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The removal of the degeneracy in the steady-state diffusion-capillarity relation for the undercool-
ing of lamellar eutectics as a function of forced growth velocity and spacing requires the statement
of a global principle. The consequences of Langer’s conjecture that “each lamella must grow in a
direction which is perpendicular to the solidification front” have been explored. In the first instance
it is demonstrated that the principle is equivalent on the isotherm to a conditional minimum in the
frontal-surface free energy. Secondly, it is deduced for forced-velocity eutectics that the stable spac-
ing is \/57»,,,, where A,, is given by a minimum in the undercooling. Langer and co-workers have
been led to favor the value A,, on the basis of an unjustified approximation. In contradistinction to
Langer’s identification of a “diffusive mode” for relaxation of lamellar spacing, we find that the
mechanism of stabilization is best described as a damped oscillation in the spacing. The present
stable coordinate is identical with that obtained for isothermal structures via Langer’s conjecture
and by a number of earlier related perturbation arguments. It corresponds to an isothermal state of
the spacing which coincides with a maximum in the entropy-production rate. The thermodynamic
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validation of this principle is briefly discussed.

INTRODUCTION

Lamellar growth of eutectics or eutectoids is now
recognized by physicists and others as a paradigm for
pattern-forming or “self-organizing systems.”'~> The re-
markable spacial ordering which occurs spontaneously
under both controlled and uncontrolled experimentation
identifies the reaction with the large class of “dissipative
structures” which are now under intensive study.*~’ Be-
cause the steady-state transport analysis of this three-
phase chemical reaction for certain ideal models has been
rigorously expressed and is generally tractable, workers
are confident that accurate prediction of the observed
steady patterns will ultimately be achieved. However, the
limitations of these ideals have often been overlooked so
the conclusions have not always been valid. We begin,
therefore, with a discussion of the experiments wherein
some of the pitfalls lie.

The reaction is formally expressed by

y—a+B, (1)

where a supersaturated homogeneous binary ¥ alloy at the
eutectic (liquid—solid) or eutectoid (solid—solid) compo-
sition transforms via the collective action of diffusion
segregation into the ordered lamellar (or sometimes rod)
bicrystal products shown in Figs. 1 and 2.%° The iso-
thermal (Fig. 1) and forced velocity (Fig. 2) experiments
each have their advantages and disadvantages from the
point of view of the theoretician. In the isothermal case,
usually carried out in a quenched solid, the reaction ori-
ginates by nucleation at grain boundaries, producing
many competing three-dimensional cells of random orien-
tation and extent and imperfect structure (Fig. 3).1° While
this multiplicity and the attendant imperfections present
serious experimental problems, they automatically suggest
a fluctuating statistical ensemble whereupon a thermoki-
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netic optimal principle can be based (see below).!! Tedi-
ous micrography on sectioned samples followed by statist-
ical analysis is required to obtain measurements on cell-
front velocity, v, and spacing, A, as a function of the un-
dercooling, AT.'? It is necessarily assumed that the latent
heat evolved is small enough and the thermal conductivity
is great enough to transmit the temperature of the quench
bath uniformly. Notwithstanding the difficulties, some
highly reliable average data have become available for
testing the theory.!?~!* These are to be compared with
consequences through stability theory of the degenerate

FIG. 1. Quench-interrupted spontaneous growth of the iso-
thermal solid-state bicrystal eutectoid or “pearlite” in 0.8% car-
bon steel. The order parameter in this degenerate binary dif-
fusion problem may be identified as the growth velocity or the
lamellar spacing (~2 pm). They are functionally related.
(After Vilella.?)
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FIG. 2. A lamellar carbon tetrabromide-hexachlorethane eu-
tectic or “pearlite” grown in a forced-velocity temperature gra-
dient.® The order parameter in this degenerate mass-heat dif-
fusion problem may be identified as the undercooling at the in-
terface or the lamellar spacing.

steady-state velocity relation (a, 8 constant)'> 16
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(or more rigorous versions'’) where the critical spacing
for nucleation A, =B/AT varies as the inverse of fixed AT
and the power n is determined by the diffusion model
(n=1 for volume diffusion and n=2 for phase boundary
diffusion). This relation is singly degenerate in the sense

FIG. 3. Isothermal eutectoid colonies in a multicrystalline steel.'
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that one further constraint on v and A is required to speci-
fy a unique solution. The degree of freedom arises
through the fact that neither of the internal order parame-
ters, v and A, are constrained by the boundary conditions.
The removal of such characteristic degeneracies is the
main source of our theoretical interest in such dissipative
structures.

By contrast, the forced-velocity structure is generated
in a temperature gradient (Fig. 2), and this in at least two
distinct ways. In the most common experimental arrange-
ment a radiatively or electron beam heated molten zone is
passed at a fixed velocity v along a bar of the appropriate
binary eutectic alloy composition.!® At the trailing edge
of the molten zone steady-state solidification occurs. This
experiment, despite its wall defects and thermal homo-
geneities, produces lamellar microstructural arrays which
are remarkably uniform and reproducible as to spacing.
In experiments of this kind the thermal gradients are rath-
er uncertain, although in principle measurable. To earlier
analysts this presented no problem for it has been argued
that (2) is still accurately applicable since with typical gra-
dients the very narrow diffusion zone is to all intents and
purposes isothermal. Thus one can solve (2) for the un-
dercooling

AT =avA™+B/A, (3)

where a and 8 are weak functions of AT through the dif-
fusion coefficient and surface tension, respectively. Thus
analogously to (2) we have two related internal order pa-
rameters, AT and A, with v constant. Most of the data on
forced-velocity eutectics has been adequately if not accu-
rately analyzed on the basis of the “ad hoc” constraint de-
fined by a minimum in AT (A=V'B/av ).!® Since the free
variable AT has not usually been measured simultaneous-
ly, the closure with experiment is by-and-large incomplete
(see however, Ref. 20). Note that since the boundary con-
ditions are constantly moving points of fixed temperature,
variations in AT must lead to variations in the liquid and
solid gradients. Current theorists have not distinguished
between this classical experiment and the “thin-film” ex-
periment which was devised by Jackson and Hunt for
studying transparent organic eutectics.??> Here the ex-
perimental structure can be observed and analyzed
“in situ” (Fig. 2). The boundary condition is, however,
different because the thin eutectic bicrystal is grown be-
tween two thick glass plates which rigidly determine the
value and constancy of the sample temperature gradient
through their end contact with a moving heat source and
sink. It is natural from the theoretical point-of-view to
favor the thin-film experiment® since the gradient is in
principle constant and defined and the structures observed
usually have great perfection. There are, however, as yet
no reliable experiments for this configuration. Further-
more, it may be difficult to generate them, for the thin-
film configuration is strongly subject to hysteresis effects.
In the three-dimensional free-boundary transformation ex-
periments described above there are always sufficient wall,
grain boundary, and growth-generated defects to provide
prompt mechanisms for spacing change and thus the ra-
pid attainment of a unique steady structure which has lost
all correlation with the initial condition. Unfortunately,



30 PREDICTING THE PATTERNS IN LAMELLAR GROWTH

there is a strong tendency in the two-dimensional thin-
film experiment for a “memory” of initial conditions and
thus for a broad set of metastable structures of different
spacings [in accord with (2)] to appear and persist for the
order of experimental times.>?> For this situation, a
unique stable spacing does not exist nor can a meaningful
stability calculation be proposed. All of this emphasizes a
key point which has been overlooked by the theorists:
that the only theoretically interesting lamellar arrays are
those which are sufficiently defective and fluctuation
prone that a stochastic phase space which is independent
of initial conditions has emerged. They must not, of
course, be too defective (chaotic or turbulent) or they
would not be recognized as pattern forming. It is for
structures within the aforementioned phase space that an
appropriate stability theory must be found. To the extent
that such a statistical ensemble can be experimentally
recognized it will be demonstrated that the same stability
principles apply to all of the aforementioned boundary
conditions and therefore that a statistically unique config-
urational state is in fact defineable.

LANGER’S CONJECTURE

If with many hydrodynamicists*> and other workers
one forsakes the idea that perturbation theory is appropri-
ate to the removal of the steady-state degeneracies in the
search for unique stability conditions for dissipative struc-
tures there is no recourse but to seek global principles
which may remove the degree(s) of freedom. In recent pa-
pers Langer and co-workers®> have proceeded in this way,
expressing ' in a mathematical form a qualitative global
principle which materials scientists had applied with vary-
ing success to the eutectic and eutectoid problem for over
two decades.?*~%” They have thus been able to claim a
confirmation of the stability regimes for forced velocity
eutectics which had been crudely argued in the past. This
writer, realizing that the Langer conjecture had not been
worked through to its full conclusion, was able to identify
the stability point for isothermal structures at the inflec-
tion point of the v(A) curve [Eq. (2)] (see Ref. 28). It re-
cently occurred to us that a similar argument applies to
the forced velocity case, and accordingly that its stability
point might also be inferred from Langer’s condition. In
the following we recapitulate the entire argument with
modifications and with critical asides pertaining to the
physical meaning of the conjecture and experimental in-
terpretation.

Figure 4, reproduced from Langer, defines the signifi-
cant parameters. The eminently plausible proposition is
that “‘each lamella must grow in a direction which is lo-
cally perpendicular to the solidification front”? (dashed
line) and takes the discrete form in Ref. 3, relation 3.10,
or the continuous form?

oy /Y

— = . 4

ar = "O%x “
This summarizes our intuition that the collective action of

the analytic diffusion fields and capillarity [which has
been invoked in the derivation of (2)] are such that the
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FIG. 4. Schematic illustration of a lamellar eutectic growing
up the page with a deformed solidification front. The lamellae
may be visualized as semi-infinite plates perpendicular to the
plane of the paper. (After Langer?).

discrete triple point parameters y and § reside as an array
of points in a differentiable manifold. It may also be in-
terpreted as a conditional minimum surface free energy
principle.?”-?® This latter will be explicitly demonstrated
in a later section.

Since we require a theoretical connection with Eq. (2)
we further, with Langer, extend the differentiability prin-
ciple by expressing the local lamellar spacing according to
Fig. 4 (and Ref. 3, relation 3.1) as?

M x,t)=MAo(1+9y /3x) , (5)

where Aq is an unperturbed trial spacing, and assume that
this is differentiable to the second order. In the following
treatment we will restrict attention to long wavelength
perturbations with vanishing amplitudes in both A and §
for then the linkage of (2), (4), and (5) may be perceived as
approaching precision. This apparent limitation of the
stability analysis is to be comprehended within the
“a posteriori” nature of the science of pattern formation.
We do not try to predict the occurrence of patterns; we
only try to explain those which are observed. As with the
stability of equilibrium states in classical thermodynam-
ics, the kinetic stability of a particular system is given by
observation. It is therefore sufficient to test a model’s sta-
bility via a single class of perturbations. If the model and
procedure are rigorous and every accessible state but one
is unstable to this class of perturbations then the single
stable state defines the true stability point.

Langer has understood (4) and (5) as strictly applying
only to a perfect system such as in Figs. 2 and 4 but con-
jectures that lamellae can be gained or lost via noise or
stochastic processes. We fully agree with this conception
of the mechanism of spacing change and have argued in
the preamble that the only interesting systems are those
which possess a low density of defects which are capable
of effecting spacing changes. Lamellar faults, which have
been observed in both the isothermal and forced velocity
cases are generally assigned this function.?®2127 These,
like edge dislocations, are terminated lamellae which upon
moving into the array decrease the spacing or on moving
out of the array increase the spacing. Also, like disloca-
tions they can be created at the sample walls or upon bi-
crystal defects like grain boundaries. Appearing only
rarely at a cross section like Fig. 4 they do not deny the
validity of (4) and (5) as differentiable system averages.
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Yet by negating the conservation of lamellae, they allow
for the quasisteady drift whereby the system in an arbi-
trary initial condition can ultimately reach a unique stable
state. The point will become clearer within the completed
mathematical structure.

EVALUATION OF THE STABILITY POINT FOR
FORCED-VELOCITY EUTECTICS

Differentiating (4) with respect to ¢ and (5) with respect
to x and combining yields

% = —VplAo g:c > (6)
Differentiating once more we obtain
2
oL || LR )
Since the local velocity v can be written as ‘
v=vo+ & (®

ot
(7) can be written as?®
3% 9UA/Ag)

—Vg = .

% ax? ar’
Now in the thin-film experiment or the hypothetical case
where the latent heat is negligible and the thermal con-
ductivity is constant the temperature gradient can be tak-
en as a strict constant G>. In reference to Fig. 4 with

£=0 at temperature T =Ty Langer, and Datye and
Langer suggest that it is therefore valid to write?>

G&(x,t)=—AT (x,1) , (10)

9)

where AT is the mean local undercooling at the interface.
With such a strong constraint over space and time the cal-
culation is thereby committed to a quasistationary or
parametric approach. Combining (10) and (6) yields?

VoA 2
%=%&(AT) . an

Now keeping in mind our vanishing amplitude, long
wavelength caveat we will seek a solution which is
parametric in v and A according to (2) or (3), viz.,

AT =AT(v(x,1),A(x,1)) (12)

which approaches precision in the perturbation limit de-
fined. We thus evaluate via (3) for n=1

O A0V _B |dA

axAT—akax+ av 2 | ox (13)
and from this, (11) and (9) obtain
o _voro [, ard ah @ [, 8|
a G dx dx vohy Oz2 AZ | ox?

2
28 [an
+5 ax (14)
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It can be argued that in the second-order expansion of (12)
(dA/3x)* should be replaced by 1/20%A—Ag)?/dx2%
However, this only produces an additional term
(A—Ao)3%A/3x? which vanishes relatively to other terms
in the low amplitude limit of interest here. The same con-
siderations apply to 8% /dx2. Now in testing for stability
in accord with the quasistationary approach it is con-
venient to investigate the first-order stationary state
(dv /0t =0A/dt=0) which implies a planar interface
(3% /3x*=0) via (6) and 9°(/3t>=0 via (8). Further-
more, consider an initial condition with a constant under-
cooling, dAT /3x=0, whereby from (13) and (14) we can
deduce

2

2 A
28 ko (28| [an
ar? a A? ox
VoAg B | %
+ = [ozv—k2 o (15)

with v and A, and therefore AT and the coefficients sta-
tionary to the first order in ¢. First consider a linear per-
turbation in A, i.e., 3°A/9x2=0. Stability, defined by sta-
tionarity of A to the first and second order at ¢=0, is thus
specified exactly by the sign change of the first term on
the right, viz.,

A=(2B/av)'/?. (16)

This applies to the volume diffusion case (which is normal
for a liquid parent phase). Relation (16) differs from the
result for the minimum undercooling criterion by the fac-
tor of V2 (see above). Generalizing to arbitrary n yields a
stability point at

A=(2B/nav)!/"+1, (17)

If in accord with experiment (see below) the frontal tem-
perature and curvature remains constant then (15) de-
scribes A oscillations which are perfectly damped only at
the stability point (16). Langer has reached a weaker con-
clusion closely related to the minimum undercooling cri-
terion via the unjustified approximation of setting
v /3x=0 in (13),2 differentiating once more, and combin-
ing with (11) (see the Appendix).

While our new result based on relation (4) is elegant and
plausible, it bears further scrutiny in relation to the stabil-
ization of three-dimensional structures. Generally speak-
ing for the usual range of experimentation the latent heat
evolved is not negligible nor are the thermal conductivities
of liquid and solid x; and x5 equal. Indeed the latter usu-
ally lie in the relation

KS~2KL : (18)

Thus (10) is invalidated since G (or better, average G) be-
comes a function of v. Furthermore, since the thermal dif-
fusion length (~5 cm) is much greater than typical per-
turbation wavelengths (say 100 pum) interface perturba-
tions according to (10), or its modification for G noncon-
stant, will be completely damped by thermal relaxation,
solid protuberances short-circuiting heat to the trailing in-
terfaces. This is not only expected for the three-
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dimensional experiment, but appears also to be the case
for the thin-film experiment. As Fig. 5 for such an exper-
iment demonstrates,’® the average interface is perfectly
planar despite the strong perturbing effects of a grain
boundary and a spacing differential of a factor of 2. This
variation should have produced a surface deviation greater
than a lamellar spacing (~20 pum) if Langer’s relation
(10) were to have any bearing on the problem. A review
of Jackson’s film impressed us with the effectiveness of
the constraint provided by thermal relaxation. This
damping provides an experimental reason for considering
only AT=constant perturbations in the theory and sug-
gests a procedure which bypasses the imperfect relation
(10).

If we suppose that the region of phase space defined by
(10) is not accessible we must seek another degree of free-
dom for perturbation testing. This is placed in evidence
by exploring the direct consequences of Eq. (9).. Proceed-
ing as before in the quasistationary approximation, substi-
tuting

v =v(Ax,t),AT (x,t)) (19)

and relaxing to the usual limit, noting that [d% /(AT)*],
=0, one obtains the nonlinear equation

2
1 @ |dv | ¥ |dw a
Ao 312 |dA [ppox? | dA? |5y | Ox
dv | aAT
dAT A ax2
d*v | AT 3A
2| J0dAT | ox ox 20}

which is the replacement for (14). Let us again examine
the stationary, zero curvature states defined by 9A /0t
~d%/3x*=0 [Eq. (6)] and consider a low amplitude
linear initial condition in the spacing (3?A/dx%=0; dA/dx
=constant; AT=constant) centered in turn on each
(vg,Ap). One now recognizes that (20) has become identi-
cal with (15) whereby the stability point is defined by

FIG. 5. Frame from Bell Telephone System film demonstrat-
ing a planar interface despite a strong spacing change. See also
Fig. 2.

2
dv ) o 1)

or from (2) ,
a=2t2 8 @

This result is also obtained by combining (3) and (17).
Accordingly, the two procedures prove to be equivalent
despite the limitations of Eq. (10), and the stability point
is identical with that obtained earlier for the isothermal
case.”® The equivalence arises in part because the initial
condition for (15), 0AT /3x=0, nullifies constraint (10).
This identity of the two forced-velocity and isothermal
cases has been argued on qualitative grounds a number of
times.!»?>27 Relation (4), however, offers for the first
time a basis for a mathematical conclusion. One should
now appreciate that the Langer nonplanar structure of
Fig. 4 experimentally exists only on the isotherm, a fact
not recognized by that author. Accordingly, all deduc-
tions from (4) and (5) relative to forced-velocity structures
are arrived at by analytic continuation from a virtual iso-
therm to the planar isothermal interface. It is for this
reason that the predicted stability point is the same for the
isothermal and forced-velocity cases. This equivalence
has been confirmed in at least two independent experi-
ments.!>3!

There is a further important inference to be drawn from
relation (6), viz., the ultimate steady state must satisfy
0A./0t=0, which defines a state of zero curvature on the
isotherm, independent of the kind of constraint which one
imposes via the boundary conditions. The result accord-
ingly expresses an isothermal tendency. towards a condi-
tional minimum global surface free energy state. This is
undoubtedly the reason why the conjecture and relation
(4) appear intuitively plausible. This writer, using a dif-
ferent argument, demonstrated some years ago for the iso-
thermal case that the inflection point stability criterion
was equivalent to this conditional free energy optimum.
Indeed, we have noted from a more detailed analysis of in-
terface shapes that the local interface configurations tend
in the same direction (flat interfaces) at this particular
point.2” We would not like to leave the impression, how-
ever, that such a conditional minimum is generally to be
expected in solidification structures. In fact, the resolu-
tion of two-phase instabilities such as cells and dendrites
tends towards maximum surface energy.

ENTROPY EVOLUTION AND OPTIMALITY

However disguised, it does not appear to the writer that
a conditional minimum free energy principle can be re-
garded as fundamental in solving stability problems of
this kind. For other reasons, Datye and Langer have ex-
pressed their reservations.’ Consider again the perturba-
tion program leading to (21) and note that for the linear
initial condition we are free to choose (vg,Ay) at any posi-
tion along the interface. This allows us to infer via (20)
that the relaxation rate as indexed by 3*A/dt? will be
larger (via d%v/dA?) the further is the local spacing from

the stable value. It implies for arbitrary (vg,Aq) that if the
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number of lamellae are not conserved, the relaxation must
be to a uniform spacing which tends closer to but possibly
different than the stable value. A spectrum of uniform
metastable or hysteretic states may thus be defined by
(20). Yet, as indicated in the preamble, if nature arranges
that the lamellar density can change via slow nucleation
or annihilation processes or injection or rejection to or
from external or internal surfaces, then a stochastic ap-
proach to stability with increments in accord with equa-
tions (13) and (14) or (20) can be envisaged.? Alternative-
ly, one can conceive in relation to Fig. 4 of a fluctuating
phase space consisting of metastable states and mathema-
ticized as usual via a virtual ensemble,? and then seek an
entropylike function which optimizes at the stable steady
state. For the systems of present interest, this is easy to
identify if we locate our small test system within a dia-
phragm separating two very large energy-mass reservoirs,
the entire assembly placed in an adiabatic enclosure.!!
Following any fluctuation which successfully changes the
pattern there is a pulse of heat to or from the reservoirs
corresponding to the change in the subsystem entropy
production rate. If such states survive for a time 7 on the
average then the entropy change of the composite or
discontinuous system relative to some base S(z) is
represented to sufficient precision by

AS= [ AS;dt=7AS;, (23)

where S; is the integral entropy production over the test
system. In general, the continuation and summation of
AS over many transitions leads to an entropy function in
isolation which is not everywhere differentiable. Now one
can insist in accord with classical thermodynamics that
the second derivative of the enclosure entropy be every-
where defined (macroscopic smoothness of the entropy
function) or equivalently that an appropriately defined
path probability be maximized in isolation.!! In either
case the optimal path is one for which deviations due to
pattern changes are subject at the steady state to

d:S =AS =7AS;=0 24

which specifies a maximum or a minimum in the entropy
production rate and minimal space and time correlation
between the subsystem and the reservoirs. This is an em-
inently reasonable generalization of equilibrium concepts
to the stochastic patterned steady state.® For isothermal
eutectics (A, =B/AT)

2
: A 1 Ac
i~V |[l—— | ~— [1—— 25
S;~v |[1— X v X (25)
which possesses a maximum at
a="t25 (26)

n

a result which is identical to the consequences of relation
(4). We emphasize that this minimax principle is only in-
directly related to the principle of minimum entropy pro-
duction. Indeed, because the signature of the optimum is
not “a priori” specified it is a weaker principle than that
derived within the linear theory of irreversible thermo-
dynamics.
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This particular dissipation model identifies only one
internal order parameter, A, which optimizes to a univari-
ate maximum in the dissipation. The minimal part of
possible pattern fluctuation excursions is accordingly
missing.!! There remains, however, a minimal part corre-
sponding to the microscopic fluctuation spectrum in the
dissipation which is an alternative to that expressed by the
regression equations (15) and (20). This is to say, all of
the hysteretic states (including the stable one) lie at a trivi-
al minimum in the dissipation with respect to spacing
changes with the total number conserved. We emphasize
the approximate character of the microscopic principle
since it is the Prigogine-Glansdorff general evolution cri-
terion®® which strictly applies in this case. The connec-
tion between the two principles, which agree at the stabili-
ty point, lies in the fact that the entropy fluctuation spec-

.trum is common. The distinction lies only in the time

scale of observation. The regression time for the minimal
part is <7 while that for the maximal part is > 7 (see also
Ref. 34).

The optimal states of forced-velocity structures are not
as transparent as in the isothermal case for the thermal
gradients greatly complicate the evaluation of the dissipa-
tion. The writer has dealt with this problem with some
success in an earlier publication.>> The simplest concep-
tion is of a displacement of the chemical zone of the inter-
face at fixed mean v and AT into virtual transient states
of slightly varying A for which the dissipation is given by
an integral over dx on the right-hand side (rhs) of (25).
Then the optimum evaluated via the variational calculus,
which involves chemical dissipation only, is identical with
that specified in the isothermal case. However justified in
theory, this optimum provides good predictions of the ex-
perimental results for all of the arrangements con-
sidered.!727-36
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APPENDIX

In Langer’s treatment,? also based on Egs. (11) and (12),
there is a departure at Eq. (13). In particular, dv /3x is set
equal to zero in (13). Thus (11) yields

O _ 3 |p0r (A1)
at  Ox dx
where
volo B
= G av — Iz‘ (AZ)

Langer recognizes this as a diffusion equation in which
the A variable is conserved, and argues that the change in
sign of D from positive to negative signals the onset of ab-
solute instability as in spinodal decomposition. Actually,
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the quantity which is conserved in the model of Fig. 4 is
1/A which is proportional to the trailing surface energy.
If one rephrases A1l in terms of 1/A it is no longer a dif-
fusion equation to full precision.

Datye and Langer have rephrased Langer’s treatment in
discrete terms [Egs. (4) and (5), in particular] and carried
out an elaborate linear perturbation analysis, the central
conclusions of which are identical to the above. Since we
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can find no a priori justification for setting dv/3dx=0 we
are forced to conclude that the “diffusive” modes of
transformation do not in fact exist. In contradistinction,
our result in Egs. (14) and (15) is free of ambiguity and
definitive in its inferences. There is no doubt in our
minds that stability of lamellar structures is defined in the
theoretical ideal by a damped oscillatory rather than a dif-
fusive mechanism.

13. S. Langer, Rev. Mod. Phys. 52, 1 (1980).

2J. S. Langer, Phys. Rev. Lett. 44, 1023 (1980).

3V. Datye and J. S. Langer, Phys. Rev. B 24, 4155 (1981).

4D. J. Scalapino and B. A. Huberman, Phys. Rev. Lett. 39, 1365
(1977).

5I. Iguchi and D. N Langenberg, Phys. Rev. Lett. 44, 486
(1980). ‘

6J. S. Kirkaldy and L. R. B. Patterson, Phys. Rev. A 28, 1612
(1983).

7G. Dee and R. Mathur, Phys. Rev. B 27, 7073 (1983).

8. R. Vilella, Reproduced in article by L. S. Darken and W. C.
Leslie, in Decomposition of Austenite by Diffusional Process-
es, edited by V. F. Zackay and H. I. Aaronson (Interscience,
New York, 1962), p. 253.

93. D. Hunt and K. A. Jackson, Trans. AIME 236, 843 (1966).

10H. Neumayer, of McMaster University (Hamilton, Canada)
(private communication).

UD. Venugopalan and J. S. Kirkaldy, Acta Metall. 32, 893
(1984).

12D. 'Brown and N. Ridley, J. Iron Steel Inst. 204, 811 (1966).

13G, F. Bolling and R. H. Richman, Met. Trans. 1, 2095 (1970).

14N, Ridley, of Manchester University (Manchester, England)
(private communication).

15C. Zener, Trans. AIME, 167, 550 (1946).

16M. Hillert, Jernkontorets Ann. 141, 757 (1957).

7K. Hashiguchi and J. S. Kirkaldy, Scandinavian Jour. Metall.
(to be published).

I8R. J. Brigham, G. R. Purdy, and J. S. Kirkaldy, Crystal
Growth (Pergamon, New York, 1967), p. 161.

19W. A. Tiller, in Proceedings of the Cast Iron Seminar, Ameri-
can Society to Metals, Detroit, 1964 (unpublished).

203, D. Hunt and J. P. Chilton, J. Inst. Met. 92, 21 (1963).

213, D. Hunt, K. A. Jackson, and H. Brown, Rev. Sci. Instrum.,
37, 805 (1966).

22K. A. Jackson and J. D. Hunt, Acta Metall. 13, 1212 (1965).

23E. L. Koschmieder, Adv. Chem. Phys. 32, 109 (1975).

24F. C. Frank and K. E. Puttick, Acta Metall. 4, 206 (1956).

25J, W. Cahn, quoted in K. A. Jackson and J. D. Hunt, Trans.
AIME 236, 1129 (1966).

26], S. Kirkaldy, Scr. Metall. 2, 565 (1968).

273, 8. Kirkaldy, and R. C. Sharma, Acta Met. 28, 1009 (1980).

28], S. Kirkaldy, Scr. Metall., 15, 1255 (1981).

29, S. Langer of Institute for Theoretical Physics, Santa Bar-
bara (private communications).

30K. A. Jackson, educational film, Bell Telephone Systems,
Research Laboratories, Murray Hill, New Jersey.

31D, D. Pearson and J. D. Verhoeven, Metall. Trans. (to be pub-
lished).

32A. Munster, Statistical Thermodynamics (Springer, Berlin,
1969), p. 181.

33p, Glansdorff and I. Prigogine, Thermodynamics of Structure
(Wiley-Interscience, New York, 1977).

343, S. Kirkaldy, Biophys. J. 5, 965 (1965).

35). S. Kirkaldy, in Energetics in Metallurgical Phenomena, edit-
ed by W. M. Mueller (Gordon and Breach, New York, 1968),
Vol. IV, p. 197.

36M. P. Puls and J. S. Kirkaldy, Metall. Trans. 3, 2777 (1972).



FIG. 1. Quench-interrupted spontaneous growth of the iso-
thermal solid-state bicrystal eutectoid or “pearlite” in 0.8% car-
bon steel. The order parameter in this degenerate binary dif-
fusion problem may be identified as the growth velocity or the
lamellar spacing (~2 pm). They are functionally related.
(After Vilella.?)



FIG. 2. A lamellar carbon tetrabromide-hexachlorethane eu-
tectic or “pearlite” grown in a forced-velocity temperature gra-
dient.” The order parameter in this degenerate mass-heat dif-
fusion problem may be identified as the undercooling at the in-
terface or the lamellar spacing.



FIG. 3. Isothermal eutectoid colonies in a multicrystalline steel.'
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FIG. 5. Frame from Bell Telephone System film demonstrat-
ing a planar interface despite a strong spacing change. See also
Fig. 2.



