising from
dislocations in silicon®® is obtainable from individual
well-characterized dislocations in correlation with a
transmission-electron-microscope image.

ACKNOWLEDGMENTS

One of us (J.C.H.S.) would like to acknowledge support
from the National Science Foundation (NSF) Grant No.
DMR-80-02108-04 and the facilities of the NSF National
High Resolution Electron Microscopy Center at Arizona
State University.

1w, Schockley, Phys. Rev. 91, 228 (1953).

2W. T. Read, Jr., Philos. Mag. 45, 775 (1954).

3A general review of the electronic structure of dislocations in
tetrahedrally coordinated semiconductors can be found in J.
Phys. (Paris) Collog. 40, C6 (1979), and in the forthcoming
Proceedings of the International Conference on Dislocations
in Semiconductors, Aussois, 1983 [J. Phys. (Paris) Collog. (in
press)] on the same topic.

4Representative experimental papers include the following: L.
C. Kimerling and J. R. Patel, Appl. Phys. Lett. 34, 73 (1979);
P. B. Hirsch, J. Microsc. (Oxford) 118, 3 (1979); D. Mergel
and R. Labusch, Phys. Status Solidi B 114, 545 (1982); N.
Yamamoto, J. C. H. Spence, and D. Fathy, Philos. Mag. (to
be published).

5J. E. Northrup, M. L. Cohen, J. R. Chelikowsky, J. C. H.
Spence, and A. Olsen, Phys. Rev. B 24, 4623 (1981); J. R.
Chelikowsky, Phys. Rev. Lett. 49, 1569 (1982).

6J. Bernholc and S. T. Pantelides, Phys. Rev. B 18, 1780 (1978);
J. Bernholc, N. O. Lipari, and S. T. Pantelides, ibid. 21, 3545
(1980); G. A. Baraff and M. Schliiter, Phys. Rev. Lett. 41,
892 (1978); Phys. Rev. B 19, 4965 (1979).

7A review of new techniques for surface-structure analysis (in-
cluding scanning tunneling microscopy and UHV surface
transmission electron microscopy) can be found in Proceed-
ings of the Wickenburg Conference on Surface Science, 1983,
edited by O. L. Krivanek (unpublished).

8S. Marklund, Phys. Status Solidi B 100, 77 (1980).

9A. Lapiccirella and K. W. Lodge, in Microscopic Semiconduct-
or Materials Conference, Oxford, 1981 (10P, London, 1981),
p- 51.

10A . Olsen and J. C. H. Spence, Philos. Mag. A 43, 945 (1980).

1K Wessel and H. Alexander, Philos. Mag. 35, 1523 (1977).

12y P. Hirth and J. Lothe, Theory of Dislocations (McGraw-
Hill, New York, 1968).

I3p. N. Keating, Phys. Rev. 145, 637 (1966); 149, 674 (1966).

14H. Koizumi and T. Ninomiya, J. Phys. Soc. Jpn. 44, 898
(1978).

15The parameters we use are given by a=0.8477, B=0.2412,
y=—0.162, §=0.021735, and e=—0.0652. With these pa-
rameters the energy per atom is in electron volts.

16 A ctually, if we demand that our unit cell have inversion sym-
metry, we need to consider a 72-parameter space optimiza-
tion.

17See, for example, the review by J. D. Joannopoulos and M. L.
Cohen, in Solid State Phys. 31, 71 (1976).

18E. O. Kane, Phys. Rev. B 13, 3478 (1976).

19D. J. Chadi (private communication).

20Two s orbitals are used in our work. One s orbital is nodeless;
the other is not and corresponds to an excited s state with the
form rZexp (—ar?). We find that an excited s-type state
must be included to replicate the lower conduction bands.

21§, Marklund, Phys. Status Solidi B 85, 673 (1978); 92, 83
(1979).

228. G. Louie, Phys. Rev. B 22, 1933 (1980).

23D, Mergel and R. Labusch, Phys. Status Solidi B 114, 545
(1982).

24M. Jaros and M. J. Kirton, Philos. Mag. B 46, 85 (1982).

25pP, B. Hirsch, J. Microsc. (Oxford) 118, 3 (1979).

26R. Jones, in Microscopy of Semiconducting Materials (unpub-
lished), p. 45.

27S. L. Altman, J. Phys. C 15, 907 (1982).

28As noted in the text, owing to our use of supercells, we intro-
duce some artificial strain asymmetry around the defect. This
affect accounts for some of the asymmetry in the bonding



30 LINE DEFECTS IN SILICON: THE 90° PARTIAL DISLOCATION 701

charge in Fig. 6. Also, the plane we plot in is a projection of 303, Weber, R. Sauer, E. R. Weber, and H. Alexander, Phys.

the charge and this projection may also introduce some asym- Status Solidi (to be published). See also E. R. Weber and H.
metry. Alexander, in Proceedings of the International Conference on
29N. Yamamoto, J. C. H. Spence, and D. Fathy, Philos. Mag. Dislocation in Semiconductors, Aussois, 1983 [J. Phys. (Paris)

(to be published). Collog. (in press)].



