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Surface magnetization in inhomogeneous two-dimensional Ising lattices
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A simple exact expression for the surface magnetization in the Hamiltonian limit is used to discuss the
effects of slowly varying coupling constants.

Planar Ising models with a free surface and with couplings
which vary with the distance from that surface have been
the topic of several recent papers. ' In these studies, a
dependence of the form

K (n') = K (1+an «), n ~ 1

was assumed for at least one of the couplings, where n la-
bels the bonds, starting from the surface, and a,y are free
parameters. The couplings, therefore, approach their bulk
value with a power law. Investigated were the spin correla-
tions in the surface (exponent radii) and the surface magneti-
zation m, (exponent P, ). It was found that for y ) 1, the
critical behavior is not modified, but at y =1 it is, and the
exponents q ii and P, then become continuous functions of
the parameter a. Moreover, for y =1 and a & a„as well as
for y & 1 and a & 0, the tendency towards order is so much
enhanced near the surface that m, does not vanish as the
bulk critical temperature is approached from below.

It was shown by Burkhardt and Cordery how such a
critical behavior can be understood from a renormalization-
group analysis. However, for the Ising model one would
also like to have a more direct explanation. The existing
calculations are based either on an ingenious application of
the star-triangle transformation' or on Pfaffian tech-
niques. The drawback is that both are quite involved so
that the mechanism of the effects is not very transparent.
In the present Rapid Communication I want to show that
the surface magnetization can be obtained in a much
simpler way. The mathematical origin of the unusual
behavior is then clearly visible. The system which I consid-
er is a square lattice in the Hamiltonian limit.

Let Kt = PJt and Kq(n ) = PJ2(n ) be the vertical and hor-
izontal couplings, respectively. The row-to-row transfer ma-
trix in the limit of large Kt and small K2(n) is given by
V= exp( —Kq'P ), where KP is the dual coupling of Kt
and 4 is the transverse Ising Hamiltonian'

n~i n~i

with P,„=K2(n)jK~' and Pauli matrices a-„", a-„'. Assuming
the n dependence of Eq. (1), we have li.„=li. (1+an «).
The bulk parameter X measures the temperature, with ) & 1

corresponding to T & T, . The surface magnetization can be
obtained from the large distance limit of the spin-correlation
function in the surface. This leads to the expression

where IO) is the ground state of P and Il) is the state
which, for a horizontally infinite system (1«n (~), be-
comes degenerate with IO) (for X ) 1). The way how this
degeneracy occurs, is well known from the homogeneous

case -a = 0: ' One diagonalizes with the help of Fermi
operators, obtaining A = g«e«n«n«+const, where the
single-particle energies e~ follow from a matrix equation of
the form

so that the surface magnetization is completely determined
by the amplitude of the state s at site l.

The point now is that in the infinite system with e, =0
the function @, can be determined from the simpler equa-
tion (A + 8)@,= 0 (Ref. 11), where

r

1

1

1
(w +a) =2

This gives a recurrence relation for @,(n) which can be
solved explicitly for arbitrary values of ~„. For the specific
choice made above, it gives, setting $, (1)= C/X,

n —1

@ (n) =C( —I)"+'z " g 1+ '
k=1

(7)

The constant C has to be calculated from the normalization
condition g„@,(n )2= 1. In this way the spatial variation of

determines the value of m, . In particular, m, is only
nonzero as long as @, remains normalizable.

The various possible cases can now be discussed. In the
homogeneous system (a =0), @, is a simple exponential
function and C is readily evaluated, leading to'
m, = (1 —X ')'~' and, hence, P, = —,. For a & 0, the simple
exponential decay is modified by the product in Eq. (7).
For enhanced couplings (a ) 0), @, decreases faster, at
least initially. For weakened couplings (a ( 0) it decreases
slower and can even increase initially. This happens if cou-
plings near the surface become undercritical (X„(1). In
the case y ) 1, the product converges and the'form of @, is
unchanged for large n, . Since m, is determined by the large

(4)

in the notation of Ref. 9. It is then found that one state,
which I shall call s, has exponentially small energy &, —~
in a finite system (n «N) and a wave function P, (n)
which is localized in a region n (Inli. ) near the surface.
Therefore, the state IO) is the vacuum of the Fermi opera-
tors n«, and Il) =o., IO) has one fermion in state s. Upon
expressing g 1 in terms of the o,~, one finds that

m, = @,(I)
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n behavior of @, for A. 1, its critical behavior is not modi-
fied. The case y =1, ho~ever, is different. The product
can then be expressed in terms of gamma functions

I.Q

n-t '

1+—=a
k

I (n +a)
a I (a )I'(n )

and varies as n' for n ~. The wave function @„there-
fore, varies as a power law in the region 1 « n (Ink. )
for A. 1. It is this behavior which leads to a continuously
varying exponent P, . Explicitly, one finds for A ) 1,

oo ' —1/2

d& &
—2a~ —2n

S Jo f (9)

so that P, = ~ —a. This agrees with the result of Ref. 4 in

the present limit of small couplings E2. Actually, this for-
mula applies only for a & 0.5. For a ) 0.5, the function P,
is modified so much that it remains normalizable even for
X=1 and, therefore, m, stays finite at the critical tempera-
ture. In this case, one can ask how m, approaches this fin-
ite limit and finds a power law with exponent P,'=2a —1,
which is again in agreement with Ref. 4. A complete pic-
ture is then obtained by calculating m, for all temperatures
numerically. The result for y = 1 and various values of a is
shown in Fig. l. As one would expect, a large value of P,
means that the whole magnetization curve rises only slowly
as the temperature is lowered.

The case y & 1, finally, is again different. Here, the
product in Eq. (7) varies as exp(an' ) for large n This.
gives a localized wave function and, therefore, a finite value
of m, (T, ) for all a & 0. It can be shown that m, (T, ) varies
as a* for small a, where z = ~(1—y) '. The exponent P,',
which describes the approach towards this limit, turns out to
be P,'= 1 here. For a & 0, the function g, is strongly shift-
ed away from the surface and increases exponentially in the
region of subcritical couplings n & e '~, where a=1 —I/X.
Therefore, m, is very small near the critical temperature,
varying as

m, —exp( —g/E ) (10

where g depends on a and y. This is the same type of
anomalous critical behavior as found for the spin-correlation
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FIG. 1. Surface magnetization vs temperature (measured by &)

for y = 1 and various values of a.
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function at T, .3

In conclusion, I have shown how the features of the r-
face magnetization in the case of slowly varying couples
follow from the properties of the surface state which ie
encounters in the transfer matrix. The case where th
couplings K~ and E2 vary in space can be treated in ie
same way. A calculation of the spin-correlation funcn
would be more difficult, since there all fermion states cce
into play.
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