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Quantum critical behavior in the presence of a random field
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Using the generalized Ginzburg-Landau-wilson Hamiltonian with a random field, we have shown the
absence of classical to quantum crossover near zero temperature. Our finding suggests that the critical ex-
ponents of a quantum system with a random field at T =0 can be obtained from those of the correspond-
ing pure system by a dimensionality shift from d to d —(cr+z), ~here cr. is related to the range of interac-
tion and z is the characteristic exponent of a given quantum system.

Quenched random fields can drastically modify the
second-order phase transition and change the critical ex-
ponents. ' If the interaction is short range, a random field
shifts the upper critical dimensionality from 4 to 6, and the
critical properties of a d-dimensional system in the presence
of a random field are identical to those of a (d —2)-
dimensional pure system. For systems with continuous
symmetry and m ~ 2 (m is the number of components of
order parameter), a random field destroys the long-range
ordering for all d ~ 4 (Refs. 1 and 6). For m = 1, there still
exist controversial arguments regarding the lower critical
dimensionality, although at the present it seems to be 2
(Ref. 7). Recently, it has been shown that in the case of
transverse Ising model, a random field destroys the classical
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to quantum crossover. Similar behavior of quantum ef-
fects has been discussed for the quantum Bose gas with a

'

random field.
In this Rapid Communication we show that 'a quenched

random field can strongly affect the critical behvaior of
quantum systems. Here we present the general arguments
that a quenched random field can always remove the classi-
cal to quantum crossover at T 0, and that the critical ex-
ponents of a quantum system at T = 0 can be obtained from
those of a pure quantum system by the dimensionality shift
from d to d —(o +z);

We begin with the generalized Ginzburg-Landau-Wilson
(GLW) Hamiltonian for a m-component spin field plus a
(small) time-independent random field h ( r ):

H= —~ (r+q + III"q ')(r() ) o. ( —l )

(r (A.() ' (T (A.z) (r ()(3) ' (r ( A.] A.z X3) +JP h(q) (r (l()8„0

where p= 1/ksT, l(= (q, co), co=2ms/p with s =0, +1,
+ 2, . . . is the Matsubara frequency,

=(2m) ~ d'q g,
and h(q) and o-(q, m) = o. (A. ) are, respectively, the
Fourier transforms of h ( r ) and the (real) spin field
o. ( r, r) with 0(7 ~ p. A quantum system is specified by
o for the range of interaction (0& o. ~2 for short-range
forces), by x ~ 1, y ~ 0, and z = (o-+y )/x for the dynamic
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exponent, and by m for the number of components. The
Hamiltonian (1) without the random field has been dis-
cussed by Hertz. "

In this paper we consider the quenched random field with
the properties (h( ( q )),„=0 and

(h;(q)h, (q')),„=h'8&8(q+ q')

for ij = 1, 2, . . . , m, where 8(q) = (2m)"8 (q). Using the
replica trick' and performing the average, we obtain from
(1) the effective Hamiltonian

f r

H,((((~ ))= —~ „g[(r+q + I~I"q ')8, Ph'8, 01~ (X) —~ ( —l )
Iaa

u

J
' g(r (&&) (r ()(z)(r (X3) (T ( k(. h. z )E3)

p L) JAz JX3

where a = 1, 2, . . . , n is the replica index. The propagator of the replicated system is given by

(2)

(~((z)~y(z'))0=(r+q +I~I"q ") '[8 +ph (r+q +I~I"q r —nph 8„,0) '8„,0]8&8(z+z')
where ( . ) 0 is an average over the quadratic part of (2).

We will use the Wilson-Kogut renormalization group' ' to construct the recursion relations, with the rescaling of wave
vectors and frequencies q = q'/b, co =(0'/b*, p= b*p', and

(r ( q 0( ) b (d + 2 —(()/2 (r (q
'

0( )

where b «1 is the spatial rescaling factor. Since for d )2' —z, uo is irrelevant, but h is relevant and the recursion rela-
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tions contain the product term uph, we introduce a new
variable vp= uph . In the lowest order of e expansion, after
taking the limit n 0 and setting q=2 —o-, we obtain the
recursion relations

r'=b [r+4( m+2) uaf, +4( m+2) vpf, ],
up= b [vp 4(m + 8)upvpf3 8(m + 8)vpf4]

(4a)

(4b)

up = b [up 4(m + 8)upf3 8(m + 8)upvpf4], (4c)

/3'=b *P
~ (4d)

where, with the notation for integration in a domain
I/b & Ipl &I,

f» t
———„$(r+p + Io)l"p «) ', s =1,2, (Sa)Jp

f» —— (r+p ) ' ', s=1, 2
4p

(Sb)

Now we consider the eases T & 0 and T = 0 separately.

A. T ~0 case

It is readily seen that for any finite temperature, after car-
rying out renormalization I times, the spacing between the
Matsubara frequencies hcp = 2m. /P(l) tends to ~ as l
Consequently, only the cu = 0 contributes to the critical
behavior. In terms of the new variables u = up/P and
v = (up/p) (phz), and setting b = e', we obtain the differen-
tial equations in the asymptotic form for l )& 1

—"= ar+ 4Kd (.m + 2) [u (1 + r ) + v ] (I + r )
dl

(6a)

dl

" = ev —4Kd( m + 8)v [u (I + r ) + 2v] (I+ r ) (6b)

dl
= (e —a)u —4Kd(m +8)u [u (1+ r ) +2v](1+r )

(6c)

where Kd=2' ~m i /I'(d/2) and e=3a. —d.
These equations are the same as those obtained for classi-

cal random field systems. u is irrelevant if d & 2o-. For
d & 3o- the Gaussian fixed point is stable. When 2o-

& d & 3o-, the critical behavior is controlled by the random
fixed point at

2o.(m+8) ' SKd(m+8)

with the eigenvalues

m+2
A. = o- — e A. = —e and A. -= —o-I'

8
«Q « Q «

and the critical exponents can be obtained from the pure
-system by a dimensionality shift from d to d —o-. For o-= 2
this is true in all orders of ~ expansion around d =6 —e
dimensions. However, for o- & 2, this is known not to be
the case to O(ez) as proved in Ref. 4. The modification of
the scaling laws, i.e., a shift d d+ ~„- in the scaling rela-
tion vd = 2 —n, is the only effect of u, which is a dangerous
irrelevant variable. Therefore, in the presence of a random

field, for any T & 0, the quantum fluctuations are ineffec-
tive as well as the thermal fluctuations.

B. T =0 case

In the limit T 0, co becomes a continuous variable and
all the Matsubara frequencies contribute to the critical
behavior. However, we obtain the same recursion relations
for r', up, and vp as those given by (4a)-(4c), but with the
I/P g„ in (Sa) replaced by f dip/24r. Therefore, up always

decays to 0 for 2o- —z & d & 3o-, and the random fixed
point r', v', and u' is the same as that for the classical sys-
tem with a.-random field. Thus, the random field destroys
dimensional crossover as T 0, and the asymptotic critical
behavior of a quantum random field system stays the same
as that of a classical one.

For the rest of this paper, we will present quantitative dis-
cussions separately for the case (x = 2; y = 0; z = a./2),
where we do not require a cutoff of the Matsubara frequen-
cies, and for the case (x = I; y =0, I; z = o. +y), where a
cutoff of frequencies is usually imposed.

(1) The differential recursion relations for x = 2, y = 0, and
z = a./2 can be derived as follows:

—= ar+2Kd(. m +2) [u (1+r ) 'i +2v (I+r) ], (7a)
dl

= eu —Kd(m +8)v[u (1+r) +gv(1+r) ], (7b)
dl

= [e —(z + a. ) ]u —Kd (m + 8)u [ u (1+r )
dl

+8v(1+r) '], (7c)

with the initial values r(0) =r, u(0) = vp, and u(0) = up.
We should point out that in the absence of the random
field, the above equations are slightly different from their
d + z classical counterparts. Nevertheless, to the leading or-
der of the e = 2a- —(d +z ) expansion, they lead to the same
critical behavior.

Equations (7a)—(7c) have a Gaussian fixed point with
the eigenvalues A (G ), = a, h. (G )„=e, and X(G )„=e
—(z + a. ), as well as a random fixed point with the
eigenvalues X, = a—[(m + 2)/(- m + 8) ]e, h.„=—e, and
X„=—(z + a ) In the . absence of the random field,
(7a)—(7c) yield precisely the same eigenvalues for the
Gaussian and the nontrivial fixed points but with ~ e and
v u, though the positions of the fixed points and the
eigenvectors are different.

Therefore, we conclude that the critical exponents for a
quantum random field system at T = 0 can be obtained from
a pure system by a dimensionality shift from d to
d —(a-+z). Simultaneously, the scaling laws have to be
modified with the same shift since u is a dangerous ir-
relevant variable. This conclusion is valid for dimensionali-
ties 2o- & d+z & 3a and arbitrary values of m. Perhaps we
should mention that regarding the lower critical dirnen-
sionality, the above calculations suggest a value o-+z for
random field quantum systems.

(2) For x = 1, z = a. + y with y = 0, 1, we can follow the
discussion of Hertz on the paramagnon model (Ref. 11). As-
suming a cutoff of frequencies 0 & Ice I & 1 and 0 & I q I & 1,
in each step of renormalization we scale cv' = cue" and
q'=qe', and take integration first over a horizontal strip
( leo I

= 1;0 & Iq I & 1) and then over a vertical strip
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( I q I
= I;« I~ I & 1). This yields

—= crr +4Kd(m +2) [uFt(r, cr z)+ v(1+r) ]
dl

(8a)

—4'(m +8)u [ uFz(r, cr, z) +2m(1+r) ] (Sc)

where

c

pl
Ft(r, cr,z) = —J dxx~[x(x +r)+1] '+ —ln

O m 1+r
c c

(9a)

1

Fz(r, o,z ) =—' dx xd+'[x (x + r ) + 1]

+1 1

(1+r)(2+r) (9b)

with the initial values r (0) = r, cc(0) = vp, u (0) = ccp, and
z =1+o-.

As in the previous case, here the random fixed point also
exists and is the same as the one for the classical random
field system. An analysis of the above equations again
shows that the critical exponents for the quantum random
field system are the same as those for the pure quantum

dl
= Eel 4'(m +8)v[uFz(r, cr z) +2u(1+r) 1, (Sb)

du = [e —( rc+z)]u
dl

system after a dimensionality shift from d to d —( o- + z ),
although there is a difference in the positions of the fixed
points and the eigenvectors.

In this paper we have studied the critical behavior of
quantum systems under the influence of a quenched ran-
dom field. Our results on the absence of classical to quan-
tum crossover as T 0 and the dimensionality shift by
o-+z can be applied to those quantum systems which are
characterized by real order parameters and undergo a phase
transition versus temperature and coupling constant. Some
of them are (o-=2): z =1 (x =2,y =0), tranverse Ising
model (m = 1), singlet-doublet system with the XY
(m = 2), or the Heisenberg (m = 3) exchange; z = 2
(x = I,y = 0), the itinerant antiferromagnet; z = 3
(x = l,y = 1), the paramagnon model.

The concrete forms of the initial coupling constants in the
GL% functional can be determined if we start from the mi-
croscopic Hamiltonian and then perform the Hubbard-
Stratonovich transformation and the cumulant expansion.
%hile such procedure can be generalized to the case of
quenched random field, our choice (1) is the simplest form
to study the universality of quantum critical phenomena
with a random field. %e would like to point out that the
random field considered in this paper is short-range correlat-
ed, in contrast to the random field infinitely correlated in
the (d + 1) time direction which appeared in an equivalent
approach to the transverse Ising model, where some of
our results are already known.

Since what we have derived here is a one-loop result, for
o. & 2, whether our finding is still correct to 0 (ez) is an
open question.
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