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We consider the growth of order in a two-dimensional Ising system with spin-flip dynamics (no

conservation laws) quenched from above to below T, . We use an iterative method, which allows for
the interaction among many length and time scales, to calculate correlation functions in coordinate

and Fourier space as a function of the time after quench. The method which we use to derive recur-

sion relations is a reformulation of our previous work. We derive analytically scaling forms for the

"Bragg peak" part of dynamic structure factor C(q, t), the nearest-neighbor correlation function,

the width of the central peak, q, and the maximum value of the peak. %'e evaluate the correspond-

ing scaling functions. These scaling laws for the width and peak height are new and elucidate the

role of the final temperature in the problem. In particular, we find that the peak height grows as

t ' for quenches to precisely T, . Our results also show that the Cahn-Allen curvature-driven

growth law, q -t ', is valid after relatively short times in this system. Our results agree quanti-

tatively with Monte Carlo calculations in direct comparisons.

I. INTRODUCTION

This is a time of great progress in the development of
our understanding of the kinetics of first-order phase
transformations. Spurred on by the results of experiments
and computer simulations, ' we are beginning to see that
these problems are governed by rules which are more gen-
eral and ubiquitous than had previously been thought.
Indeed, in problems involving rapid temperature quenches
from disordered phases, we now understand that the phys-
ics at long times t is dominated by the existence of a sin-

gle length, the average domain size, L(t), which grows
without bound as time proceeds after a quench. Because
of this dominant length, the quasistatic structure factor
satisfies a scaling law and it makes sense to consider the
notion that the growth laws for L (t) and the scaling func-
tions may partition various physical systems into "univer-
sality" classes. We are still quite far from a complete
understanding of the basis for the determination of these
classes. There has been some progress in cataloging vari-
ous possibilities. However, given the increasing interest
and work on this problem, there has been little direct
theoretical work which attempts to understand the origins
of L (t) and the subsequent establishment of scaling
behavior. Unlike the case of critical phenomena, where
the dominant length is the correlation length, the average
domain size does not naturally appear in any linearized
process involving the competition of many length scales.
It is because of the highly nonlinear origins of L (t) that
this problem is difficult from a theoretical point of view.

In previous papers ' we showed how a
renormalization-group (RG) method could be used to
treat problems of nonhnear growth phenomena. In Ref. 3
[Mazenko and Valls (MV)] we considered the growth of
order in a symmetric system with a nonconserved order

parameter (spin-flip dynamics), and in Ref. 4 we extended
the analysis to the case of a conserved order parameter
(spinodal decomposition). In both cases we showed how
the dominant length, L (t), develops naturally out of the
theory, and we were led to a qualitative understanding of
many of the known phenomena for such systems: domain
growth and the related development of a Bragg peak, scal-
ing phenomena associated with the peak, and the equili-
bration of local degrees of freedom. The approach
developed allowed for detailed treatment of these various
phenomena as functions of the temperature, Tt, before a
rapid quench, the final temperature, TF, after the quench,
and the time after the quench.

The structure of the theory developed in MV and also
in Ref. 5 was based on a perturbation-theory analysis
which is extremely difficult to implement at higher orders
and appears highly technical. It is therefore natural to
question the generality and the convergence of the
method. In Ref. 4 we indicated that the theory developed
in MV could be reformulated in a more physical and flex-
ible form and discussed the general structure of the theory
only qualitatively. In this paper we return to the case of a
nonconserved order parameter and show how the theory,
of the type discussed in Ref. 4, can be reformulated in a
systematic fashion. From the resulting recursion rela-
tions we find new analytical results which elucidate the
role of temperature in the scaling behavior of these sys-
tems. We also present new results for correlations in
coordinate and Fourier space which are of sufficient qual-
ity to allo~ direct comparison with Monte Carlo simula-
tions. Our results are valid also at times and distances
longer than those accessible to computer simulations.

A key ingredient in our theoretical development is the
time-scaling factor A. In MV we assumed that the 6 used
in treating unstable growth is the same as that governing
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fluctuations near equilibrium. This assumption is not
correct. It leads to the result that 6—+0 as TF~0, which,
in turn, produces the physical long-time "freezes" and
logarithmic decay found in MV. In Ref. 4 we mentioned
that one must develop a self-consistent method for deter-
mining A. In Sec. III of this paper we discuss the proper
determination of 5 in the nonconserved case. We obtain
the result 6=b (where b is the length-rescaling factor)
for all T~ & T, . We then easily find the correct long-time
curvature-driven Cahn-Allen growth law:

e(1,0;t) =e(1,0; oo )+t 'f, (g/t') (1.2)

(for sufficiently long times), where g is the equilibrium
correlation length corresponding to the final equilibrium
state and the exponent x = —,. We give explicit results for
f,(x).

(iii) We have performed Monte Carlo (MC) simulations
for e(1,0; t ) and compared them directly with our RG cal-
culations. For times t (1 we obtain essentially perfect
agreement between the MC results and the RG calcula-
tions. For longer times the RG calcu1ations 1ie systemati-
cally above the MC simulations. This is due primarily to
finite-size effects in the MC simulations associated with
metastable configurations. These configurations have the
basic effect that e(1,0; ca )Mc does not appear to equal the
appropriate equilibrium value e(1,0;Tz). Taking this into
account and comparing b e=e(1,0;t) —e(1,0; ao ), we again
obtain very good agreement between the MC and RG re-
sults.

(iv) For sufficiently small wave numbers and long times
(t) S) the structure factor is characterized by a central
peak which satisfies the scaling relation

C(q, g, t)=C F(q/q„, q~g'), (1.3)

where C is the maximum value of the peak (at q =0)
and q (t) is the half-width of the peak. These quantities,
in turn, satisfy the scaling relations

q (t,g) = t "f„(g/t"),
C (t,g)=m~t'"f (g/t"), (1.5)

where x = —, and mE is the equilibrium spontaneous mag-

L(t) =L,t'/' .

An interesting aspect of our theory, not emphasized
previously, is our ability to study correlations in coordi-
nate space as a function of time. We study the correlation
of spins at R; and Rz as functions of R; —R~ and the
time after the quench. This will give us additional infor-
mation about the way in which order spreads through the
system. We also reanalyze the quasistatic structure factor
taking into account the refinements mentioned above.
Our main results include the following:

(i) A discussion of correlation functions in coordinate
space for distances &100 (measured in lattice spacings)
and at different angles gives direct information about
directional aspects of domain growth.

(ii) Calculations of the nearest-neighbor correlation
function e(1,0;t) indicate that it satisfies a scaling rela-
tion,

netization for the final state. We give explicit results foif,f, andF .
(v) The angularly averaged function F(x,0), we find,

falls off for large x as x ~, where p is approximately 3.1.
This is in good agreement with Perod's law' and the re-
sults of Ohta, Jasnow, and Kawaski that p =d+ 1 =3. It
is also within the error bars of the Monte Carlo calcula-
tions of Sahni et al. (p =2.9) and Kaski et al. "
(p =2.7). Our angularly averaged shape function is also
in rough agreement with that of Ref. 2 (see Sec. IV) over
the entire range of x.

(vi) We find an interesting and nontrivial angular
dependence for the shape function for large values of x.
This seems to indicate, in keeping with the analysis in
coordinate space, that the shape function contains some
information about the pattern of domain growth.

(vii) We conclude that the controlled growth calcula-
tions of Sahni et al. ,

' which show that the rate of de-
crease in area of patch of down spins in a sea of up spins
increases with decreasing temperature, is a local effect
which is strongly dependent on the particular details of
the growth pattern studied.

(viii) Working directly at the transition temperature
( Tz T, ) we f——ind that

and

c' -t'",
for long times.

(1.7)

II. RECURSIVE METHODS FOR OBSERVABLES

A. General comments

The theory developed in MV was based on RG argu-
ments which required implementation of a complicated
perturbation-theory expansion which treated the effective
interaction between cells as a small parameter. We believe
that the structure of the theory we developed in MV is
considerably more general than the analysis used there to
establish it. In this section we reformulate our approach
in a perturbation-theory-independent fashion. The
analysis may appear different from that developed in MV,
but the final results are quite similar in structure.

g'=g/b . (2.1)

Let us carefully, investigate the consequences of (2.1). In
the case of the ferromagnetic Ising model on a square lat-
tice, in zero field, one can calculate' g exactly as a func-
tion of K =J/kz T (where J is the exchange coupling and

B. Perturbation-theory-independent renormalization

A basic tenet of the RG (Ref. 13) is that after averaging
over local degrees of freedom and rescaling lengths by a
factor b ~ l, the new "true" equilibrium correlation length
g', describing the decay of correlations in the coarse-
grained system, is related to the correlation length in the
original problem by
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T is the temperature). It is then straightforward to invert
(2.1) to obtain the recursion relation for K,

temperature —expansion results and the result (2.5) valid
near T, . A simple interpolation for T & T, is

b (2.2) v = ~+u+2u +u —8u +Au +Bu (2.8}

where

P =e tanhK (2.3)

relates the couplings K and EC' on the original and renor-
malized lattice. The fixed-point properties of (2.2) give
the exact results for the transition temperature
(tanhK, =v 2—1) and the critical index v= l. The recur-
sion relation (2.2) was used extensively in our previous
work, ' ' but its use was justified in a different manner.

mE(K) =v(K)mE(K'), (2.4)

where v(K) is a smooth function of K. The point of view
we take here is that v(K) is defined by (2.4) and its useful-
ness is that it is easier to approximate than mE(K). In the
case of the Ising model on a square lattice, where we
know mE(K) exactly, we can use (2.2) and (2.4) to calcu-
late v(K) exactly for T& T, . The resulting v(K) is a
smooth function of K varying between 1 (as K~ co) and
b '~s at T, . Near the transition (for b =2),

v=(1/2'~')[1+(K —K, )/v 2+ ] . (2.5)

In problems where we do not know mE exactly, we be-
lieve it will be a good strategy, given an approximate solu-
tion to (2.1), to construct approximations for v=mE/mE,
which depends only on the ratio of mE and mE, and then
iterate (2.4) to obtain mE(K). This same type of strategy
will be used below in treating spatial structure and time-
dependent effects.

Let us turn now to the susceptibility X. If we general-
ize our analysis of the magnetization to include a magnet-
ic field, ' take derivatives with respect to the field, and
then set it to zero, we obtain a recursion relation of the
form

X(K)=Xo(K)+b "v (K)X(K') .

For T & T„Xo——0, and we obtain

X=b v X'.

(2.6)

(2.7)

This is of exactly the same form as we found in Refs. 16
and 19, while (2.6) is of the form used in Ref. 20. Heite,
however, (2.7) serves to define the quantity v in the disor-
dered phase. Again v should be a smooth function of X.
Using known ' exact results. for X it is easy to show that
v, derived using (2.7) for K &K„reduces to (2.5) for T
near T, . Since (2.5) was originally derived using (2.4) for
E )E„v and its derivative are continuous at T, . It is
not difficult to find a reasonable approximation for v
which ties together the easily available high-

C. Thermodynamics

The recursion relation (2.2) for E' will be used to
"drive" recursion relations for observables. Consider first
the equilibrium magnetization density mE(K). In our
previous work we found that mE satisfies a recursion re-
lation of the form

where u =tanhK, A = —19.279 696 3104, and
B=46.1428405116. The iterated solution for X, using
the v in (2.7), gives excellent results for all u & u, .

In tPe ordered phase one must allow for a nonzero
value of Xo. For low temperatures, where y=e is
small, X-4y, v—+1, and, since E'-2E, X'-4y .
Therefore, X=XO ——4y +O(y ). A key question is
whether Xo is a smooth function of temperature. If it is
divergent then it is as difficult to calculate as X. Since we
know so much about X in the two-dimensional (2D) Ising
case, we can check this point explicitly. According to
Ref. 21 the susceptibility near T, can be written in the
form

X=CO+K,
f
5K

/
[1+r+

f

6K
/
+O(1)], (2.9}

where 5E =I@—X„the amplitudes Co + ——0.962 5817322
and Co ——0.025 536 971 9, and r+ =+v 2/8. Since we
know v(K) and K'(K) near T„we can compute

Xo ——X—4v X'

=C, K,' 'i 5K
~

' '( +v2/8)+O(1) . (2.10)

We obtain the rather remarkable result that the divergent
part of Xo vanishes only if we use the exact expression for
r = —V 2/8. Thus we have the exact result that Xo is of
O(1) at T, .

Since we have chosen Xo ——0 for T& T„we require
that XO~0 as T~ T, from below. If we assume that Xo
is of the form

Xo mEf——2

then f can be written approximately in the form

f=4y +32y +240y +Ay

(2.11)

(2.12}

where the first three terms come from a low-temperature
expansion and the value of A is adjusted to give the
correct amplitude, Co ——0.0255. . ., for X. We obtain
3 = —1632.4. A more sophisticated analysis will be given
elsewhere. The resulting expression for X agrees with the
interpolation form of Ref. 22 to better than 1% for all
T( Tc.

The key point in our treatment of thermodynamics is
that the multiplicative (v) and inhomogeneous parts (Xo)
of recursion relations (2.4) and (2.6) are smooth functions
whose behavior in certain limits is well known, and are,
therefore, easy to approximate.

D. Spatial structure

It is very useful, in studying the growth of order, to be
able to treat spatial correlations. This requires that we be
able to treat the equilibrium correlation functions:

e(m) =(o o, ), (2.13)

where m=m„x+m„y m„with m„and mz integers, o
is an Ising spin at lattice site rn (we have set the lattice
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constant equal to 1), and ( } indicates an equilibrium
average depending on the coupling K. We must also be
able to accurately calculate the static structure factor

dd+11( —b )=g J +"'--'"'P(-)
(2n. )

C(q)= pe+'~ [e(m) —mE] (2.14)
It follows that

=b "P(0)=v (2.21)

Co(O, K) =Xo,

Po(O, K) =b v

(2.16)

(2.17)

All of our previous RG work has led to recursion rela-
tions for C(q ) of this form.

We assume that Co and P are well behaved and local,
and, therefore, easy to approximate. Indeed, we have al-
ready shown that the long-wavelength components of
Co(q) and P(q) are well-behaved functions of tempera-
ture.

There are restrictions on the function P(q). It is un-
physical for large-wave-number components of C(q, K)
(except reciprocal-lattice vectors) to be mapped onto X
under iteration of the recursion relation. Otherwise they
would diverge with X at T, . Such a mapping arises for
wave numbers q~ 2vri7i/b (and ——q~ is not a reciprocal-
lattice vector). We prevent this by demanding that

over a broad range of values of q and K.
A very useful aspect of our previous' ' RG develop-

ment was our ability to compute equilibrium short-range
correlation functions such as e(rn) conveniently and to
high accuracy. The arguments in those papers explaining
the reasons for this accuracy were obscured by rather for-
mal considerations. Let us here, therefore, approach the
problem using the ideas developed in the preceding sec-
tion.

Since the susceptibility is, to within trivial factors, the
q=0 component of C(q), it seems natural to assume
that C( q ) satisfies a recursion relation which is a
straightforward generalization of (2.6):

C( q,K)=Co( q,K)+P(q, K)C(b q,K'), (2.15)

where we have included the explicit dependence on the
coupling and taken into account that we must rescale
wave numbers by a factor b on the coarse-grained lattice.
Comparing (2.15) and (2.6), we find immediately that

e(m) =eo(m)+ g II(m —bn)e'(n) . (2.22)

The fixed-length sum rule for Ising spins (cr ) =1
gives a strong constraint on this recursion relation. Since
e(0)=e'(0) = 1, we have

1 =ep(0)+ g II( —bn)e'(n) . (2.23)

Since the left-hand side of (2.23) is independent of tem-
perature, we choose II(m) such that the right-hand side is
independent of all e(n) except e'(n=O). This requires
that

II(m) =0 (2.24)

g~(q) = —,
' (cosq„+cosq~),

gz ( q ) =cosq„cosq~ .

(2.26a)

(2.26b)

The edge conditions (2.18), (2.17), and (2.24) are suffi-
cient to determine the three II(m) in' (2.25). We obtain

and

v2=11(0)=4II(1,1)=2II(1,0) (2.27)

P(q)=v f(q),
with

(2.28)

for
~
m„~,

~ m~ ~

&b. Somewhat weaker constraints are
possible, but they seem physically (and practically) less at-
tractive. In the case b =2 we have that II(m) is restricted
to the three independent components II(0), II(0, 1), and
II(1,1). The Fourier transform is given by

P( q )=II(0)+411(1,0)g) ( q )+4II( 1, 1 )g2( q ), (2.25)

where

P(qb)=0 . (2.18) f(q) =1+2g i(q) =g2(q) (2.29)

Co(q)= pe'~' eo(m), (2.19)

P(q)= pe'~ II(m) . (2.20)

Taking the Fourier transform of (2.15), we see first that
the uniform parts arising from the mE and (mE) sub-
tractions in (2.14) cancel because of (2.4) and the result.

For b =2 this requires that P(q ) vanish at the edge of the
Brillouin zone. Consequently, we call this the "edge con-
dition. "

It will be convenient to introduce the Fourier
transforms

P(q) is of precisely the same form as we found in our
previous work. Clearly, this analysis can be generalized to
other b and d values.

We are now left with the determination of Co(q), or,
equivalently, the eo(m). The basic assumption here is that
the eo(rn) fall off rapidly with increasing

~
m ~, and ap-

proximations where eo(m) =0 for all
~

m
~

& m 0 should
give good results for rather small values of mo. For a
given choice of mo, we can determine the eo(rn), for

~
m

~
&mo, using (2.22), if we know e(m) and e'(m) for

~

rn
~

&mo. This is not difficult in practice since the
e(m)'s, for small ~m ~, are the easiest quantities to ap-
proximate using series, Monte Carlo, etc.

We must modify this program only slightly if we are to
satisfy (2.16). This condition can simply replace the re-
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Cp(q) =Ep('0)+4ep(1 0)g](q)+4ep(1, 1)g,(q), (2.30)

and the three independent components are determined by
(2.23), which gives

cursion relation for e(m) for
~

m
~

nearest to mo. In this
paper we shall be satisfied with the lowest-order nontrivial
approximation corresponding to mp ——~2. We shall in-
vestigate the convergence of this series of approximation
elsewhere. The "model" mp ——v 2 corresponds to writing

8;[o]=—, 1—
2aF T aF p

0)O) + 0)
J

(2.36)

C(q, t)= QP[o, t] g e+'q' o cr (2.37)

where ar ——tanh2K+, o.; is the sum of the four nearest
neighbors of the spin at site i, and o.; is the sum of the
products of next-nearest neighbors formed by the nearest
neighbors of cr;. The quasistatic structure factor is given
by

1 =eo(0)+ II(0), (2.31)

(2.16), and (2.22) with m=(1, 0). It is easily to solve this
set of equations to obtain

We assume here that the generalization of the static recur-
sion relation (2.15) to the nonequilibrium regime takes the
form

ep(0) =1—v (2.32a)
C(q, t)=Cp(q, t)+P(q, t)C(bq, bt) . (2.38)

(2.32b)eo(1,0) =e(1,0)—v [1+e'(1,0)]/2,
eo(1~1)= ~ (Xo+v —1 —4Ie(1,0)—v /2[1+@'(1,0)]I) .

(2.32c)

Since e(1,0) is known exactly for the 2D Ising model,
we can compute the eo(m) explicitly. They are smooth
functions of E which do not warrant further discussion
here. If we introduce the quantities

dd
Cq, t = Po., t =1.

(2m. )
(2.39)

An important new quantity in this equation is the time-
rescaling factor A. We will discuss 6 iri some detail later;
for now we note that it is in the range of 0 & 6 & 1.

The arguments we gave in the static case which led to
the "edge condition" (2.18) are still applicable in the
dynamic case as is the sum rule

r =2ep(1, 0)+v

s =4eo(1, 1)+v

then

Co(q)=1+2rg, (q)+sg, (q) —P(q) . (2.34)

Hence we can reduce P(q, t) to the form

P(q, t) =v'(t)f(q),
where f ( q ) is given by (2.29), and we require

v'(0) =v (Kl),
v'( ~ ) =v'(KF ) .

(2.40)

(2.41a)

(2.41b)

Taking this equation with (2.26) we see that (2.15) is of
the same form as that obtained in Refs. 16 and 19 if r and
s are associated with the nearest- and next-nearest-
neighbor correlation functions in a "cell." In the develop-
ment here we have not needed to break up the system into
cells and it should be apparent how we could improve the
approximation.

The iterated solution of the recursion relation for C(q)
leads to very good results for C(q) over a wide range of
q and K. Since approximations similar to that derived
here have been discussed extensively elsewhere, ' ' '
and have led to good results, we will not discuss this fur-
ther here.

E. Nonequilibrium behavior.

We move to the nonequilibrium case where we have a
sudden temperature quench from coupling EI &E, to
LF &K, . We assume that the nonequilibrium probability
distribution is given in this case for times t after the
quench by

P[a, t]=e P[o,KI], (2.35)

where P[o,Kt ] is the initial equ. ilibrium probability distri-
bution and D (K~) is a spin-flip operator characterized
by a basic flipping rate a (we typically set a= 1 below)
and a flipping probability for the spin at site i,

1 =eo(0;t)+v'(t) (2.42)

for all times. We have, therefore, only three independent
quantities which, we argue, equilibrate on a short-time
scale. It therefore seems reasonable to fix this time scale
in terms of the initial response of the system after the
quench. We find easily, from the Fourier transform of
(2.37), that

a
Bt

e(m;t) =(D (0. cr-)), p,
t=0

(2.43)

Similarly, it is straightforward and natural to assume that
in a lowest-order approximation, Cp(q, t) is of the same
form as Cp(q) in (2.30), but with the ep(m) replaced by
ep(rn, t). Again, since the ep(m, t) are expected to be local
in time and space, we assume that they evolve in time
rather rapidly from their initial values ep(m, KI) to their
final equilibrium values ep(m, KF).

In this paper we will take a simple and direct approach
to the quantities v (t) and ep(m, t) More sop.histicated
schemes wi11 be discussed elsewhere. Here we develop
only the simplest approximations for the quantities v (t)
o(0't ) e'p(1 0' t) and eo( 1, 1;t). These approximations,

however, lead to quite good results, as we shall see.
We first note that the sum-rule condition (2.39) requires

that
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e(m;t)
t=O

=ab +5 (2.44)

where 5, is a vector connecting nearest neighbors. The
corresponding result for the structure factor is

Bt
C(q, t) =4abg~(q), (2.45)

where g&(q) is given by (2.26a). In view of the above ar-
guments, it seems appropriate to use

e(1 0't)—=a8
Bt t=0

(2.46)

(2.47)

where the average is over the initial state and D is the
adjoint of D (see Refs. 16 and 25). If, as we assume in
the rest of this paper, the initial state is completely disor-
dered (Kt ——0), then we obtain the very simple result

A = —,[—A, iXp(Kp)+(A, —Ai)(v~ —vt)] . (2.54)

The time-rescaling factor 6 plays a very important role
in our analysis, and as we shall see, controls the basic
growth laws operating in the system. The determination
of b, is therefore an important aspect of our theory.

Clearly, the role of 5 is associated with the idea of
self-similarity developed in Sec. III of MV. We argued
there that on a long-time and -distance scale the quasi-
static structure factor should show self-similarity under
rescaling of space and time. In this limit, where C( q, t ) is
sharply peaked near q=0, the Cp term can be safely
neglected in recursion relation (2.38), which then reduces
to

This then ties down all of the ingredients in our recursion
relation (2.38) except b„which we discuss in the next sec-
tion.

III. DETERMINATION OF 5 AND SCALING
RELATIONS

C(q, t, g)=b "v~C(b q, ht, /lb), (3.1)

Cp(O, t) =0 .
Bt

(2.48)

We assume that v (t) and e(1,0;t) have relaxational
forms:

to tie down the time scales associated with the ep(m;t) and
v (t) Before.doing so, however, we should interject some
physical information. In recursion relations of the type
given by (2.38), one wants the long-distance behavior to be
carried by the rescaled variable. Alternatively, one wants
the inhomogeneous term like Xo ——0 to be as small as pos-
sible. Indeed, in the disordered phase we have Xo ——0.
Similarly, one wants to include the bulk of the long-
wavelength dependence of C(q, t) in the coarse-grained
term. It therefore makes sense to require

C(r, t, j)=v+C(r/b, bt, g/b) . (3.2)

Let us define the quantity

RL(t, g)=L, "J d r d"r'C(r —r ', t,g). '

Equation (3.2) then leads to the result

RI(t, g)=vFRL)b(bt, g/b) .

(3.3)

(3.4)

Note that if the quench is to zero temperature, then
g=g' =0 and vF ——1, and we have the relation

where vF is defined by (2.4) and we have written the argu-
ments of C explicitly. (See the discussion at the beginning
of Sec. V A in MV. ) The Fourier transform of (3.1) gives,
in coordinate space,

v (t) =vp+e '(vi —vp. ), (2.49)
RL (t) =RL )b(bt) . (3.5)

ep( 1 0't ) =ep( 1,0'KF)+e [ep( 1,0;Kt ) —ep(1, 0;KF)]

(2.50)

and the rates A, and X~ are to be determined. We allow for
the possibility that A, and A, ~ may be somewhat different.
We expect ep(1, 1;t), however, to relax with a rate similar
to ep(1,0;t), but with a rather different initial slope. We
therefore assume a form

ep( 1, 1;t ) =ep( 1, I;Kp )

+e ' [ep(1, 1;KI)—ep(1, 1;KF)+At), (2.51)

with A to be determined. It is straightforward, using the
recursion relations for (BC(O, t)/Bt)p and (Be(1,0; t)IBt)p
and (2.48) to solve, using the exact results (2.46) and
(2.47), for A, , A, ~, and A:

As a check of this result we carried out a Monte Carlo
analysis of RL (t) for different choices of L, in systems of
size M &&M with M & 16 and l. &M/2. Self-similarity
implies that, by rescaling time by b„ the plots of RL,
versus time, for various 1., should all coincide. We see in
Fig. 1 that this is indeed the case. In that figure we have
taken A=b (as we will establish in detail below). Thus
our self-similarity assumption seems well founded.

We shall examine several methods for determining b,
which all lead to the same result. The first method,
though somewhat heuristic, is physically appealing and in
the spirit of the Cahn-Allen analysis.

If we take the derivative of (3.1) with respect to time
and then divide by (3.1), we obtain

(d/dt)lnC( q, t, O)5= lim lim
~-P (d /dt )lnC( q ', t', 0)

Since
A, =4(a~ —ha~)/(4v~ —1),
A, ~ =(4aF+3 baF)/[1+4(rF vb )], —

(2.52)

(2.53)

—C(q, t, O)= g e'q' "'(D o cr-), ,Bt
n, m

(3.7)
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I
'

I where

0.30—

+ N=5
+ N=4
x

b N=6
o N=7

N=8

X

X

q (bt, g/b)=bq (t,g),
C (t,g)=bdvFC (At, g/b) .

(3.10)

(3.11)

With the assumption that 6 is independent of temperature
for T & T„(3.10) and (3.11) possess the scaling solutions
[using (2.4)]

0.20—
Q

x&
0

0 ~
o~

q (t,g)=t "f (g/t"),

C (t,g)=mEt~f (g/t ),

be=1,
g=xd .

(3.12)

(3.13)

(3.14)

(3.15)

b ~
0

I & I i I i I & I t I

2 4 6 8 l0 l2 l 4

These scaling results for q„and C~ are new and we will
explore their consequences in detail in Sec. IVB; here,
however, they are useful because they tell us that we can
also determine 5 through an analysis of C~(t, g). If we
work at TF 0, then ——mE ——1, /=0, and

FIG. 1. Scaled quantity RL, defined by (3.3), vs time for vari-

ous choices of I.=X—1 for a quench from nq ——0 to u+ ——1.
The solid circles correspond to RL(t) for an 8)& 8 system with a
length of seven lattice spacings. The other data correspond to
smaller systems with their times rescaled by a factor 6 '=6+,
where b is the ratio of the values of L~ to 1.8 ——7.

C (t) =f (0)t', (3.16)

and by determining y we obtain A=b ' ~"'. C~(t) can be
conveniently studied using Monte Carlo methods. For an
N XN system of Ising spins, C~(t) is related to the aver-
age of the total magnetization squared by

C~(t)=(M ), /N (3.17)

we realize that as trop, the system equilibrates, and
(D cr;oj ),~0. At zero temperature the equilibrium
state is the completely ordered state. Furthermore one
can also easily see that a perfectly uniform wall between

up and down regions is also stable at zero temperature.
The last step in the production of smooth walls which
produces a nonzero contribution to B C(q, t, O)/Bt, is the
annihilation of a kink on an otherwise smooth wall. It is
straightforward to show that such a process produces a
contribution to B C(q, t, )0/Bt proportional to q C(q, t, O).
It follows, then, from (3.6), that

b, (Tp 0)=b—— (3.g)

C(q, t, g)=C F(q/q„, q g), (3.9)

In a similar fashion, if one replaces o; by a scalar field

P(r), and D with the Fokker-Planck operator associated
with the time-dependent Ginzburg-Landau model (model
A), and looks for planar solutions of the form
/=fez —zo(r~)], where f (z) is the kinklike solution with
an interface at z=zo(rz), z rz ——0, then again one easily
finds that 8 ln C( q, t )/Bt —q and b, =b . This result is
independent of temperature for T & T, .

The result that 5 is independent of temperature for
TF & T, makes sense if one believes that for sufficiently
long times, when domains are very large, temperature
fluctuations play no important role.

In developing a more quantitative method for determin-
ing 5, it is useful to investigate some very important
consequences of (3.1). Note first that (3.1) has a scaling
solution

From a practical point of view, N is fixed at some finite
value, and for sufficiently long times, C (t) begins to sat-
urate (since its maximum is N ). Therefore a simulation
should not be carried out to very long times. We have
carried out a series of simulations for quenches from in-
finite to zero temperature for various values of X. For
fixed N one expects C (t) to show a power-law growth
with time until finite-size effects become important and it
turns over and begins to saturate at its maximum value of

For X =4 this "bending" occurs for t-2. As X in-
creases these saturation effects are pushed out to longer
times. For N =10 there is no discernible bending of
C~ (t) for times up to t =5. This is consistent with the re-
sult C~ (5)=20 & 10 for N = 10. Thus we seem to be safe
from finite-size effects if we stop at times of 5 or less for
X greater than 10.

An important and, neglected aspect of this problem is
the dependence of Monte Carlo calculations on the num-
ber of runs carried out. In the case of equilibrium calcu-
lations one expects that calculations can be carried out in
roughly two ways. One can carry out n runs on systems
of size N, or alternatively carry out fewer runs (n/a) on
larger systems of size aX, and one should obtain similar
results. In the nonequilibrium case these standard argu-
ments do not seem to hold. Such effects have been recent-
ly discussed by Sadiq and Binder. We have looked at
the values of C (t) for several times as a function of
number of runs averaged over. We have done this, for ex-
ample, for N =10 and 16, and see that the data for the
larger system are no better behaved as a function of the
number of runs than for the smaller system. These ef-
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C (t) =0.97+3.62t ' ". (3.18)

Note that C~(0) = 1 exactly, and the 0.97 is a measure of
the statistical error in the MC simulation. Clearly, this is
consistent with the Cahn-Allen result 2x=y=l. As a
further check on our analysis we have computed x at a
much higher temperature (uF ——0.42) and find 2x =0.988
for X = 16 and a fit to the time region 0 & t & 5 over 76
runs. This is clearly consistent with our assessment that x
and 6 are temperature independent. We also have carried
out this procedure for a three-dimensional, 1000-spin sys-
tem, and, after 80 runs, obtained y=1.45, again in agree-
ment with the result y =d /2 for x = —,

' .
We see that our heuristic arguments are in good agree-

ment with numerical simulations and we can conclude
that b, =b for T & T, .

fects, which have been largely ignored in most Monte
Carlo work, are associated with the sensitivity to initial
conditions in these nonequilibrium situations. In particu-
lar, there are certain metastable configurations' which
are generated for a particular X which equilibrate very
slowly (if at all). Other initial states equilibrate very
quickly. One needs a sufficient number of runs to sample
all of these various initial states. Of course, such effects
will become smaller as one goes to very large systems
where one can have local manifestations of each type of
initial condition. This appears, however, to require ex-
tremely large systems.

With the above thoughts in mind we have carried out
many runs (388) for a 16&(16 system over the time region
from 0 to 5. We obtain a very good fit to the power-law
behavior,

It follows from the discussion in Sec. II that as t +—0 and
tabac, e(1,0;t) reduces to the corresponding exact equili-
brium values.

The behavior of e(1,0;t) as a function of time is illus-
trated in Fig. 2 for several values of uF. Analysis of the
quantity e(1,0;t)/e(1, 0; ac ) shows only a weak dependence
on u~. This dependence, however, is not quite monotonic
with temperature, showing a minimum of u~ ——. 0.55 for
times of order unity. The time evolution of e(1,0;t)
breaks down into two basic regimes. There is an initial
growth period where local equilibrium is established and
when the slope is given exactly by (2.46). For longer times
there is a crossover to an asymptotic scaling region where

e(1,0;t) e(1,0—;op)=mEt ' f,(g/u t ) . (4.3)

2

b,e(g, t)= b, (eg', t') .
2

(4.4)

Using (2.4), one is led immediately to (4.3). The direct nu-
merical solution of (4.1) gives f,(x) as shown in Fig. 3. In
the limit t~ ac, for fixed finite correlation length,

f,(0)= —0.355. f,(x) increases rather rapidly with x for
small x and then grows as x P "=x'i for large x. At
the critical point,

lim [x 'i f,(x)]=—0.536 (4.5)

and

The derivation of this result follows directly from (4.1) if
we go to times where r (t) and v (t) are well approximated
by their final values. Then be:e(1,0;t—) e(1,—0;ac) satis-
fies the recursion relation

IV. RESULTS
be(t)= 0.407t 'is —. (4.6)

In this section we analyze the numerical solutions of
the recursion relations derived in Sec. II. All results
presented here are for quenches from infinite temperature
(uI ——0) to temperatures below T, (uF )u, =v 2 —1). We
expect the influence of ut to be less important and we
postpone that part of the analysis to future work.

I.O—

0.9

0.8

uF =0.85

uF =0.55

uF = 0.45

A. Spatial correlations

We first consider correlations directly in coordinate
space. With the rescaling factor b =2 it is particularly

simple to write recursion relations for spatial correlation
functions of the form e(2 ',0;t) or e(2 ',2 ';t), where Ni
and N2 are integers. Since the very-long-range behavior is
best studied by considering C(q, t) at small q (as in the
next subsection), we will examine here the results at short
and intermediate distance ( & 100 lattice spacings).

Of primary importance is the nearest-neighbor correla-
tion function e(1,0;t), the "short-range-order parameter, "
which satisfies the recursion relation

0.7

06

o 0.5

04

0.5

0.2

O. I

uF =0.42

e(1,0; t ) = + e'(1,0;t'),r (t) v'(t),

where [see (2.33a)]

r(t) =2e,(1,0;t)+v'(t) .

(4.1)

(4.2)

I

00 I I I I

-I I 2 5 4 5
log (a t)

FICx. 2. Nearest-neighbor correlation function [e(1,0;t)] vs
time [logio(at )] for several values of the final temperature.
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tions which clearly have a disordering effect ana reduce
e(1,0;t). If we carry out a linear least-squares fit of the
MC data (for the 16X16 system) over the time ranges
3 & t & 10 to a form

0.69
e(1,0; t) =e(1,0; ao

)+millet,
(4.7)

0.67

-f, (x)

0.65

0.63

I i I i I

0 2 4 6 8 IO l2 l4

X

FIG. 3. Shape function [—f,(x)] for the nearest-neighbor
correlation function, defined by (4.3), vs x =/IV t.

0.5
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0.3
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[

I I I I

The system rapidly approaches the scaling regime. For all

uF &u„e(1,0;t) is given by (4.3) to good accuracy for
t)1 7-

These results for «(1,0;t) can be directly compared with
Monte Carlo simulations. We have performed such simu-

lations for u~ ——0.6 on a 16X 16 system for times up to
10.6 averaging over 50 runs, and a 90&&90 system for
times up to 100 averaging over five runs. We find that
our RG results (as shown in Fig. 4) agree essentially per-
fectly with the MC simulations for times t &1.0. For
longer times they are always somewhat above the MC re-

sults, the discrepancy being less than 10% at any time. A
primary difference between the MC and RG longer-time
results is that «(1,0;t)Mc does not appear to asymptotical-

ly approach the equilibrium result «(1,0;Kz). This effect
has been noted by a number of authors and has been at-
tributed to the development of "metastable" configura-

«(1,1;t)= , [s(t)+2—v(t)«'(1,0;t)+v (t)«'(l, l;t)],
where

s (t) =4m, (1,1;t)+v'(t)

and

(4.9)

e(2 ', 2 ', t)=v'(t)«'(2 ', 2 ';t) (4.10)

for NI &1. Finally, to examine directions between (1,0)

and (1,1) we have considered «(2 ',2 ', t), for which

e(2 ', 2 't)=v'(t)e'(2 ', 2 ' t) (4.11)

with X& g X2 & 1, and

I ' I
'

I
'

I

we obtain e(1,0; oo ) =0.932 and «i ———0.623. If we carry
out precisely the same type of fit for the RG results, we
obtain e(1,0; ac ) =0.992 and ei ———0.624. In this case the
exact result is e(1,0;KF ) =0.9895. . ., and the MC data is
not approaching its appropriate final equilibrium value.
The excellent agreement between the theory and the MC
results for ei is very satisfying (although both values have
sources of error clearly larger than the difference between
them). In Fig. 5 we plot Ae for the theory and the MC
simulations, and find excellent agreement.

I.et us now consider the longer-range correlations. We
have, as stated above, considered correlation functions of
the form «(2,0;t) which give information about ordering
in the (1,0) direction and satisfy the recursion relation

e(2 ',0;t)=v (t)e'(2 ',0;t'), XI &1. (4.8)

We have also considered correlations in the (1,1) direction,

e(2 ',2 ', t), where the relevant recursion relations are

2.00.50 t.o

FICr. 4. Nearest-neighbor correlation function [E(1,0;t)] vs
time t for uI ——0 and u+ ——0.60. The solid lines are the results of
the RG calculation. The dashed line is the result of a Monte
Carlo simulation for a 90)&90 system averaged over four runs.
Essentially identical MC results were obtained using a 16X16
system averaged over 50 runs.

l 1 1 i l

4 6 8 IO

FIG. 5. be[=a(1,0; oo) —«(1,—0;t)] vs time t As in Fig. 4.

the solid lines are the RG results and the dashed lines the MC
results; u~ ——0.60.
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e(2 ', 1;t)= [e'(2 ', I;t)+e(2 ', I;t)].Ni V (t), ttti —1 Ni —i

2
(4.12)

0.8

Combining Eqs. (4.8)—(4.12) with (4.1), all the desired
correlation functions can be obtained by iteration. We
have investigated these spatial correlations for several uz
values and distances less than 100 lattice spacirigs. The
combined results offer a rather vivid picture of the corre-
lation growth in real space, and, therefore, of the average
domain growth.

The correlation functions along the x axis are plotted in
Fig. 6, as a function of time, for uF ——0.42. One can see
that, for N&0, their behavior is fairly similar. The
bunching up of the long-time values for large values of N
is due to the fact that the equilibrium values for long dis-
tances do not significantly differ from mE. As N in-
creases it takes longer for the correlation functions to
reach their equilibrium value. It is convenient to quantify
this by defining a time t,q(r) as the time at which correla-
tions over a distance r have reached 99%%uo of their final
equilibrium. At time t,q(r} equilibrium has been achieved
over distance of order r, and by studying the relationship
between t and r we can gain quantitative information on
domain growth. In general, we find that t,q(r) obeys the
law

t q(r)=ar (4.13)

This is in agreement with the result L(t)-t'~ Afit o.f
t,q

to the form ar', for correlations in the (,1,0) direction
give z=2.03 and a=1.5&10. The data in Fig. 6 is re-
plotted in Fig. 7 as a function of distance (note that
Ni =log2r } at different times. The dots are the results (at
integer N, ) and the lines are guides to the eye only.

0.7 5 XyN
UF =0.42

05- X X i ~~ ~~-- IOS

~ )(p
0.4—

~IO
II

'4/ pph K Q

0.2—

0.I—
tt OI

~a
0 I 2 4 5 6

log~ f

FIG. 7. Spatial correlation functions [e(r;t)] vs distance
(log2r) along the x axis. The dots represent the calculated
values, from the recursion relation. The dashed lines are guides
to the eye, and the numerical labels on the dashed lines are the
values of at.

The results for correlations in the (1,1) direction are
plotted in Fig. 8. These results are similar to those in Fig.
6 except for the Ni ——0 case. In this case, z=2.05 and
a =2.4&&10 . The difference in a in the two cases is an
anisotropy growth effect (see Fig. 9): the correlation func-

0.8 0.8 r

0.7 0.7—

0.6 0.6

0.5 0.5

- 0.4
OJ

0.5

z" 04
OJ

Z
Al

0.3

0.2 0.2

O.l O.I

-I 0 I 2 5 4 5
log, (at}

FIG. 6. Spatial correlation functions along the x axis,
[e(2~,0;t)], vs [log&p(at)] for values of N from 0 to 6, at
uF ——0.42.

0 I 2 5 4 5
log, (at}

FIG. 8. Spatial correlation functions of the form e(2,2;t)
[along the (1,1) direction] vs time [logip(ut)] for 0&N &6 and
uF ——0.42. This figure should be compared with Fig. 6.
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FIG. 9. Spatial correlation functions [e(r;t)] as a function of
distance {log2r) in two different directions: The dots correspond
to the x axis and the crosses to the (1,1) direction. The lines

joining the dots are for illustrative purposes only, and they are
labeled by the time. Note that the crosses appear systematically
below what one would expect from interpolation along the x
axis. This illustrates the anisotropy discussed in the text.

0 4
log (a t)

FIG. 10. Correlation function @{64,0;t) as a function of time

[logio(at)], for the same values of ur as in Fig. 2. Note that the
different time scale in this figure is shifted and expanded with

respect to that of Fig. 2.

tions at a given distance along the x-y line grow more
slowly than at the same distance along the x axis. One
has to wait about 10% longer for the correlation to reach
99% of equilibrium. One can demonstrate this in a dif-
ferent way by plotting the correlation-function (divided by
their final equilibrium value) values of the correlation
functions (divided by their final equilibrium value) for
correlations along the (1,0) and (1,1) directions at constant
time as a function of logir. The results along the (1,1)
direction fall below what one would have expected from
simply interpolating between the y =0 points. This aniso-
tropy is not an artifact of our iteration procedure: The
iterated equilibrium (infinite-time) values are isotropic. It
is rather a genuine consequence of the fact that the
nearest-neighbor correlations grow more rapidly than the
next-nearest-neighbor interactions, which, in turn, reflects
the fact that this system has only nearest-neighbor in-
teractions. The average domain is somewhat larger mea-
sured along the x axis than in any other direction.

Equation (4.13) and our results can be viewed from
another point of view: the velocity at which domains ex-
pand is proportional to t ', and, at a given time, is larg-
est along the x direction.

In Fig. 10 we plot e(64,0;t) for the same values of uF as
plotted for e(1,0;t) in Fig. 2. Note the shifted time scale
in comparing these figures.

Our results yield direct information on the average
behavior of the spatial correlations: a global average over
all directions. We interpret L (or 2m. lq ) as being the typ-
ical size of a domain, while the crossover region for a
given time, where correlations grow from near zero to

TABLE I. 0=1og2(r2/r~), as defined in the text, is given for
various times and final temperatures.

0.42 0.45 0.55 0.84

10
100

1000

2.2
2.3
2.4

2.7
2.3
2.4

2.6
2.2
2.4

2.4
2.3
2.4

near final equilibrium values, may be thought of as
representing the "wall" regions. We have quantitatively
examined this range as a function of time and tempera-
ture. It is convenient, as in Figs. 6 and 8, to use a loga-
rithmic scale and define this "wall range, " for a given t
and u~, as the region between the distance r~ where the
correlations have attained 80% of their equilibrium value
and the distance rz where they have attained only 20%.
We then define the range 8 as 8=log2(rz/r, ). Measuring
8 along the x axis (to avoid confusion with anisotropy ef-
fects) one finds the results given in Table I. Note that the
fact that 8 is approximately equal to a constant in time
means that the thickness of this partly ordered region in-
creases in the same way as the average domain.

One should not confuse the behavior of quantities aver-
aged over all space, discussed above, with the behavior of
a single. domain. While, as we have just seen, there is a
rather wide range of distances for which (at a given time)
the average correlations vary from their equilibrium to
their initial values, the individual domains, on the other
hand, have fairly narrow walls. We cannot directly calcu-
late the thickness of these walls, but we can estimate its
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value by the following argument: Let us assume that the
density n of domain walls per unit length in a particular
direction is given by

20000

—31845
n =(I/w)e (4.14)

where w is the width of the wall E (iII) is the energy neces-
sary to create it, and P=I/k&T. We can then identify
n=(L+w) ', where L is the average size of the domain
(which we know, as a function of time). A rough estimate
for PE(w) is -2@m. We can then numerically solve
(4.14) for io. Although the results can only be trusted in
terms of their order of magnitude, they are nevertheless
interesting. We find that the individual walls are quite
sharp: At a time t=10, for example (the domains are
about 100 lattice spacings wide at that time), the walls are
—10 lattice spacings wide for uz ——0.42 and this number
decreases slightly as u~ increases, at constant time. As
time (and domain size) increases, the thickness of the
walls also increases, but only 1ogarithmically, so that,
comparatively speaking, the domains become much better
defined. This is in keeping with the fact that surfaces are
"rough" in two dimensions.

I5 000

&~ I0000

5 000

40S6

B. Quasistatic structure factor

In Fig. 11 we plot C(q, r) as a function of q for vari-
ous times for uz ——0.42. The main feature, as mentioned
earlier, is the development of a sharp central peak. We
see then, for wave numbers less than 0.01,
C(q, t) »Co(qt) f,or all times plotted. Using this very
good approximation and going to times sufficiently long
that P(q, t) =4v~, we reach the regime where (3.1), and
the discussion following it, apply. As discussed in MV we
can extract the peak contribution Cz(q, t) and show that
the area under the peak is just mz. That is, Cz(q, t)
grows into a Bragg peak as time evolves —just as we ex-
pect.

In Fig. 12 we plot q~, the half-width at half-maximum
of C( q, r ), versus time for u~ ——0.42. The double-
logarithmic plot clearly shows that q rapidly crosses
over to a t '~ long-time behavior. In Fig. 13 we plot
q /m versus uz for various times and see that q~ is a rel-
atively insensitive function of u~. The most convenient
way of presenting our results for q and C (the peak
height) is via the scaling forms, given by (3.12) and (3.13)
with x= —,', which turn out to be applicable for times
t &0.5. In Fig. 14 we plot f versus x=g/v t where the
true correlation length is given' by g= 1/ln(e uF). For
fixed uF and sufficiently long times, we find

f~(0)=0.509 .
We see «om Fig. 13 that q„/m shows no critical effects
as T ~Tc~

f ( oo ) =0.611 .

The x dependence of f shown in Fig. 14 can be approxi-
mately fitted to the form

f (x)=f (0)[I—gxf (m)/f (0)]/(I+gx), (4.15)

I000

0.00I 0.005 0.0IO

FIG. 11. Structure factor [C(q, t)] vs qle for various times
after a quench from ur ——0 to u~ ——0.42.
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FIG. 12. Double-logarithmic plot of q /m vs times t for
u~ ——0.42. The solid curve corresponds to the result

q /m =(O.S09/m)t ' and the dashed curve corresponds to the
RG result.

where g =0.26.
Similarly, the peak height C (t) is accurately given by

the scaling form (3.13) for t &0.5. The scaling function
f is plotted versus x in Fig. 15. For fixed uz & u„we
find, for taboo, that

f~(0)=6.718 .
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FIG. 13. Half-width q„/m. vs u~ for various times t.

A more interesting result concerns the behavior of C (t)
near T, . If we determine C~(t) for T=T„we find, for
longer times,

I i I i I i I s I i I

0 2 4 8 8 i0 l2

FIG. 15. Scaling function [f (g'/t'i )] for C, defined by
(1.5), vs x = /It ' i

in agreement with (4.16).
While the presentation of our results for q and C is

most natural in terms of the scaling forms, other types of
analysis present themselves. Power-law fits over various
limited time ranges will lead to results for effective ex-
ponents and amplitudes. If, for uz ——0.6, we carry out
power-law fits for 0.2 & t & 1.2, we obtain

(4.19)

C (t)=4.46t'"'. (4.16) (4.20)

This physically sensible result that C~(t) be finite at T,
for all finite times requires, via (3.13), that

f (x)=fpx'/ (4.17)

C(0, t) L2 v —t 1 v/2=t7/8 (4.18)

0.600

0.580

0.560

0.540

0.520

0500 i I i I I I i I i I

0 2 4 6 8 IO I2 l4

FIG. 14. Scaling function Lf (g/t'i }] for q„, defined by
(1.4), vs x =g/t ' i .

for large x. We find numerically that fp ——5.87. The re-
sult (4.16) for C (t) at T, has a straightforward interpre-
tation: If the system is in equilibrium at T=T„ then
C(q)-q +" for small wave numbers. For quenches to
T„ the smallest wave numbers that have had a chance to
equilibrate in time t after the quench are of order L '(t),
and we expect, therefore,

Clearly, if one extends the fitted region, the exponents will
evolve to —0.50 and 1.0. In particular, if we fit q~/m to
a form Bt " for various time ranges, we can determine B
as a function of uz (x will be very close to —,

' for t ) 1 and

uF&u, ). Typical results for B are shown in Fig. 16 for
fits to two different time ranges. Clearly, B is very sensi-
tive to the time-interval fit.

It is tempting to interpret these results in light of the
controlled-growth MC experiments discussed in Ref. 12.
In these simulations one begins with a domain area Ao,
composed of "up" spins, say, in a sea of "down" spins,
and finds that the area A shrinks with time according to
A (t) =Ap —yt in agreement with the Cahn-Allen theory.
There has been interest in the temperature dependence of
y. Sahni et al. ' find that y increases as Tz is lowered
below T, and finally saturates for T/T, &0.6. One
might suppose that y

'~ is related to B plotted in Fig.
16. Indeed, there is a qualitative similarity —in that y and
B increase as TF is lowered. From our own work,
however, we see that B is strongly dependent on the time
range studied, and we expect that the detailed temperature
dependence of y is rather strongly tied to the geometry of
the growth experiment studied. In a similar fashion we
expect y to depend on the type of dynamics (Crlauber or
Kawasaki) used and, therefore, not to be a very "univer-
sal" quantity.

We turn now to a discussion of the shape function
F(x,y) defined by (3.9) with x=q/q~ and y=q„g. Be-
fore we can accurately extract F(x,y) from our iterated
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The first question one can ask is how quickly in time
does the scaling form (3.8) become appropriate? We find
that it takes considerably longer for F(x,y ) to become in-
dependent (t&5) than it does for q to settle into its
t ' behavior. This is not too surprising since it takes a
while for the tail of F(x,y) (the larger ! x! values) to rise
above the background, and, of course, it is the larger
values of ! x! which become time independent less rapid-
ly.

We have calculated F(x,y) as a function of uF for
0.42&uz&1 in steps of 0.01 and find no appreciable
dependence on y to better than 1% accuracy. A plot of
F( x) =F(x,0) for x in the (1,1) direction coincides, over
the region of x shown, with that for the angularly aver-
aged quantity F(x) shown in Fig. 17.

For small x, F(x) is isotropic, and Gaussian,

F(~) —Qx (4.23)

) t «)» i )

0.42 0.46 0.50 0.54
and we obtain numerically that a=2.37. For large x we
expect

F(x)-!x! (4.24)

FIG. 16. Quantity B, resulting from fits for q (g, t) to the
form Bt ' over different time intervals, vs u~. The solid
curve corresponds to fitting over the time range of 81 to
4700000. The dashed curve corresponds to fitting over the time
range of 10 to 110.

and we find for q„=@~ and 4 &x & 12.5 that p -4.4.
It turns out in this case, however, to be important to

study the angular dependence of F(x). In Fig. 18 we plot
F(x) versus the angle 8 that x makes with the x axis, for

solution for C(q, t), there is one complicating technical
problem we must discuss.

In solving the recursion relations of the type given by
(2.38) it is possible to pick up extraneous and small oscil-
latory contributions (as discussed in Ref. 5 and MV) asso-
ciated with the time- and space-rescaling factors. As a
trivial example, a recursion relation

C(t}=C(b,t }

I.O

will possess solutions of the form

C( t) =Cp+ C i cos(roplnt ) +C2 sin(roplnt ),
where

(4.21)

cop 2mn /1nb, , —— (4.22)

and n is an integer. In particular, we find that the shape
function shows such behavior. A direct numerical deter-
mination of F(x,y) for uF ——0.42 and times t =1024 to
10 shows that there is a small oscillatory contribution
with precisely the frequency cop ——2n./1nb, . This is clearly
an artifact of the choice of the rescaling factor, b =2. We
can easily identify the components corresponding to Ci
and C2 in (4.21). We find that the oscillatory component
is approximately 5% of the time-independent component.
Henceforth we refer only to the uniform component of
F(x,y) in our analysis. The subtraction of the oscillatory
terms is achieved by carrying out a three-parameter fit to
the form (4.21) (at constant x and y). We find that the
uniform contribution to F(x,y) that we extract is in-
dependent of the fitting procedure (time range fit, etc.) to
better than l%%uo.

O4-

0.2—

2 3 4 5

FICr. 17. Shape function [F(q/q )], defined by (4.25), vs
x =q/q„. The solid lines are the RG calculations. The dashed
curve is taken from Ohta et al. in Ref. 2.
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0.20 V. DISCUSSION
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FIG. 18. Shape function [F(q/q, q g)], defined by (1.3), vs

the angle 8 labeling the direction in q space, divided by m-.

fixed
~

x ~. We see from the results that F(x) dies off
more slowly in the 8=0 direction. Thus, for larger values

of
~

x ~, F(x} is anisotropic and, we believe, gives infor-
mation about the basic growth pattern in the system. In
particular, we see that F(x) is elongated along the (1,0)
direction, in agreement with the analysis in coordinate
space that growth proceeds through a "hopping" between
nearest neighbors.

In Fig. 17 we have plotted the angularly averaged shape
function

2m dgF(x)= f F(x) . (4.25)

For comparison we have also plotted the shape function
found in Ref. 2 normalized such that the points at x =0
and 1 (the maximum and half maximum) agree with our
definitions. The results are rather similar except in the re-
gion 1.S&x &3. The large-x behavior of the averaged
F(x) varies as x t' with p=3.04. This is in reasonable
agreement with Perod's law and Ref. 2 where p =d+ 1 =3
in two dimensions.

It is our opinion that the MC data is sufficiently poor
that direct comparisons for F(x) are not meaningful.
Determinations of the large-x behavior and the exponent

p seem somewhat more reliable. We have analyzed the
data in Ref. 10 and find p=2.9. A value of p=2.7+0.1

is reported in Ref. 11. The error, it seems to us, is larger
than the 0.1 quoted, and thus there is rough agreement be-
tween the various determinations of p.

We have presented in this paper a detailed microscopic
theory for' the growth of order in an unstable, degenerate
system with no conservation laws. The theory agrees
quantitatively with Monte Carlo simulations in direct
comparisons with no adjustable parameters, and produces
all of the expected qualitative features of the growth pro-
cess. We also have found new results concerning the scal-
ing behavior of q, C, and e(1,0;t) which elucidate the
role of temperature in the growth process. It will be very
interesting to find out if associated shape functions, f~,f, f„and F, match with detailed numerical and experi-
mental investigations of systems of this type. We are left
with two main questions. First, how sensitive are our ma-

jor results to the various approximations and parametriza-
tions we have made in our study of the spin-flip kinetic
Ising Model? Second, how model dependent are these re-
sults?

The most important results we have derived are the
scaling equations. Of these, the scaling equation for the
structure factor itself was previously known' and verified

by Monte Carlo simulations. The existence of such a
form follows quite generally from the recursion relations
of the form (2.38), regardless of any parametrizations later
introduced for Co and P. The other scaling relations are
new. They should be tested by further Monte Carlo simu-
lation. These scaling forms are obtained under the same

very general assumptions as that for C(q, t), in addition
to the assumption that b, is independent of TF. A sign of
a temperature-dependent b, would be a weak violation of
these scaling relations [but not for C(qt)] ,for uF near

~c.
Passing on to the numerical results, the exponents

x= —,
' and y=dx depend only on the very general as-

sumptions discussed above, as well as the value of 6 at
T=0 (5=0.25). These results, therefore, are also
parametrization independent. Our qualitative results
(general shape of real-space correlations, area under the
central peak, etc.) are also completely general.

The main possible consequence of a change in the deter-
mination of A, and A,

~ (or the introduction of additional
characteristic times) might be a change in the time scale
by a constant, possibly temperature-dependent factor.
This is of no great concern (since a, our unit of time, is
arbitrary), except that it might have to be taken into con-
sideration when comparing our results with future Monte
Carlo simulations. Similarly, the determination of the
shape functions (as opposed to their existence) might be
subject to quantitative changes due to a more careful
analysis of Co and P.

There are two sets of technical improvements we can
carry out to improve our treatments of Co and P. The
first is the inclusion of larger- ~m

~

terms in Co [see
(2.30)], and the second is a more sophisticated parametri-
zation of the time dependence of the short-range quanti-
ties P(q, t) and eo(m;t) (so as, for example, to be able to
include higher-order time derivatives). We will discuss
the incorporation of both of these refinements into the
formalism in a planned future publication. The main
point of interest is the question of numerical convergence
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of the results. As explained above, neither qualitative
changes nor changes in the exponents should be expected.

What, besides questions of convergence, etc. , can go
wrong with our theoretical approach here? The main
theoretical problem that could develop in the approach we
have proposed here is that there might exist additional
dynamical variables whose correlations persist to very
long times and distances. If such a variable exists, then
the simple self-similarity given by (3.1) must be extended
to include rescaling of this variable, in addition to at and

It does not appear that such a variable exists in the
problem we have studied here, but it undoubtedly exists in
other problems. The clearest example is the role of
mode-coupling terms in the problem of phase separation
of fluids.

It seems rather clear that the single-spin-flip kinetic Is-
ing model is almost ideal for studying this problem.
While it includes all of the essential features of the prob-
lem, it is extremely simple. One should now ask how sen-
sitive our results are to extensions and generalizations of
the model. Several simple questions come to mind. How
sensitive are f (x), f (x), f,(x), and F(x,y) to changes
in the flipping probability W;[cr]? We expect the ex-
ponents x and y to be insensitive to the choice of W, [o].
A questionable term very relevant to direct comparison
with experiment is the temperature dependence of the
flipping rate a which we have set to 1 for all temperatures
here. Our work here indicates that the appropriate scaling
variable will be glv at, where one includes the tempera-
ture dependence of a. A somewhat deeper question con-
cerns the nature of universality classes. In critical phe-
nomena it would be sufficient to compare dynamical

models where the order parameter is a nonconserved
Ising-type scalar without mode coupling to establish the
basic dynamic universality class. Thus a single-spin-flip
Ising ferromagnet should be in the same critical dynamic
universality class as the spin-exchange antiferromagnet.
In the quench case, it is a reasonable hypothesis that these
two systems share the same scaling behavior. It has been
rather well documented' that they both satisfy a Cahn-
Allen growth law. Do they share the same scaling func-
tions f~(x), etc.? A detailed comparison has not been car-
ried out.

Unlike critical phenomena it seems possible that the
underlying lattice may have an influence on the asymptot-
ic growth process. That is, F( x ) may not be isotropic for
sufficiently large

~

x
~

. The angular dependence of F(x)
may contain useful information about the growth and
shape of domains.

An interesting issue is the inclusion in our formalism of
conservation laws. As we mentioned in the Introduction,
preliminary work on the case where the order parameter is
conserved has already been reported. We are continuing
work in this area (in particular, on the determination of 6
for the antiferromagnetic spin-exchange model).
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