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Renormalization-group relaxational dynamics of interfaces in 4 —e dimensions
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We present a dynamic renormalization-group calculation in 4 —~ dimensions of the capillary wave disper-
sion relation i0z for the interface of an Ising-like system driven by relaxational dynamics (model A). The
dispersion relation is of the form ai~ = —iIq*f't (qg), with 0 (x) universal and z = 2+ O(a2), and satisfies

the Goldstone theorem for the spontaneously broken Euclidean symmetry.

In recent years, the interest in the study of critical phe-
nomena has largely shifted from bulk to surface and interfa-
cial properties. Static critical properties in nonhomogeneous
systems have been widely investigated by a variety of
methods. ' However, little progress has been achieved in the
study of dynamic critical phenomena in these systems using,
in particular, renormalization-group (RG) methods. A not-
able exception is the work by Bausch, Dohm, Janssen, and
Zia who employed a phenomenological drumhead model
with relaxational dynamics in order to investigate, within a
RG approach, the spectrum of excitations of an interface in
(bulk) d = 1+ e dimensions. These authors argue that near
criticality the characteristic frequency of the interface obeys
the iscaling form Oi~

—q'0 (q(), with q the (d —1)-
dimensional wave vector parallel. to the plane of the inter-
face and g the bulk correlation length, and identify the ex-
ponent z, which they calculate to second order in e = d —1,
with the bulk system's dynamic critical exponent. The
above conclusion implies (at least, in low dimensionality)
that both the surface modes and the bulk critical modes are
characterized by the same critical exponent z. That this is
so has been formally verified only in the case of the rigid
surface of a semi-infinite medium described by a time-
dependent Ginzburg-Landau (TDGL) model. In the case of
a moving interface, there- is always the possibility of a
surface-wave exponent different from the bulk dynamic ex-
ponent z, if, for example, a new renormalization counter-
term is required. In order to investigate this and other im-
portant issues, a more microscopic formulation of the
dynamics of an interface is desirable, together with an
evaluation of the unknown scaling function O(x). This is
all the more necessary since the drumhead model has been
shown4 to correspond to the more microscopic Ginzburg-
Landau-Wilson @~ model of an interface strictly in the limit
of temperatures T (( T, .

In this Rapid Communication, we present the first step
towards this goal by calculating the dispersion relation m~

for the interface of an Ising-like system described by the
usual $4 effective Hamiltonian and model A relaxational
dynamics

rjrti(x r) F 5H
( )

"r)r
' S@(x,r)

0=Jt ddx Y'rpitiz+ z (V@)z+—,A. p@4 —hit~

A spatial argument x= (p, z) denotes a d-dimensional posi-
tion vector. In our treatment of the TDGL model, the
h = 0 interface is introduced in a microscopic way (in analo-
gy with equilibrium calculations6 7) by requiring that

($(x, t)) =M(z), with z as the direction perpendicular to
the interface and

lim, + M(z) = —lim, M(z) = Ms

the bulk equilibrium order parameter. The random noise
rt (x, r ) satisfies

(rl(x, r)q(x', r')) =21ps(x —x')5(t r')—
where I"0 is the kinetic coefficient. We have employed the
dynamic RG technique in 4 —~ dimensions to determine the
surface-wave pole co=co~ of the linear response function
R(q;z, z';pi). The linear response function is defined, as
usual, by

(@(x,t)) —M(z) = dx'dr'R (x, t;x', r') h(x', r')

in which case the hybrid R(q;z, z';id) is the Fourier trans-
form with respect to time and space (in the plane perpendic-
ular to the z axis) in the inhomogeneous system with an in-
terface. To first order in e, the result is of the form

rpq = —iTq'II (q()
where z = 2+ O(e'), and where the function II (x) is
known to order e in the form of a parametric representation
in terms of multiple integrals. The limit forms of this func-
tion are

Q(x) = I+a(C+ O(x')), x « 1

1

II(x) = I+a lnx+ + O(x ), x »1, (2)
C) C2

X X

where C, C~, and C2 are known constants. For all values
of qg, the first-order calculation is consistent with the non-
perturbative result: lim~ Oco~ =0, which is the specializa-
tion of the Goldstone theorem for the spontaneously broken
translational symmetry in the z direction. In the present
case, the theorem can be cast in the form of a Ward identity
for the response function and order parameter in the pres-
ence of a vanishingly small (translational) symmetry-
breaking field h(z):

Ir, M(z;h(z) )8
()Z

dz', R (q = 0;z,z'', r0 = 0; h (z) ) = 0, dh(z')
z

As the magnitude of h(z) vanishes, the profile M(z) re-
mains; hence, the response diverges. In Eq. (1) the critical
exponent for co~ is identified with z, as scaling would sug-
gest. A calculation to O(e ) would be a most welcome
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reinforcement in establishing this nontrivial result. More-
over, a higher'-order calculation should reveal a singularity
in the function II (x) as x 0 [for model A, however, this
singularity does not show up to O(e) owing to the fact that
z = 2+0(ez) ]. This interesting singularity should reflect the
fact that, in general, the interfacial dispersion relation in the
hydrodynamic regime (qg 0) has a power of q dictated by
Goldstone-mode fluctuations and differing from z. An
analogous situation is presented by the O(n) model of an
isotropic ferromagnet for all T & T„ in which case the hy-
drodynarnic regime behavior of the longitudinal correlation
function is G~~ (k) —k, as prescribed by spin-wave
theory.

We now describe our calculation, stressing from the start
that our method could be extended to more complicated and
realistic models of dynamic interfaces. We employ the Mar-
tin-Siggia-Rose" field-theoretic dynamic RG formulation as
developed by Janssen' ' and DeDominicis. ' ' The ran-
dom force q(x, t) is replaced by an auxiliary field i'(x, t) in

a Lagrangian formulation with, for model A,
t

L = I'04' —)i' ——I o&'+ "oro it —i
3!

Below the critical temperature T„one introduces the shift
@(x,t) M(z)+$(x, t), so that Eq. (3) now becomes

L=r,j —ij ——I,V+I.r.+ M (z) y
"2 " ~ 2 A. pl p

9t 2

—i. ' ' M(z)jy' i ',—' jy3 . (4)

Correlation and response functions are averages over the
fields @ and @ with statistical weight exp( —Idx dt
&& L (@,P) ). In developing a perturbation expansion in
powers of Xp, the bare propagators

Gtp~) (1,2) = (it ( x)t )tPp( xzt )z)p
Ih

where @)= if, it z
= P, satisfy the differential equation

—iD(x), tt)

—iD(x), —t)) G)) (1,2) G)z (1,2)
G2t&o) (1 2) Gztzo) (1 2)

= ( — )

where

D(x, t) = ——I'p'7 + I prp+ —)).pl pMp (z)6 2 2
2

with Mo(z) the zero-order equilibrium profile. If we denote the eigenfunctions of D by e'"'+")'j " (z), the g&i")(z) satis-
fy6, 7

r

+ rp+ z XpMp (z) (t& (z) = Et&)(t&) (z)
dz2

Then the spectral representations of the propagators are given by

G (q;z, z';QJ) = (" (z)( i' (z')' 2Vp

[Qi+ ITp(q +E + )][pi —Tp(q +E & )]

G'" (q;, '; ) = G'" ( —q; ', ; — ) =g("'( )('"'( ')
co+ il (q + Et)"))

Gz2 (q;z, z';Qi) = 0

To order one loop, the response function R = iTp($@) is

given in terms of Feynman diagrams as shown in Fig. 1,
where the propagators 6'~~ and G~2 are represented by a
continuous and a continuous-wavy line, respectively, and
the two different interaction vertices of Eq. (4) are rep-
resented by different circles. For d ~ 4 perturbation theory
is divergent and a renormalization scheme must be used.
We have found, at least to order one loop, that the bulk re-
normalization constants Z@, Z 2, Z„, and Zr suffice to re-

move the divergences. This confirms that, at least to O(e),
there should be only one dynamic critical exponent, the

Mo(zl)

G, (q; z, z';&@) =, +

FIG. 1. Diagrammatic representation of the response function to
order one loop for T( T,. The circles denote the third- arid

fourth-order interaction couplings in Eq. (4).

I

bulk one z. (See, however, Ref. 8.) Care must be taken
when renormalizing the zero-order graph in Fig. 1; the
eigenfunctions (ii" (z) and eigenvalues Esti') are now those
appropriate to the renormalized operator

DR = ——Z„I V + ZrZ zl t+ 'ZrZ„uKp —I M (z)9t 2

in which I = Zr 'I'p, t = Z z' (rp —rp, )~ T T„and ui~p '—
= Z„')).p are the renormalized parameters, whereas M(z) is
the one-loop order-parameter profile. ~ The length scale in
the renormalized theory is set by Kp . The complicated
spectral representations for the bare propagators make the
calculation of the full response function impractical even to
one-loop order. Nonetheless, the surface-wave dispersion
relation can be extracted from renormalized perturbation
theory by making the reasonable ansatz that co~ is the only
pole of the interface response Gii found by taking the full re-
normalized response function R~ = I'I G~2~ and projecting
onto the Goldstone mode eigenfunctions (p, =O, Etp) =0),
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which generate localized interface distortions, i.e.,

GR (q;Qi) = » «'gg '(z) G12R (q;z, z';t0)(g '(z')
/

After a computation far more laborious than for equilibrium
profile calculations, the result for GR(q;ai) may be written

Git (q,oi) =
2

ti
2 2

rp z, I
]

HAIK

q
&0+ iTq (ai+ iTq ) Kz I a2

where ir=( ', u u'=2&/3 is the dimensionless renor-
malized coupling (u" being the fixed point), and where
iIi(x,y) is a universal function given in terms of lengthy
multiple integrals. The dispersion relation is the solution of
GR(q;&0~) '=0, and from Eq. (5) one finds

i
2 2

ai, = —iT q'+ ~eK'4, , = —«q'& (qg)
t

The limiting forms of O(x) have been given in Eq. (2).

Details of the calculation, as well as the form of the func-
tion 0 (x), will be given in a forthcoming publication.

We have reported for the first time a calculation of
dynamic interfacial properties of an Ising-like system
described by a time-dependent Ginzburg-Landau model in
4 —~ dimensions. Furely relaxing interfaces of this kind
characterize domains in Ising antiferromagnets or in order-
disorder systems. The calculation is the first to make use of
the static and dynamic equations of the bulk system as the
starting point and the approach could be generalized to the
study of interfaces in binary alloys (model 8) or liquid-
gas —liquid mixture systems (model H). ' Calculations on
such systems would allow a close look at the nature of the
hydrodynamic limit.
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