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We report the results of extensive Monte Carlo simulations and mean-field calculations for supercon-

ducting arrays in a transverse magnetic field. Two new lattices are studied: triangular and honeycomb.
The universality class of the transition is found to depend on both field and lattice type. In the triangular

lattice at a field of 4 flux quantum per triangle, there are some indications that the superconducting-

normal transformation proceeds by two separate phase transitions.

Two-dimensional arrays of superconducting (S) grains in

a nonsuperconducting (N) host show remarkable behavior
in a transverse magnetic field B: both resistivity above a
transition temperature T, (B) and critical current below
T, (B) vary periodically in B, with a period of one flux
quantum per unit cell of the grain lattice and a great deal of
fine structure. ' Current theory indicates that this
behavior is the manifestation of a novel kind of phase tran-
sitions which can be either of the unusual Kosterlitz-
Thouless vortex-unbinding variety or of the more conven-
tional Ising type.

The purpose of this Rapid Communication is to extend
previous results to two new lattices, the triangular and the
honeycomb, which can be readily prepared experimentally.
These lattices show a number of new features not seen in
the square lattice. In particular, the strong secondary max-
imum in T, (B) observed at a field f=

2 (where f is the

fractional flux per lattice cell, measured in units of flux
quanta) in the square lattice is much weaker, and possibly
absent, in the honeycomb lattice, and the universality class
of the transition is also different. The triangular lattice ex-
hibits a conspicuous secondary maximum at f = 4, which

appears to have been observed experimentally.
Perhaps most intriguing is the suggestion of some of our

numerical results, from both Monte Carlo (MC) and
mean-field calculations, that at f =

4 in the triangular lat-

tice, superconductivity may disappear by two separate phase
transitions. The intermediate-temperature phase seems to
be a partially coherent state somewhat similar to that
predicted by Blankschtein et aI. for a type of stacked anti-
ferromagnetic Ising model. However, since the present case
has a direct physical realization, a double transition, if
present, might have interesting experimental consequences
for weakly coupled superconducting arrays. Since the evi-
dence of a double transition is stronger from the mean-field
results than from MC, these consequences are perhaps
more likely to be observable in superconducting wire net-
works, such as those studied by Pannetier, Chaussy, and
Rammal, ' than in the weak-coupled arrays. In the wire
networks, fluctuation effects are expected to be much weak-
er and the mean-field predictions are therefore likely to be
less inaccurate than in the arrays.

Our calculations are based on the following simplified

model Hamiltonian:

H = —J $ cos(P( —
QJ

—A~)
'(&J )

Ag= Jt A d l (2)

where g; is the phase of the S order parameter on the ith
grain, 40=bc/2e a flux quantum, J the nearest-neighbor
coupling energy, A the vector potential, and the integral
runs between the centers of grains i and j. The thermo-
dynamic properties of the model are determined by treating
the phases as classical variables within the canonical ensem-
ble. We have evaluated canonical expectation values
[denoted ( ) ) either by MC simulation within the standard
Metropolis" algorithm, or by mean-field theory, using the
asymmetric gauge A=Bxy. We have computed the phase-
order parameter 7); = (exp(i@, )) using both methods, and a
MC or mean-field cell with periodic boundary conditions.
In the former, typically 15000-25000 passes were made
through the entire lattice with the first 5000 discarded for
each run, and reported results are generally produced by
averaging over 4—6 runs. We have also computed in the
MC simulations the specific heat C = [(H ) —(H) )/
(NkaT) and the "helicity modulus tensor" y as defined in
Ref. I2. y is a measure of the resistance of the phases to
an externally imposed infinitesimal twist, and is nonzero
only if the phases are in an ordered configuration. It is the
analog of spin-wave stiffness for the present system, and is
also proportional to the effective superfluid density of the
superconducting array. For the present problem, y =yI,
where I is the 2 & 2 unit tensor.

Figure 1 shows y and C for two representative transitions,
the triangular and honeycomb lattices at f = 2. In the first

case, y drops smoothly to zero at T, (f), while C has a pro-
nounced peak which sharpens with increasing MC sample
size. y also has clear size dependence and we interpret
these results as indicating an "Ising-like" (i.e., conventional
continuous) transition with a singularity in C at T, . Of
course, our calculations do not cover a size range sufficient
to confirm a logy. rithmic specific heat singularity as in the
2D Ising model. In the honeycomb lattice at f= T~, C has

no size dependence near T„ indicating no singularity at T, .
We label this transition "Kosterlitz-Thouless-like" although
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FIG. 1. Monte Carlo specific heat per grain C and helicity modulus y, for (a} triangular and {b) honeycomb lattice at field f= T. Dif-
ferent symbols denote different MC cell sizes. Arrows denote estimated transition temperatures.

we cannot determine if y has a universal jump of 2ksT, /m

at T„as ~ould be expected at such a transition, or goes
smoothly to zero.

A summary of the MC and mean-field results is given in
Table I. Besides critical temperatures T, (f), we show also
ground-state energies —Eg and critical currents I, at T =0,

calculated by the methods of Refs. 6 and 5, respectively. In
the triangular and honeycomb lattices, the critical currents,
unlike the helicity moduli, are anisotropic. Also shown are
values of y at T = 0, ca1culated as the second derivative of
—Eg with respect to an imposed twist of the phases at the
boundary of the sample. The notations "KT" and "Ising"

TABLE I. Mean-field transition temperature T, ", Monte Carlo transition temperature T, (both in units
of J), ground-state energy —Eg per grain in units of J, zero-temperature critical current density I, (T=O),
zero-temperature helicity modulus y (T =0), and transition class, for (a) triangular and (b) honeycomb.
%here two critical current densities are shown, they refer to currents in two perpendicular directions; the
larger critical current involves flow perpendicular to some of the lattice bonds. Critical current densities are
given in units of I, /a, ~here I, is the critical current of a single junction and a is the spacing between
grains.
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are merely intended to indicate the absence or presence of
size dependence in C, and do not imply that we have actual-
ly demonstrated the universality class of the transition. A
secondary maximum in T, (f) is present at f =

2 in both

the squares s and triangular lattices (besides the principal
maxima at integer f), whereas the secondary maximum is at

f=
3 for the honeycomb lattice. Mean-field results gen-

erally follow the MC simulations qualitatively, but differ
considerably at small f.

The ground-state vortex configuration for f=
4 in the

triangular lattice is shown in Fig. 2; the unit cell consists of
eight elementary triangles, two of which contain vortex
charge + 4, and six, charge —4. (Vortex charges are al-3 1

ways n f; with —n integer; we determine the sign of the
vortex charge by calculating the current around each ele-
mentary triangle in the ground-state configuration. ) The
T = 0 configuration is easily destabilized, because it contains
triangles of like charge grouped in a hexagon. At tempera-
ture T,~, therefore, mean-field theory predicts that the grain
in the center of the hexagon loses phase coherence, prob-
ably via a first-order transition. Above this point, the junc-
tions between this grain and the vertices of the hexagon are
normal (Fig. 2). This intermediate phase, if it exists, is
thus inhomogeneous, with some bonds superconducting and
some normal. At a slightly higher temperature T,2, there is
a second phase transition above which all the superconduct-
ing grains lose phase coherence. The two mean-field transi-
tions occur for this field and lattice at temperatures about a
factor of 10 above the MC transitions, indicating that fluc-
tuations are very important here. Figure 3 shows )q;~ for a
grain i in the center of the hexagon, and for one of the per-
imeter grains, as calculated from MC; corresponding mean-
field results are shown in Fig. 2. The MC results give some
suggestions of a first-order transition at about T=0.12 J,
but this suggestion cannot be relied on because of some nu-
merical instability (i.e., time dependence) in these order
parameters. Also shown in Fig. 3 are y and C as obtained
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FIG. 2. Phase-order parameters ~n;( for grains in center of hexa-

gon ( ~} and on perimeter of hexagon (5} in triangular lattice at
1f= 4, as calculated by mean-field theory. Order parameter of

center goes to zero at T, ~. Inserts: phase and vortex configurations
in low- and intermediate-temperature states. Heavy arrows denote
orientation of phases; light arrows, the current directions. Shaded
areas represent locations of positive vortex charge,

i+,,FIG. 3. (a) Phase-order parameters ~(e ') ~; (b) specific heat C
per grain; (c} helicity modulus y, for triangular lattice at f= 4, as

calculated by MC. In (a}, ( ~} represents the center of hexagon
and (6} the perimeter of hexagon on a 12x 12 sample.

from MC. y appears to show a change of slope at T, &, the
temperature of the principal peak in C. T, 2 is arbitrarily
chosen as the temperature of intersection of the curve for
y(T) with a straight line of slope 2/m", the residual part of y
above T,2 is probably a finite-size artifact and would disap-
pear in a sufficiently large MC cell. Although there is a dis-
tinct peak in C near T, I, T,2 is associated with at most a
much weaker anomaly.

Clearly, the MC evidence for a double transition is incon-
clusive and further work is required to establish the nature
of the transition to superconductivity at f = 7 in a triangu-

lar lattice. Nonetheless, the experimental implications of
any double transition are of interest. At the upper transi-
tion at T, 2, the array would acquire zero resistance to an in-
finitesimal external current, while the transition at T, ~
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would most likely be accompanied by a jump in critical
current. The intermediate phase between T, ~ and T,2 could
have ac properties of an impedance network composed of
pure inductive elements (the Josephson junctions) and
resistors (the normal links) regularly distributed on a two-
dimensional lattice, and could exhibit substantial absorption
below the superconducting energy gap. Moreover, similar
transitions seem likely to occur in other lattices and at other

magnetic fields, as well as in superconducting wire net-
works.
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