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We consider the effect of surface polaritons on the shift of a beam of light of finite cross section on re-
flection from a two-layered semi-infinite medium. The beam is incident upon the first layer at an angle
greater than the critical angle; the evanescent wave (in the first layer) interacts with the surface polariton at
the interface between the first layer and the second layer. The plane-wave components of the incident
““finite-cross-section’”> beam are absorbed and phase shifted by various amounts. The resultant emerging
(reflected) beam, therefore, undergoes a shift. It is found that the calculated shift can assume very large

values.

The problem of the lateral displacement (or shift) of a
(finite-cross-section) beam that is totally reflected at the in-
terface between two media has a long history. This shift is
associated with the names of two German scientists and is
now referred to as a Goos-Hianchen shift. For a list of early
references, the paper by Horowitz and Tamir may be con-
sulted.!

In a 1971 paper by Tamir and Bertoni,? they discussed the
lateral displacement of optical beams by multilayered struc-
tures. Their emphasis is on leaky waves. In our Brief Re-
port, we discuss the effect on stationary eigenmodes of the
layered system, i.e., surface polaritons when the dielectric
constant of the active medium is negative.

We rely heavily on the formalism developed by Horowitz
and Tamir! and therefore we discuss now briefly the under-
lying physics of their method and why it is of interest to ap-
ply their method to a different geometry. They choose an
incident beam having a Gaussian variation in intensity
across its width. The only reason for this choice is that the
integrals can be carried out fairly easily within a certain ap-
proximation. The ‘‘Gaussian beam” is then Fourier
analyzed to give a continuum of infinite plane waves. Each
incident plane wave is, on reflection at the interface, multi-
plied by the Fresnel reflectance I', which is a function of the
angle of incidence. For angles greater than the critical an-
gle, I' is a complex number, of modulus unity.

Each component plane wave in the Gaussian beam strikes
the interface at an angle of incidence slightly different from
every other component. Therefore, each component is mul-
tiplied by a slightly different phase factor and when all the
plane waves are superimposed again after reflection we ob-
tain a displacement (or shift) in the maximum of the
Gaussian.

In 1968, Otto® used total internal reflection at a
dielectric-air interface to couple p-polarized light to surface
plasmon waves by bringing the base of a totally reflecting
quartz prism close to a silver surface. The evanescent field
produced in the air space between the base of the prism and
the silver surface coupled to the surface plasmon waves and
excited them. This is revealed as a dip in the reflected radi-
ation. It is natural to suspect that the Goos-Hanchen shift
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could be greatly affected at angles of incidence close to the
angles of incidence for which the dips in reflectivity occur.
The results and discussion are given in the following para-
graphs.

The geometry that is pertinent to our discussion is shown
in Fig. 1. Our work parallels very closely the paper by
Horowitz and Tamir.! Instead of working near the critical
angle we confine our attention to a small range of angle
near the angle at which we obtain surface polariton absorp-
tion. The mathematics in this case becomes quite elementa-
ry and we obtain fairly rapidly an expression for the shift.
We start our analysis with Eq. (10) of Ref. 1 which we
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FIG. 1. Geometry of the reflected-beam problem. The surface
polariton is excited at the interface S. If there were no shift, the
peak of the incident Gaussian would travel along z; and then along
z, after reflection at the x-y plane.
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reproduce here:
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where k sinf is the component of the wave vector parallel to the surface, W is essentially the width of the Gaussian beam,
and I'(k,) is the Fresnel reflectance. In our case, I'(k,), for transverse magnetic waves, is given by*
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The time dependence, exp(iwt), has been suppressed in Eq. ponents, Ak, contributing to the makeup of the beam is
(1). The definitions of the terms appearing in Eq. (2) are such that (Ak)(w)=1 or Ak << ko. We can therefore ex-
pand TI'(k,) around k,=ko A straightforward expansion

- _ 1/
ks = (e’ = k>0, @) results in the following equation:
kz;=-l_(kx2_w2/cz)1/2 , 4)
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with (k¢ — ®?*c?) greater than zero.
In order to have absorption of the incic{ent beam by sur- =T (ko)[1+T" (ko) (3d)] , (6)
face polaritons, we must have that e, is complex. The
square root in Eq. (5) is chosen so that the imaginary part , , .
of k, is greater than zero in order to have decaying waves  Where E (ko) and F'(ko) are, respectively, the numerator

into medium 2. The media labeled 0, 1, and 2 have, respec- ~ 2nd denomir,lator of Eq. (?) evaluate,ad at  kx=ko,
tively, the dielectric constants €, €1, and €;. €;=1.0. R'(ko) = (OE"(ky)/kx)k =iy S (ko) = (3F (kx)/0kx )k =k
We now assume that the main Fourier component of our and 8= (ky— ko).
Gaussian beam is incident on the top surface at an angle The approximate form for I' (k) given in Eq. (6) is sub-
given by sinf=ko/k. We also assume that kow >> 1. The stituted into Eq. (1) and the integrals over k. are carried
latter assumption implies that the range of Fourier com- out. We obtain
)
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Following Horowitz and Tamir, we separate the reflected field into two parts, H,! and H/?, given by
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I
k, is expanded around k,=k, retaining up to quadratic exponentiate the quantity in this parenthesis to give the fol-

terms in k,. This yields lowing expression for the reflected wave:
k; = k cosd — (k,— k sin@)tan@ H,= H,,exp(—x2/w?)exp(iAx,/w?)
— [(ky— k sin8)% 2k cos®0] . (10) =H,pexpl— (x,—iA/2)Yw?lexp(— AY4w?) . (13)

On substituting k, from Eq. (10) into Egs. (8) and (9) and  The Goos-Hinchen shift is given by the real part of iA/2,
performing the resulting elementary integrals, we obtain

D =Relil""(ko)2d cos®] =ReliA/2] . (14)
H(),’E (kO) 2 2 . .-

,=m exp(—x*/w?) The properties of D are most conveniently expressed by

plotting on a graph the imaginary part of I''(ko). It should

x [14T" (ko)2id cosbx,/w?] an not be surprising to expect that if {he parameters for our

. geometry are chosen such that k, varies over a resonance in

the reflected energy due to absorption by a surface polariton

where that one could obtain dramatic variations in the shift. This

x,=x cos+ (z — h)sing . a12) is' what is found as can be seen by the curves plotted in
Figs. 2 and 3.

The coordinate x, is related to the coordinates x and z by a When the imaginary part of the dielectric constant, e,, is

rotation through the angle 9. See Fig. 1 which shows the taken to be zero, the reflection coefficient is equal to one

various coordinate systems pertinent to our geometry. and all of the incident energy is reflected, as expected.

If the absolute value of the second term in the last However, the shift goes through a maximum even for this
parenthesis of Eq. (11) is much smaller than one, we can case. It is most interesting that in this example we have the
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FIG. 2. The imaginary part of I'’, which is proportional to the
shift, is plotted against the angle of incidence for several values of
the imaginary part of the dielectric constant €,. The real part of €,
is —9.

means of detecting a surface polariton without the necessity
of exchanging energy with it. For €, real and with e, < — 1,
the dispersion relation for surface polaritons is well known
and given by

wYcl=(kt/le)(lead = 1) . @15)

If one chooses the incident radiation so that the angular fre-
quency w, and the angle of incidence 6, satisfies k2= eqw?/c?
and k, =k sinf and substitutes these expressions into Eq.
(15), one obtains

sin?0 = |e,|/(leal — e . (16)

One observes in Fig. 2 that for €, real and equal to —9, that
the angle at maximum shift is located approximately at
49.5°. Equation (16) gives the value 49.25°. As one in-
creases the imaginary part of the dielectric constant, the
maximum in the shift moves to smaller incident angles.
For a particular value of the imaginary part of the dielectric
constant, seen in Fig. 3, the shift jumps discontinuously
from a large positive value to a large negative value. How-
ever, as can be seen from its derivation, our expression for
the shift becomes invalid for arbitrarily large values of
T'(ko).

FIG. 3. The same plot as in Fig. 2 with the real part of €, equal
to —7. Note the apparent sudden reversal in sign of the shift near
the imaginary part of €5 =2.

We have deliberately chosen our geometry so_that the in-
teraction of the incident light with the surface polariton does
not occur near the critical angle. This avoids the analysis of
Horowitz and Tamir at the branch point in I'(k,). For the
single-surface geometry they have shown that the maximum
shift occurs at an angle very near the critical angle. We
have shown that arbitrarily large shifts can occur at angles
where surface polariton absorption may take place, even at
angles far from the critical angle. In this case, part of the
incident beam is absorbed by the surface polariton and the
shift is the result of the combined effect of a ‘‘phase shift-
ing”> of the Fourier components in the incident beam plus
the removal by absorption of some of the Fourier com-
ponents through interaction with the surface polariton.

It would appear that similar effects should occur with
elastic waves. In this case the incident elastic wave would
interact with a surface elastic wave (e.g., a Rayleigh wave).
On reflection, the incident elastic wave might then undergo
a Goos-Héanchen-type shift.

In cases where our calculations give very large shifts, the
exponentiation which we used to obtain the shift is actually
invalid. One has to do better in approximating the integral
or, in the last resort, perform a numerical integration on a
computer. In this case the reflected beam may experience
considerable distortion rather than just a simple shift of the
‘‘center’’ of the beam.

Finally, we mention that the so-called classical value for
the shift is obtained from our formulas by letting d go to in-
finity. In this limit, the influence of the crystal disappears
and we return to the one-surface geometry at total reflec-
tion.
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