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Theory of fractional Knight shift in liquid binary alloys
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A theory, based on the density-functional formalism, is developed to calculate the fractional
change in the Knight shift of a liquid metal due to dilute impurities. The spin densities around the
impurities are calculated self-consistently using the local-density approximation. The disorder in the
liquid state is taken into account by incorporating into the theory the pair-correlation function of the
host metal. In the numerical computation, both the experimental and model pair-correlation func-

tions are used. The present formulation takes into account the magnetic-field-induced distortion of
the conduction-electron states both at and below the Fermi energy and is valid at any distance from
the impurity. The theory is applied to liquid Al alloys containing Mg, Si, Ga, and Ge impurities.
The results are compared with the predictions of an asymptotic model based on the conventional ex-

pression for the Knight shift. The results are in reasonable agreement with experiment; however,

additional theoretical and experimental work is called for. The theory is applicable to other disor-

dered systems such as 'amorphous alloys.

I. INTRODUCTION

Thirty-five years ago Knight observed a shift in the
resonance frequency of Cu in metallic copper from that
in diamagnetic CuCl. This shift, now termed the Knight
shift, was later shown to be a characteristic property of
the metal and arises from the interaction of the nuclear
magnetic moment with conduction-electron spins polar-
ized by the external magnetic field. Assuming that this
interaction is dominated by the Fermi contact term,
Townes et al. derived a simple expression for the Knight
shift, namely,

%=8 7 &l~k(0)l

where (
l pk (0)

l
),„ is the density of conduction elec-

trons at the probe nucleus averaged over the Fermi sur-
face and X, is the Pauli spin susceptibility. The calcula-
tion of the conduction-electron density in a perfect metal
requires a detailed knowledge of the band structure. An
accurate determination of the spin susceptibility, on the
other hand, depends on how well one understands the
many-body effects associated with the interacting elec-
trons. It is due to these reasons that a quantitative theory
for the Knight shift in perfect metals has been difficult to
develop.

In imperfect metals, there are other problems that
hinder both experimental and theoretical investigations.
For example, the presence of impurities and imperfections
causes perturbations on the spatial distribution of
conduction-electron densities in the material. As a result,

the host-resonating nuclei experience different local fields
and resonate at different frequencies. This gives rise to ei-
ther a broadening or a further shift in the nuclear reso-
nance frequency. This additional shift in the resonance
frequency, which is characteristic of the impurity in a
given host, is difficult to obtain experimentally. This is
particularly the case when the additional fractional shift
is small in magnitude.

From a theoretical point of view, the perturbations on
the conduction-electron states are difficult to calculate
quantitatively due to the loss in the periodicity of the
crystal. Recent methods, based on a Green's-function ap-
proach, have permitted one to obtain a semiquantitative
understanding of the conduction-electron states by confin-
ing the perturbation within a muffin-tin cell around the
impurity and matching the solution to the host Green's
function outside the cell. For a disordered material such
as amorphous and liquid metals the common methods
usually employed are based upon the coherent-potential
approximation. It would, thus, 'appear that a quantita-
tive theoretical treatment of the electronic structure of im-
purities in a disordered metal is a very difficult task since
imperfections are introduced not only by the structural
disorder, but also by the impurities.

As was pointed out by Ashcroft and Lekner, the loss
of long range order in the liquid state may have an added
advantage for electronic structure calculations in liquid
metals. This is because the electrons can be- treated as
free-electron-like and this approximation is expected to be
more valid for metals in the liquid phase than in the solid
state. In this paper we extend the free-electron treatment
to liquid binary alloys. We treat the host liquid metal as a
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free-electron system. The perturbation on the host elec-
tron density for both spin orientations due to the impurity
atom is calculated self-consistently using spin-density-
functional formalism. The induced spin density around
the impurity atom exhibits the well-known Friedel oscilla-
tions at the asymptotic region. Thus the net spin density
at a near-neighbor host atom may either be enhanced or
diminished depending on its distance from the impurity
atom and the phase of the spin-density oscillations. This
would induce a corresponding change in the local field
and resonance frequency of the host atoms. A configura-
tion average of these changes leads to the determination of
the fractional Knight shift. The theory developed here is
applicable to free-electron-like liquid metals in general.
We have applied it to study the fractional change in the
Knight shift in liquid Al due to Mg, Si, Ga, and Ge im-
purities in the dilute limit.

- In the next section we outline our theoretical approach
and compare it to earlier theoretical attempts ' for calcu-
lating Knight shifts in liquid binary alloys. In Sec. III the
electronic structure of binary liquid alloys and Knight-
shift results are compared with experimental values. We
also discuss the importance of mechanisms other than the
Fermi contact term in the calculations of Knight shifts
and. reasons for the remaining disagreement between
theory and experiment.

II. THEORETICAL FORMULATION

that quantities are for a perfect host. When an impurity
is introduced, the conduction electrons around the impuri-
ty are perturbed. This perturbation, in the asymptotic re-
gion, leads to the Friedel oscillations in the charge and
spin density. Since the induced spin density n'(r) —n'(r)
is spatially varying, the contact spin density at any host
nuclear site would depend upon the distance between the
host and impurity atom. Thus the average Knight shift,
K, per atom in the imperfect system, is given by

K =—g'K(R„), (5)
V

where K(R„) is the Knight shift at the host atom site at a
distance R„from the impurity. In Eq. (5), the summation
excludes the atom at the origin which is occupied by the
impurity. The change in the average Knight shift due to
the impurity is then

b,K =K Kp ——g'K——(R,) —g Kp(R„)
V V

L

writing

K(R, ) =Kp(R, )+6K(R,),
Eq. (6) becomes (in the limit N is large)

1bK= —g'bK(R„) .

The hyperfine (hf) field at a nuclear site due to the con-
tact interaction between the nuclear magnetic moment
and spin-polarized electrons is given by

For the fractional change in the Knight shift for concen-
tration c of the impurity, we have

Bhf = pz [n '(0) n'(0)—
3

where n '(0) and n '(0) are, respectively, the density of
spin-up and spin-down electrons at the nuclear site. The
Knight shift is then given by

Bhf Sm n '(0) —n '(0)
S

~ext 3 no —no

Using Eq. (2) in Eq. (9), we have

I =g'An(R„)l[n "(0)—n'(0)],

where

(10)

where n p np is th—e ambient spin density of the conduc-
tion electrons caused by the external magnetic field, B,„,.
It has been shown by Munjal and Petzinger that Eq. (2)
leads to the conventional form

and

n (R„)=np(R„)+5n (R )

b n (R,) =5n "(R„) 5n '(R„) .—
(3)

Kp ———g Kp(R„),
V

(4)

when the scattering is limited to the Fermi-surface elec-
trons with wave number kF only. Equation (3), therefore,
ignores the effect of the magnetic field on the electrons
below the Fermi surface and is an approximate form of
Eq. (2).

In a perfect metal, the Knight shift at any nuclear site
is identical to that at any other nuclear site. Thus the
average Knight shift, Kp, per atom in a perfect host,

In Eq. (11) n (np) is the density of the electrons with

spin o ( t or t) at site R in the imperfect (perfect) system,
and 6n is the perturbation produced by the impurity at a
distance R„. bn(R„) is then the perturbed spin density.
In an all-electron calculation, Eq. (10) would include the
orthogonalization of perturbed conduction electrons to the
host core orbital. In a pseudopotential calculation, on the
other hand, the core electrons are frozen and the effect of
orthogonality of conduction electrons with core orbitals
on the Knight shift manifests itself in an enhancement
factor, a. Rigney and Flynn have shown that in an alloy
system such a procedure can also be folio~ed. Thus we
can write

is identical with Kp(R„). In Eq. (4), N denotes the num-
ber of atoms in the sample and the subscript 0 denotes bn(R„)=ah. n (R„) (12a)
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and

n'(0) n—'(0)=a(n o—no) .

Substituting Eq. (12) in Eq. (10), we have

(12b)

where V„, is the exchange-correlation potential' in the
local-density approximation and is defined with respect to
the ambient environment. The electrostatic potential is
obtained by solving Poisson's equation

hn(R )r=
np —no

V V„(r)= —8m.[n,„, n—(r)],
(13) where the electron density n (r) is given by

(20)

p(r)= g(r) .1

0
(15)

g (r) is the conventional pair-correlation function and 00
is the atomic volume. g (r) can be determined from exper-
imental structure-factor data" or from model calcula-
tions. In Eq. (14), the induced spin density in the large
parentheses decreases as 1/r modulated by a sinusoidal

function at large r Thus. the integrand in Eq. (14) de-

creases as 1/r modulated by the sinusoidal function. At
small r, while the induced spin density is large, the num-

ber of host atoms contributing to the fractional Knight
shift in Eq. (14) is small. On the other hand, at large r,
the number of atoms is large while the induced spin densi-

ty is small. Consequently, the contribution to the frac-
tional Knight shift from atoms close to the impurity may
be as large as those further away. Thus it is important to
calculate an induced spin density that is valid at all dis-

tances from the impurity.
In the following we describe briefly the density-

functional approach that we have used to calculate the in-

duced spin density. The problem reduces to solving the
Hohenberg-Kohn-Sham equations,

b,n(R„) in Eq. (12) is the spin-density distribution around
an impurity embedded in a free-electron gas and can be
calculated self-consistently in the density-functional for-
mulation using the jellium model. '

In a liquid metal, the atoms are in a disordered state.
The summation in Eq. (13) over nuclear positions can be
carried out by performing the following integration:

I'

3rp (14)
no —no

where

OCC

n(r)=g [ I
@k(r) I'+

I @k(r)
I

'] .

The external perturbation is assumed to have the form

n,„,(r)=A 5(r)+noe(r —R„,) (22)

as r~ oo, (23)

where 5~(eF) is the scattering phase shift for the lth par-
tial wave at energy eF, and j1 and n1 are spherical Bessel
and Neuman functions. It is straightforward to show that
in the asymptotic limit

I pk (r)
I

=g(2l+1)[cos5((eFj)((kFr)
1

—sin5, (eF)n, (kFr)]' . (24)

[WS represents a Wigner-Seitz cell]. Here 2 is the atomic
number of the host and/or impurity atom, no is the aver-
age density of electrons and/or positive ions in the unper-
turbed host, and e is the usual Heaviside unit-step func-
tion. Equations (16)—(22) are solved self-consistently.

To compute the fractional Knight shift in Eq. (14), we
solve Eqs. (16)—(22) self-consistently for both the host
and impurity atoms. This is done by using A equal to an
atomic number of the host and calculating the induced
spin density around the host atoms. The calculation is
then repeated for the impurity. The difference between
the spin densities around impurity and host atoms then
enters into the calculation of the fractional Knight shift.

It is now possible to derive a simple analytic expression
for the Knight shift valid at the asymptotic region. In
this limit the radial wave function Rk I(r) for the Fermi-

F
surface electrons can be expressed as

Rk ~(r) =cos5~(eFj)~(kFr) sin5~(eF)n~(—kFr)

[—~'+ V.n(r )]A(r )=&kfk(r» (16)

We have used atomic units (Pi=1, m = —,', e =2). The
effective potential, V,qr, is assumed to be spherically sym-
metric. Thus Eq. (16) reduces to a one-dimensional equa-
tion

+ + V ff(r) Rkl(r ) = (k ) Rki(r)d l(l+1) ~ ~ . g

dr r

1=J d rp(r)
I A„«) I'-

I
4'k", «) I'

(25)

Using the conventional expression (3), the fractional
Knight shift is

where the one-particle wave function

Qk( )=rg RQ/( )I r(r1) (18)

where fk (r) =e is the unperturbed wave function of(0) i kF. r

F
the Fermi-surface electron of the perfect host. It is easy
to show that

k is the wave vector for an electron with spin cr (t or g).
The effective potential is given by

jeff ~es+ ~xc ~

I
4'k", (r) I

'=1=g (2l+1)ji'«Fr)
1=0

Using Eqs. (26) and (24) in Eq. (25), we obtain

(26)
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I = rpr 2 +1 n~ p+r —
j& Fr sin ~ eF — 2 +1n~ +r j~ +r sin2 ~ Ep

1 1

(27)

Rigney and Flynn have recast Eq. (27) in the form

I =g [A~ sin 6~(e~)+B~ sin[2&l(&F)] )
1

where

A&=(21+1)f d rp(r)[n~(k~r) j~(kF—r)],

B& =——(21+ I) J d rp(r)n~(kFr)j~(kFr) .

(28)

Thus A~ and 8~ are quantities that depend upon the prop-
erties of the perfect host metal and can be determined fi-
nally. The fractional Knight-shift calculation in Eq. (28)
needs only the scattering phase shift and can be used to
study various impurity systems with ease. However, as
shown in the Appendix, this procedure leads to inaccurate
results since numerical evaluation of the A~'s and B~'s in
Eq. (29) is difficult. Thus it is necessary to evaluate Eq.
(27) directly.

Recently Iwamatsu et al. have calculated the Knight
shifts for liquid binary alloys of simple metals using a
pseudopotential procedure and the conventional expres-
sion for the Knight shift. This method, although simpler
than our density-functional scheme, suffers not only from
the ambiguity associated with pseudopotentials, but also
that it makes use of a low-order perturbation theory.

III. RESULTS AND DISCUSSION

We now present the results of the spin-density distribu-
tion around both host and impurity atoms calculated in
the density-functional theory. In order to calculate n (r),
we initially polarized the electron gas by choosing

(no —no)/no=0 1 . (30)

The induced polarization n'(r) —n'(r) is proportional to
the ambient polarization (no —no) in this limit. Thus the
Knight shift in Eq. (14) is independent of the choice of
this ambient polarization.

In Fig. 1 we plot the spin density n'(r) —n'(r) around
an Al nucleus embedded inside a vacancy in a homogene-
ous electron gas' of density given by r, =2.17, appropri-
ate to liquid Al at the melting temperature. Figure 1

shows the spin density for distances that are relevant to
the calculation of the Knight shift. The pair-distribution
function, as described later, has the first peak around 5ao,
which is also very close to the hard-sphere diameter of
4.8ao. Thus the contribution to the integrand in Eq. (14)
is nonvanishing for r &4.8ao. Figure 1 also exhibits the
well-known Friedel oscillations which asymptotically ap-
proach the ambient spin-polarized density.

The calculations of the spin density around the substi-
tutional impurities i2Mg, 3~Ga, ~4Si, and 32Ge were repeat-
ed by using the appropriate atomic numbers in Eq. (22)
and carrying out the density-functional calculations to full
self-consistency. For &2Mg, &3A1, and &4Si, the solutions
led to bound electrons in 1s, 2s, 2p orbits. The num-

I

ber of electrons in the scattering state, and thus the
valence Z of ~2Mg, ~3A1, and &4Si were found to be 2, 3,
and 4, respectively. For 3&Ga and 3zGe we found bound

1s, 2s, 2p, 3s, 3p, and 3d states. The
valence Z of 3&Ga and 32Ge are, respectively, 3 and 4.
The valence difference between impurity and host,
b,Z =Zr —Z~ is —1 for &zMg, 0 for»Ga, and + 1 for
32Ge and )4Si.

In Fig. 2 we have plotted the difference in the spin den-

sity between the impurity (Mg, Ga) and host atom, i.e.,

b, n(r) =[n "(r)—n'(r)]; ~„„,„—[n'(r) —n'(r)]h„, , (31)

AI

0.00215
I

3
I I I I l I I I I I I I I

4 5 6 . 7 8 8 10 11 12 13 14 15 15

FIG. 1. Induced spin-density distribution n '(r) —n '(r )

around an Al. nucleus embedded in a vacancy site in liquid Al.

since it is this quantity that enters into the calculation of
the fractional Knight shift in Eq. (14). It is clear from
Fig. 2 that the induced perturbation around &zMg is larger
than that around 32Ga. Two main conclusions can be
made from Fig. 2. First, ~3A1 and 3~Ga, although having
the same valence structure, have different core-electronic
structure. That hn(r) for AlGa is finite indicates that for
isovalent atoms, the core structure plays a role in perturb-
ing the ambient environment of the host. For ~2Mg and
]3A1, on the other hand, the core-electronic structure is
the same while the valence structure is not. Since ~2Mg is
found to provide a larger perturbation than 3&Ga on the
ambient spin distribution in &4Al, one can conclude that
valence difference between impurity and host atom plays
a larger role in perturbing the ambient environment than
the difference in the core-electronic structure.

In Fig. 3 we plot the induced spin density around 32Ge
and ]4Si. For both impurities in &3A1, Z =+1. Yet 32Ge
provides a larger perturbation on the host than &4Si. This
supports our discussion above that the core-electronic
structure plays a role in the perturbation. The perturba-
tions exhibited in Figs. 2 and 3 have a direct effect on the
fractional Knight shift.
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FIG. 2. Induced spin density An (r) = [n '(r) —n '(r)]; „
—[n '(r) n'(r—)]h„, around Mg (solid line) and Ga (dashed line)

in liquid Al.

FIG. 4. Pair-distribution function g(r) in liquid Al. The
solid line is calculated using the hard-sphere model (Ref. 12).
The dotted curve represents the experimental g (r) (Ref. 11).

Before presenting the calculations of the Knight shift,
we would like to discuss the pair-correlation function g (r)
in the liquid host, since it is needed for the evaluation of
the Knight shift. The- pair-correlation function is ob-
tained by Fourier transforming the interference function
of the liquid metal. This transform often introduces er-
rors in the pair-correlation function associated with the
truncation in the diffracted intensity at a certain wave
number. The possible errors in the data analysis and data
reduction have been discussed by Fessler et a/. " in detail.
In Fig. 4 we show the experimental g (r) obtained from x-

ray diffraction studies by Fessler et al. " We have com-
pared this g(r) with the hard-sphere model based on the
Percus-Yevick equation. We have used a packing density
of rl=0. 46 for our calculation. The agreement with ex-

periment is excellent beyond the first peak. The differ-
ence between the model and experimental g (r) around the
first peak is insignificant so far as the calculation of the
fractional Knight shift is concerned.

In Table I we compare the fractional Knight shift cal-
culated using the density-functional result [Eq. (14)] and

I EGe
l
l
l
I

l
I

I
I
I
I
I-0.0001—

I I I I I I I I I I I I I I

3 4 5 6 7 8 9 10 11 12 13 14 15 16

r (a.u. )

FIG. 3. Induced spin density bn(r)=[n'(r) n'(r)]; ~—
—[n'(r) '(nr)] saround S—i (solid line) and Ge (dashed line)
in liquid Al.

the asymptotic formula [Eq. (27)] with experiment. We
should point out that the partial-wave phase shifts used in
the asymptotic formula in Eq. (27) were obtained from
our density-functional calculations. The summation over
l was carried up to l =10. The reader is referred to the
Appendix where we discuss the numerical procedure and
the necessity for using Eq. (27) over Eq. (28) and for re-

taining higher values of l in the partial-wave sum.
The agreement between the asymptotic and nonasymp-

totic values of the Knight shift in 3/Si and A/Ga is satis-
factory while for AlMg and AlGe the values differ by a
factor of 2. This shows that the asymptotic formula for
the Knight shift is not valid in general and that the con-
tribution of near-neighbor atoms to the fractional Knight
shift may be quite important. For near-neighbor sites, the
asymptotic expression is not valid.

We now compare the density-functional result with ex-

periment. Except in the case of AlGa the agreement with
experiment is fairly poor. Of particular interest to note is
AlMg where the sign of the calculated fractional Knight
shift is opposite to that in experiment. This disagreement
is unsettling, since liquid metals, such as Al, are ordinari-

ly characterized as free-electron-like where Ziman's'

theory applies.

Impurity

Knight shift in liquid Al alloys
Density

functionalExperiment Phase shift

l2Mg
l4Si
3lGa
32Ge

0.01
0.07
0.14
0.21

—0.23
0.29
0.16
0.44

—0.11
0.23
0.13
0.70

TABLE I. Comparison between fractional Knight shifts
r =X-'anzac due to ~2NIg, ~4Si, 3,Ga, and 32Ge obtained from
experiment, self-consistent spin-density-functional, and phase-
shift (asymptotic) calculations.
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FIG. 5. Experimental data points from which the experimental fractional Knight shift I =K BKfBC was obtained by Rigney and

Flynn (Ref. 7). The straight line corresponds to the I values quoted by Rigney and Flynn. Note that the scatter in the data points

for all the alloy systems is appreciable T th y is based upon our self-consistent calculations.

We further note from Table I that the influence of core
electrons is consistent between the experimental values
and the density-functional calculation, but is inconsistent
with the asymptotic (phase shift) limit. Since Ge and Si
both have a valence of 4, the difference in their fractional
Knight shifts, i.e., 0.21 —0.07=0.14, is a measure of the
core-electron contribution to the Knight shift. This value
is the same as the measured fractional Knight shift due to
Ga which is isovalent with Al. The density-functional
calculation shows this same behavior, i.e., I (32Ge)
—I (~4Si)=0.44 —0.29=0.15=1 (3~Ga), while the phase-
shift calculation does not. This further points out the in-
consistencies introduced by using even self-consistent
phase shifts in trying to model phenomena where this
asymptotic calculation is inappropriate.

We now comment on possible sources contributing to
the apparent disagreement between theoretical and experi-
mental results in Table I. We first discuss the shortcom-
ings of our theoretical approach. In spite of the fact that
the present calculations are the best to date, these
shortcomings may include (1) other contributions such as
core-polarization and orbital effects that can contribute to
the fractional Knight shifts. In most simple metals, the
core-polarization contribution is about 30% of the direct
term. ' No calculations of this contribution in alloys are
available to our knowledge. (2) We have assumed that
Pauli spin susceptibility is the same in the imperfect metal
as that in the perfect host. (3) We have neglected the ef-
fect of structural disorder on the electron-spin-density dis-
tribution. Corrections beyond the jellium model may be
necessary. (4) The pair-correlation function g(r) used in

our calculation is that for the perfect liquid metal. The
presence of impurities in nondilute proportions may affect
this assumption.

From the experimental view, as pointed out earlier, the
shifts in the precession frequency due to impurities may
be small and thus difficult to measure in very dilute al-
loys. The addition of large amounts of impurities may in-
troduce complicating interactions between impurities and
thus affect the measured fractional shift. To illustrate
this point further, we show in Fig. 5 the experimental
hK/K for various impurity concentrations in AMg,
AIGa, AISi, and AIGe alloys. These data, were taken
from the work of Rigney and Flynn. The straight lines
are the fits to the data points used in Ref. 7. The slope I
of these straight lines is the experimental values given in
Table I. It is clear that the data points have considerable
scatter in them and the slope of LAC/IC versus c can be
easily altered. Thus it would be useful to have additional
experimental studies of these systems, particularly at low
concentrations. Until more accurate experimental values
of I are available, it will be hard to judge the importance
of various factors discussed in analyzing our theoretical
results.
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APPENDIX: PROCEDURE FOR NUMERICAL
EVALUATION OF FRACTIONAL KNIGHT SHIFT

It was pointed out in the text that the contribution to
fractional Knight shift, I =IC 'M'/t)c, arises from host
atoms at close proximity to the impurity (where perturba-
tion is large, but number of host atoms small) as well as
those at large distances (where perturbation is small but
number of host atoms is large). Thus it is not only impor-
tant to have a theory that is valid at all distances from the
impurity, but also the contribution from all atoms should
be calculated properly in numerical computations. In the
following we provide details of our numerical approach
and point out some of the difficulties inherent in the ear-
lier approach of Rigney and Flynn.

For the density-functional calculations, the integral in
Eq. (14) was divided into three regions, namely,

T

1.0

0.8

L

X (22+1)ja(x)J=o Jf

0.6

0.4

0.2

0.0
0

L

FIG. 6. Plot of gt o(21+1)jt(x) vs L for various argu-

ments of the Bessel functions. Note that the sum is independent
of x only if it is carried to large values of I..

AK 1I = —= d rp(r)
c

An
tno —no

R

+I d'p()
I n(', —n(')

00
3 1 A asym+ d r

Ru 00 no~ —
no~

(A 1)

In the self-consistent calculation of b, n, the density func-
tional Eq. (16) was integrated from the impurity site to a
maximum distance Rq ——14.0ao using a Herman-Skillman
mesh. Thus the first term in Eq. (Al) was computed us-

ing self-consistent b, n and p(r)=Qo 'g(r) from Fig. 4.
For the second term in Eq. (Al) we chose Rn ——60.0ao
and fitted the spin density b, n to an asymptotic formula
for r ~R&,

b, n„=A cos(2kFr+8)lr (A2)

The amplitude 2 and phase factor 8 were determined by
fitting (A2) to the last two points of our calculated self-
consistent b,n(r). In the third region Rn &r & oo, we set

p(r) =Qo since g(r) —+1 in this limit and the integration
of the third term in Eq. (Al) is evaluated analytically.
The fractional Knight shift using the asymptotic formula
Eq. (27} was evaluated in a manner described above. The
phase shifts 5t in Eq. (27) were obtained from our
density-functional calculation, namely 5t =5t'+5t' for elec-
trons at the Fermi surface. We retained partial waves
0 & l & 10 in the summation in Eq. (27).

It is now appropriate to comment on the difficulties as-

sociated with the numerical procedure used by Rigney and
Flynn to evaluate Eq. (28). First, these authors restricted
the sum over partial waves to 0&l &2. Since the deriva-

1 l+1Jt(x)~ —cos x — tt & as x ~ oo
x 2

1 . l+1
n, ( )~x—sin x — ~ asx~~ .

X 2

(A3)

Thus

[nt (x)—jt (x)]=— ( —1)'+' cos2x, as x ~ oo,X'
(A4)

[nt(x)jt(x)]= z ( —1) +'sin2x, as x~oo .
2x

Since p(r)~Qo ' as r ~ oo, Eq. (29) in the asymptotic re-

gion would go as a sinusoidal function. Thus the At's and
B~'s cannot be numerically evaluated. We therefore
recommend the use of Eq. (27) for the asymptotic formula
for the Knight shift.

tion of Eq. (28) relies on the condition that the identity in
Eq. (26) be satisfied, we show in Fig. 6 a plot of

o(2l+1j)t (x) versus L for several values of x. For
this sum to be independent of x, one has to sum over a
large number of l values —the larger the x value, the
greater the number of l values required in the sum to
satisfy the identity in Eq. (26). Thus for impurities for
which the scattering phase shifts for l ~2 are important,
one has to include higher l terms in evaluating Eqs. (27)
or (28}. The second problem is associated with the evalua-
tion of At's and Bt's in Eq. (29).

To derive the asymptotic behavior of the integrands in
Eq. (29), we note that
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