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Self-consistent calculation of the polarizability of small jellium spheres
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A self-consistent, density-functional calculation of the static polarizability of small metal spheres
is reported. The jellium model of a metal, in which the positive ions are replaced by a uniform posi-

tive background, is employed, and the modified Sternheimer equation is used to compute the static
dipole polarizability. The computations are reported for the closed-shell configurations containing
from 8 to 2S4 electrons for neutral and charged spheres.

I. INTRODUCTION

Recently a number of self-consistent field calculations
of the polarizability of atoms' have been reported.
These calculations utilize the density-functional formal-
ism and employ the random-phase-approximation (RPA)
to provide an, in principle, exact calculation of the static
polarizability. Mahan recast this calculation in terms of
the Sternheimer equation for the calculation of the polari-
zability of atoms, and his modified equation permits a
straightforward calculation of the multipole polarizability
of closed-shell ions. The jellium model for small metal
spheres, ' where the positive ions of the metal are re-
placed by a uniform sphere of positive charge and the
valence electrons are treated self-consistently using the
Kohn-Sham ' procedure, fits quite naturally into this for-
malism, and we report here a self-consistent calculation of
the static dipole polarization for these spheres.

A variational calculation of the static polarizability of
this model for a metal sphere has recently been reported
by Snider and Sorbello. However, they use a gradient ex-
pansion to compute the kinetic energy, so the electrons are
not treated wave mechanically in their calculation.
Ekardt' has performed a self-consistent random-phase-
approximation (RPA) calculation of the polarizability of
these spheres, and, since the modified Sternheimer equa-
tion is fully equivalent to the RPA calculation there is
some overlap between his results and those reported in
this paper. Rice, Schneider, and Strassler" have also re-
ported an RPA calculation, but they use the wave func-
tions for an electron confined in a sphere by an infinite
barrier which severely limits the ability of the electrons to
respond to a perturbing field. '

Our quantum-mechanical, self-consistent calculations
of the dipole polarizability of neutral and charged spheres
containing from 8 to 254 electrons are reported in Sec. III
of this paper. Comparisons with the other calculations
discussed above and with density-functional calculation
for the response of a flat metal surface to an applied elec-
tric field' ' are also given in this section, and Sec. IV
contains a summary of the conclusions we can draw from
these data. The formalism used in the calculation is set
forth in Sec. II. We have provided only a brief discussion
of the formalism in this section and placed a number of
the details in Appendix A. Appendix B contains a brief

outline of the numerical procedures used in the calcula-
tion.

II. FORMALISM

p~ ——a

in response to the applied field. Here aM is the Mth-
order polarizability and Yt (r ) is a spherical harmonic.

The first-order response of the ground-state system to
this perturbing field is described by an infinitesimal
change in the electronic wave functions,

P;(r )~P;(r )+est/;(r )

and the corresponding change in the density

N
n(r )=g ~

f;(r )
~

+n(r )+@M—5n(r ),

where

5n(r )=2Re gttj*;(r )P;(r ) (2)

We use the density-functional formalism ' to compute
the properties of the ground-state system, and the energy
of the electrons for the unperturbed system is given by ~

+T,[n]+fdr@„,[n]n(r ) .

, n (r )n(r ')

/

r —r'/

Here the exchange-correlation energy is approximated, by
a local-density expression, e„,( r ):

e„[n]= ——3 311

4 m

1/3

If a spherically symmetric electronic system is subjected
to an infinitesimal external, multipole potential of the
orm

&I'M(r )=r YM«)&M

it will develop a moment
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for the exchange, and the Wigner's interpolation formula
for the correlation,

and

vscp [5n; r ]=UM [5n; r] YM (r )

( ——,
'

V +v,ff[n;r ])g;(r )=e;g;(r ),
where the effective potential is given by

~g
v ff[n;r ]=v(r )+fdr ' + (ne„[n]),

I
r —r'I dn

and the kinetic energy of the system is given by
N

T,[n]=g(A I( ——,'V') IA) .

(3)

(4)

Self-consistency, requires that one obtains a set of wave
functions consistent with Eqs. (1}, (3), and (4), and this
model for the electron density was the subject of earlier
papers. '

Using first-order perturbation theory and the
Schrodinger equation (3), one easily obtains an equation
for the change in the wave functions, jh;, when the per-
turbing field is present,

( ——,V +u,ff[n;r ]—e;)p;(r )= —vscF[5n;r )p;(r ), (S)

where the self-consistent field is given by

vscF [5n; r ]= r YM(r )+ fd r '

Ir —r'I

+5n(r ) (ne„,[n]) .
a2

n

This is the modified Sternheimer equation obtained by
Mahan. 2

The calculation of the polarizability proceeds by obtain-

ing a self-consistent set of wave functions, g;(r ), and
eigenvalues, e;, for the field-free system and then solving
the modified Sternheimer equation (S) to obtain a self-
consistent set of functions, P;(r ). Using these, one com-
putes 5n( r ), Eq. (2), and obtains the polarizability

aM fdr r YM(r—)5n(r ) .

Mahan proves that for closed shell (spherically sym-
metric) systems the only nonzero terms in the expansions
of 5n(r ) and vscF[5n;r ] in spherical harmonics are
those with the same symmetry as the perturbation,

5n(r }=+5nL,(r) YL, (r )

=5nM(r) YM(r ) (7)

0.44
e,[n]=—

(3/4nn)'. ~ +7 8.
(we use atomic units, e=iri=m =1, throughout this pa-
per; the length unit is the Bohr radius and the energy unit
is 27.2 eV). The external potential v(r ) is provided by a
uniform positive sphere of charge n+( r ) =no for r &R.

The Kohn-Sham procedure is used to obtain a set of
self-consistent, noninteracting single particle wave func-
tions, g;(r ), for the ¹lectron system. These wave func-
tions satisfy the Schrodinger equation

where

M

vM[5n;r]= r + fdr (r ) 5nM(r )2M+1 M+1

a2
+5nM(r) 2 (ne„,[n]) .

dn

1I.I ————
2 dl'

I+1 d +u,ff[n;r] .
r dr

In Appendix A we demonstrate that the perturbed densi-
ty, Eq. (2), is given by

5nM(r)=(2s+1)2Re g r u„*l(r)r'
n, l, i'

X u„l l (r)c (M;1,1') . (l l)

The factor 2s+1=2 accounts for the spin degeneracy,
and the numerical coefficients c(M;1,1'), Eq. (AS), are
those evaluated by Mahan. They are expressed in terms
of Clebsch-Gordon coefficients in Appendix A. The radi-
al functions u„l l (r), Eq. (A4), are obtained by expressing

P;(r ) in terms of spherical harmonics, and they satisfy
the radial part of the modified Sternheimer equation (S),

(Ll' Enl)iTnl, l'(r) uM[5n r]r unl(r) . (12)
I

The polarizability is given by

aM= f dr r + 5nM(r) .
2M+1

(13)

The differential equations for u„l(r) and u„l l(r) are
converted into matrix equations by introducing a set of
quadrature points r~ and converting the differential opera-
tor Ll into a finite-difference expression. The eigenvec-
tors and eigenvalues of the matrix equation for ui„(rj) are
determined numerically and the inhomogeneous equation
for u„l l (rz) is solved by numerically inverting the matrix.
The interested reader is referred to Appendix B, where de-
tails of the numerical procedures are outlined.

Only the calculation for the static dipole polarizability

Furthermore, he demonstrates that for a particular linear
combination of the angular functions only the radial part
of the inhomogeneous equation for P;(r },Eq. (S), needs to
be solved. A shortened but lucid proof of these results is
set forth in Appendix A.

For a spherically symmetric potential, u,ff[n;r], we can
write

y;(r )=r'unl(r)Yl (r )

where the ith orbital has quantum numbers (nims) The.
functions u„l(r) are eigenfunctions of the second-order
differential operator Ll,

I.,u„,=e„(u„,(r)

with
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(M =1) is reported in this paper, since it describes the
linear response of a spherical metal particle placed in a
uniform electric field. .A check on the overall accuracy of
the numerical procedures for this calculation is provided
by the sum rule for the electrostatic force on the positive
background of an isolated neutral object in a uniform
external field. ' The most convenient form for the sum
rule for this check is the stateinent that the electrostatic
potential due to the external field and the induced charge
distribution should vanish at the surface of the sphere
containing the positive charge. This potential is just the
first two terms in the expression for vM[5n;r), Eq. (8),
and, equating these terms to zero for a sphere of radius R,
we obtain
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Neutral Spheres

Here we have replaced —1 by N /N+ —which expresses
the sum rule for a system with positive charge eN+ and
negative charge eN

III. RESULTS

The static, dipole polarization is computed for jellium
spheres with r, =(3/4m. no)'~ values of 2.00 and 4.00 a.u.
The calculations are reported for neutral spheres and
charged spheres having one extra electronic charge, +e.
The results for closed-shell configurations containing
from 8 to 254 electrons are shown in the figures. Since
the classical dipole polarizability of a metal sphere of ra-
dius R is a,~

——R, a convenient representation of the po-
larization data is provided by the parameter

FIG. 1. Polarizability parameter 5 for neutral spheres. The
data are for the closed-shell configurations where the sphere
contains from 18 to 2S4 electrons. The computed points are la-
beled by the quantum numbers (nQ denoting the filled level with
the highest energy (a second set of numbers denote a second
filled level whose energy is very near that of the highest level}.
The arrows, labeled I.-E, denote the flat surface values for 5~
from Ref. 14.

the calculations for plane metal surfaces. ' In the limit as
R —+ cx),

ai/a, ~- 1+3(5/R)

5=ai —R .1/3 (15) and

Snider and Sorbello argue that in the limit as R —+oo,
this quantity coincides with the centroid of the induced
electron density for a flat surface, 5~. This centroid has
been computed by Lang and Kohn'3'" for the same model
of a metal that we employ. Their values for 5& are indi-
cated on Fig. 1 along with our calculated values for neu-
tral spheres [for r, =2.00, 5& ——1.6+0.05; for r, =4.00,
5z ——1.3+0.2 (Ref. 14)].

The points in the figures are labeled with the quantum
numbers (nl) denoting the highest filled level (those points
with two sets of numbers have a second filled level with
an energy near that of the highest filled level). Because of
the degeneracy of the high angular-momentum orbitals
N i2(2l+1) and the asymptotic behavior of the wave
functions, f;(r )~r 'exp[ r( —2e„i)' ], the filli—ng of
the states with n = 1 strongly influences the portion of the
electronic density which extends outside of the positive
background charge. This part of the density is seen to
govern the response of the system to the perturbing field
as illustrated in Fig. 2, where ai/a, t is plotted versus the
fraction of the electronic charge outside of the sphere of
radius R for the field-free system, AN/N, where

AN=4m f drr n(r) . (16)

This presentation of our data also facilitates a compar-
ison with the variational calculation for these spheres and

b, N =(3N/R) I dr[n (r)/no],

since n (r) decreases rapidly outside of the sphere. Hence,
we have

l. 5
e$

I 0
O. IO

QN/N

FIG. 2. Static dipole polarization enhancement ai/a, ~, where
a,~

——R3 and R is the radius of the sphere containing the uni-
form positive charge, versus the fraction of the electronic charge
b,X/W outside of the sphere of radius R in the field-free calcu-
lation, Ref. 5. The points are computed for the same configura-
tions reported in Fig. I and an additional sphere with r, =4.00
containing eight electrons. The solid lines are drawn with slopes
determined from the plane surface calculations of Ref. 14 using
Eq. (17). The other lines in the figure have slopes determined
from the variational calculation of Ref. 9, again using Eq. (17)
(R =40 a.u.}: dotted-dashed lines are for a gradient expansion
parameter of —,'6; dotted lines for a gradient expansion parame-

ter of »,1
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lim (ai a—,i)N/a, ihN =5& f dz[ntp(z)/tip],
R —+ey

C P o
(17)

where 5» and n~(z) are the quantities for a plane metal
surface (the integral is over the electron density extending
beyond the edge of the uniform positive background locat-
ed at z=0). The slopes of the solid lines in Fig. 2 are
determined by this expression. ' The dotted and dotted-
dashed lines in the figure have slopes corresponding to the
values of this ratio obtained from the variational calcula'-
tion (R =40 a.u.].

For r, =4.00 this calculation, Ekardt's calculation, '

the variational calculation of Snider and Sorbello, and
the direct extrapolation of the plane metal surface results
all give essentially the same answer for the static dipole
polarizability of these jellium spheres ven for very
small spheres containing only eight electrons. The
enhancement of the polarizability over its classical value
is seen to be directly proportional to the fraction of the
electronic charge which extends beyond the positive back-
ground in the field-free system.

The results for r, =2.00 show the same trends as those
for r, =4.00, however, in this system the quantum size ef-
fect due to the electronic orbitals is much more pro-
nounced. This is not surprising, since the width of the oc-
cupied band-is 0.39 a.u. for r, =2.00 and 0.09 a.u. for
r, =4.00 (N =92), so the level spacing is much larger for
these particles. The comparison with the variational cal-
culation indicates that a gradient expansion parameter of

gives results in much better agreement with the
quantum-mechanical calculations than those obtained us-
ing 72.

'

In order to further illustrate the effects of the electronic
structure on the response of the sphere and the compar-
ison with the response of a flat metal surface, the per-
turbed densities, 5n i (r), for two neutral spheres (r, =2.00)
are shown in Fig. 3 (the arrows in this and subsequent fig-
ures indicate the centers of the spherical particles). These
spheres contain N =70 and 92 electrons and their highest
filled levels are 3s and lg, respectively (see Fig. 1). The
density response for the flat metal surface computed by
Lang and Kohn' is also shown in this figure. No adjust-
able parameters are involved in this comparison, since the
correct normalization factor for their density can be ob-
tained by noting that they require

f dz 5n~(z) = —1
and that the limiting expression, for R~ oo, of the sum
rule, Eq. (14), for neutral spheres is'

4~ f dz5ni(z+R)= —1 .
00

The perturbed densities outside of the spheres, r &R,
are remarkably similar, but nevertheless clearly reflect the
variation in the values for 5 and 5& for these three cases.
The other notable feature of the density response of these
small spheres is the large amplitude of the response inside
the sphere as compared to the response near the plane
metal surface. This reflects in part the smaller amount of
electronic charge density available to screen the field in
this case; ( r/R) n (r) for the spheres as compared to nz(z)
for the flat surface. It also reflects the larger variations to
be expected because the density is constructed from a
small number of electron wave functions (this effect is
also seen in the field-free calculations for spheres ' ' and
for thin films '). For spheres containing a larger number
of electrons, these effects are less pronounced but they
persist even for N =254 as shown in Fig. 4(b).

The radial component of the electric field is shown in
Fig. 4(a). Also shown is the electric field near the surface
of a classical metal sphere. Far outside the sphere this
field strength behaves in the same manner as that for a
classical metal sphere,

However, the electric field within the jellium sphere has
an appreciable amplitude even at the center of the sphere.
Also of note is the almost complete correspondence be-
tween the electric field outside the sphere here and in the
variational calculation.

A direct comparison of the results of this calculation
with the model system RPA calculation of Rice et al."
for noninteracting electrons confined in a spherical well

by an infinite potential barrier, is not meaningful, since it
is quite clear that a very different definition of the sphere

I

Neutral Sphere I,
I
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FIG. 3. Perturbed dipole density 4m5n&(r)/3 for neutral
spheres with r, =2.00 containing X =70 and 92 electrons. The
dashed curve is the corresponding perturbed density 5n~(z) for a
plane surface, Ref. 14.

—02 -2
I

-l6
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-8
r- R (a.u.)

FIG. 4. Radial component of the electric field, e(r)/eo, and
the perturbed density 4+5n&(r)/3 for a neutral sphere with

r, =4.00. The dashed curve is the electric field for a classical
metal sphere of the same radius.
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4kF

1/2

8kF

0.50 a.u. for r, =2.00

0.46 a.u. for r, =4.00 .

radius was employed in that calculation. The only intrin-
sic length in their calculation is the radius of the well
which is also the edge of the electronic charge distribution
(this radius is also used to determine r, or the density of
the compensating positive charge). Hence, the electronic
density goes to zero at the "surface" of their particle and
the corresponding "classical" metal sphere has a constant
electron density which extends up to this surface. An in-
dication of what this model would give for 5, if the polari-
zation was compared with a classical sphere with a more
"reasonable" radius, can be obtained by considering the
infinite barrier model for a flat metal surface.

For a flat metal surface one expects the electronic and
ionic charge densities to be equal deep inside the metal
and uses the charge neutrality of the system to locate the
edge of the uniform positive density with respect to the
infinite barrier [d =3m/8k~, where kF (3m——no)' . ] For.
this model Newns found

0.4 I I I . I I I I I

N =40 Charged Spheres
(2p)

0
GQ

I

0.2—

—16
I I I I I I I I I

-8 0
r —R (a.u. )

FIG. 6. Perturbed density 4m5n~(r)/3 for charged spheres
with r, =4.00 and N =40. The solid curve is for a sphere with
a negative charge and the long-dash —short-dash curve for a
sphere with a positive charge. The dashed curve is the corre-
sponding perturbed density 6n~(z) for a flat surface, Ref. 14
(this curve is not shown for z=r —R &0, since it falls between
the other two curves in the figure).

These values are positive, but much smaller than those ob-
tained by Lang and Kohn. ' Their smallness reflects the
small amount of the electronic charge which extends out-
side of the positive background since the electrons cannot
penetrate the region outside of the barrier.

The calculations for closed-shell configurations where
the system (electrons and positive background) has one ex-
cess charge (total charge, +e) are reported in Fig. 5.
These calculations reflect the expected features, since the
principal effect in the field-free system is a raising or
lowering of the effective potential U,~f(r) for the single-
particle states by +e /R. For the positively charged sys-
tem, this deepens the "well" seen by the electron and the
electronic density response to the perturbing field is re-
duced. For the negatively charged system the reduction

of the well depth allows the electronic density to penetrate
farther into the vacuum and there is a corresponding in-
crease in the polarizability. The quantum size effect due
to the electron orbitals is also larger for the negatively
charged system.

In Fig. 6 the perturbed densities for two charged
spheres with r, =4.00 are plotted. Also shown is the den-
sity response for a flat surface' (outside of the sphere this
density profile falls between those shown for the two
charged spheres). Here, as for the neutral case, we can
note the similarity of the responses outside of the spheres
and the flat surface, and the large amplitude of the
response interior to the sphere as compared to the flat sur-
face.

2. 5 1 1

Charged Spheres
~ —pos. ~- neg.

].5-
1h 1g
k

1]
A ~ ~

0 0
~ 1h

0,5
= 2.00

l.5-

I.O-

kg k
1h

1i
~ 1h~ ~

1i ~ ~

rs = 400
0,5

O. I

I

0.2
rs /R

1e
I

0.3 0.4

FIG. 5. Polarizability parameter 5 for charged spheres with a
charge +e. The data are for the same closed-shell configura-
tions reported in Fig. 1 (only 1l points are labded, but there is a
one-to-one correspondence with the points in Fig. 1).

IV. CONCLUSIONS

The quasiclassical calculations ' ' and the quantum-
mechanical calculations ' ' ' of the work function and
polarization ' of small metal spheres which employ the
jellium model provide a consistent picture of the electron-
ic properties of these particles. The ionization potential
and electron affinity are essentially identical for the field-
free calculations when the effects of the shell structure,
resulting from the high orbital degeneracy of the assumed
spherical symmetry, are removed from the quantum-
mechanical results. The radial component of the electric
field far outside of the sphere [Eq. (17)] depends on the
polarizability of the sphere a~ and the polarizability is
well characterized by values of 5 [Eq. (15)], which are
essentially identical for the quasiclassical and quantum-
mechanical calculations.

Our confidence in the consistency of the results ob-
tained using the jellium model are further strengthened by
the comparison of the self-consistent, quantum-
mechanical calculations for small spheres and the flat
metal surface. ' ' The field-free and perturbed density
profiles [n(r) and 5ni(r), respectively] outside of the
spherical positive charge density, r &R, and outside of the
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flat surface are quantitatively the same (see Fig. 3, and
Figs. 3 and 4 of Ref. 5). The ionization potential and
electron affinity for the spheres converge, as they should,
to the work function for the flat metal surface, and the
parameter 5 is seen to converge to 5& for the flat surface
in an understandable fashion [Eq. (17)]. In fact, the quan-
titative agreement between n (r) and nz(z), and the
demonstrated proportionality of ai/a, i

—1 to AN/N (see
Fig. 2) can easily be exploited to compute 5 once 5~ and
nz(z) are known for the flat surface.

The quantum size effect due to the electronic orbitals is
quite pronounced when the polarization calculation for
r, =2.00 is displayed in terms of 5 (Fig. 1). It is clear that
these variations are principally due to the high orbital de-
generacy inherent in the spherical symmetry of the model.
For real metal clusters the lattice structure of the ionic
charge will split these highly degenerate orbitals. Note,
however, that the variations reported here have only a
small effect on the polarization of the spheres.

A final point to be emphasized is that all of the
density-functional calculations predict an enhancement of
the polarizability of a jellium sphere over that for a classi-
cal metal sphere with the same radius as that of the uni-
form positive charge distribution. This result reflects the
enhanced ability of the electronic charge, which "spills
out" into the vacuum, to response to an applied field, and
this enhancement should clearly be a feature of the experi-
mental data for real metal clusters.

Note added. After the submission of this paper for
publication, a Letter by Knight et al. [W. D. Knight, K.
Clemenger, W. A. de Heer, W. A. Saunders, M. Y. Chou,
and M. L. Cohen, Phys. Rev. Lett. 52, 2141 (1984)] ap-
peared reporting experimental results on the abundance of
sodium clusters produced in a supersonic expansion.
These authors conclude that the observed abundances are
the result of the electronic structure provided by the con-
duction electrons bound in a spherically symmetric poten-
tial. This encourages the speculation that other effects
due to these electronic orbitals may also be observable.
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APPENDIX A: MODIFIED STERNHEIMER
EXPRESSION FOR THE POLARIZABILITY

a2
5nL (r) z ne„[n]

n
(A 1)

Inserting the expansion (7) of 5n(r ), into the expres-
sion (6) for UscF[5n;r ] and projecting out the Lth com-
ponent, we obtain

r~
UL, [5n r]= r 51.,~+ fdr (r ) 5nt (r )

2L, +1 L, +1

l

~

r —r '
~

'=g Y&™(r)YP(r')

X ( 1' eel )t'ai, l m'(r)5'1'I"5m
l', m'

——UM[5n;r]r u„t(r)

X - ~r Yl r Y~-'r . A2

The integral over three spherical harmonics can be ex-
pressed in terms of Clebsch-Gordan coefficients as

a ( mL;l, l")= JdQ„-Yt (r )Yr, (r )Yt ~ *(r )

1/2
(21 + 1)(21'+1)

4~(2l"+ 1)

&& C(l,L,1";0,0,0)

and

C(l, L,l";m, O, m") =5 -C(l,L,l";m, O, m) .

Therefore, the only nonzero components of P;(r ) are
those with m'=m.

Inserting the expansions for P;(r ) and P;(r ) into the
expression (2) for 5n(r ), and projecting out 5n~(r), we
find

5n~(r)=4Re g r u„*i(r)
n, l, m

X gr' w; t (r)a (m;M, l, l')
l'

(A3)

Neither the operator nor the eigenvalue on the left-hand
side of (A2) depends on m =m'=m"; therefore, we can
multiply this equation by a(m;M, l, l")[c(M;I, l")] ' and
sum over m to obtain the modified Sternheimer equation
(12). We have introduced

and the orthogonality of the spherical harmonics. Equa-
tion (Al) is the central result of Mahan's proof, since it
demonstrates that the perturbing field will only couple to
a density disturbance with the same symmetry. The re-
striction to spherically symmetric ground-state systems is
embedded in the last term of this expression. If the
ground-state density is not spherically symmetric (closed-
shell configuration), then this last term will coupled
UL [5n;r] to other density moments 5nr, L'QL and the
perturbing field will produce density disturbances with
additional moments.

To obtain the expression (11) for 5nM(r), we need to ex-
pand 5n( r ), ij'j;( r ), and t)|;(r ) in spherical harmonics. In-
troducing

P, (r)= gr'u~;tm(r)Yt '(r"),
l', m'

where i represents the quantum numbers (nims), into the
inhomogeneous differential equation for P;(r ), (5), we can
project out the I"m" component
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u„ii(r)=[c(M;l, l')] 'gw; i~(r}a(m;M, l, l')

and require

c(M;I, l')=g
~

a(m, M, l, l'}
~

Substituting u„i p(r) into (A3) gives (11).
Evaluating (A5} for M = 1, we obtain

c(1;I,l')=(l+1)5i t+i+l5p i

(A4)

(AS)

the perturbing field will be partially screened by the elec-
trons, but the dominant behavior should still be given by
the variation in u„t(r). Hence, we use the factorization
u„t i (r) =g„ip(r)u„t(r) to account for the dominant
behavior of u„t t(r). With this factorization we can re-
place (12}by

K„i ig„t p(p)= —p vst[5n;p], (B2)

where K„'it is definedby

(LI —ent )unl I (p) = ural(r)Knit gni i (r) .

APPENDIX B: NUMERICAL PROCEDURES

'2

u„t(r)=f„i(r) 1+ —e '
R

—(I +1)/2

where ai =2a l(1+1). Commuting the explicit factor
through I.~, we obtain

Lt"f„t(r)=eslfsi(~), (Bl)

where Lt' is defined so that
' 2 —(1+1)/2

Llunl(p) = 1+ —e ' Li f.l(p) .
R

For large r, the right-hand side of (12) is given by
r + u„t(r), since uM[5n;r]=r . Inside the particle

In order to facilitate the numerical solution of the dif-
ferential equations for u„t(r) and u„it(r), Eqs. (9) and
(12}, respectively, it is useful to factor out the dominate
behavior of these functions for large and small r. For
small r, u,it[n;r] =const and one easily finds that
u„t(r) ~ const. For large r, v,tt[n;r] =0 and u„t(r)
cc r ' +"exp( —ar), where a =(—2e„t)' . The eigen-
values e„I are to be determined by the numerical pro-
cedure, so they cannot be used in the factorization. We
use instead a =(—2e',„)',where e',„ is the energy of
the highest filled level in the preceding iteration. Hence,
we can account for the dominant behavior of u„t(r) by
setting

The second-order differential equations (Bl) and (B2)
are solved by introducing a set of quadrature points pj.

and evaluating the first and second derivatives by using
finite differences. Thus the function f„t(r)[g„ti ] evaluat-
ed at the points r=rI are the components of a column
vector and L~' [K„'~ i ] is replaced by a matrix with com-
ponents Ntj. (king). These procedures convert the differen-
tial equations into matrix equations which can be solved
by standard numerical programs. The effect of the fac-
torizations described above is to balance the components
of the column vectors; i.e., the components
f„t(r~ )[g„i p(pJ. )] are all the same order of magnitude, but
the wave function u„t(r)[u„i t (r)] will vary over many or-
ders of magnitude as r is varied.

The solution of (Bl) for the eigenvectors f„&(rJ ) and the
eigenvalues e„i determine u„t(r). The matrix inverse of
K„'I I, components k;~ ', is used to determine

u„i i (p; ) = —u„t(r; )gk~ 'rj ust[5n;rJ] ~

1

Inserting this expression into (11),we obtain

5nM(r; ) = gm, JvM—[5n;rI ],
J

where the matrix elements m,z are given by
T

m,q
4Re ——g r'+

~
u„t(r;)

~
k,j

' (Mc;l, /')
n, I,l'

The self-consistent density response 5nM can then be
determined by iterative solution of this matrix equation in
combination with the expression (8) for uM[5n;r]
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