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Effect of momentum-dependent many-body interactions on the de Haas —van Alphen amplitude
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The de Haas —van Alphen amplitude is calculated taking into account both the frequency and the
momentum dependencies of the electron self-energy within the pole approximation to the electron
spectral function. When we make the quasiparticle expansion of the self-energy, we find that the
same effective mass enters both the amplitude and the electronic specific heat. The possibility of a
discrepancy between these masses in nearly ferromagnetic systems is briefly discussed.

High-accuracy experimental data on the de Haas —van
Alphen (dHvA) effect yield pertinent information about
the electrons near the Fermi surface (FS). In the first
place, the dHvA periods are determined by the Bloch-
band structure through the cross-sectional areas of the
true FS calculated by taking into account electron-
electron exchange and correlation effects. ' Secondly, the
dHvA amplitude is governed by inany-body effects. The
renormalization of the amplitude factor due to electron-
phonon interactions was formulated by Fowler and
Prange in terms of the frequency- and temperature-
dependent electron self-energy which remains essentially
unaffected by the magnetic field H. On this basis
Engelsberg and Simpson gave a detailed analysis of the
strong-coupling effect that occurs in high magnetic fields
when the cyclotron frequency co, ))co~i, (equal to the
characteristic phonon frequency) and the temperature T is
small x =2m k&T/%co, «1.. In that case [where many
Matsubara frequencies co„=2m.(v+1)k&T lie within co,],
the amplitude factor can deviate significantly from the
"quasiparticle amplitude" A' '=2x exp[ —(m'/m)x]
where m' is the quasiparticle mass at zero temperature
and zero frequency. This deviation has been clearly
observed in mercury by measuring the amplitude versus H
at low temperature.

In the theoretical investigations (cf. Refs. 2 —6), the
usual assumption is made that the electron self-energy is
frequency dependent but not momentum dependent, that
is, it is retarded in time but local in coordinate space.
This assumption is justified for the electron-phonon in-
teraction by virtue of its short-range nature. The self-
energy has a weak momentum dependence,
X, zb(p, co) 0-p ', so that for p=pF (equal to the Fermi
momentum) the effective mass m' is determined solely by
the frequency dependence of X, ~i,(pz, co).

In simp/e metals both the momentum and energy
dependence of the electron self-energy, X, ,(p, co) due to
the Coulomb interaction between the electrons, are impor-
tant. However, m* only differs from m by the order of a
few percent. For transition metals and their compounds
in which the Coulomb interaction is strongly exchange
enhanced and spin fluctuations are thus important, the
mass enhancement can be significant. In spin-fluctuation

theory the assumption is made that, in analogy to the
phonon case, the momentum dependence of the self-
energy is negligible. We will not make this assumption.

The following question arises: Assuming that X, , is p
dependent, does the dHvA amplitude in the quasiparticle
approximation still have the form A' '=2X exp[ —(m*/
m)x], and is m' identical with the specific-heat mass in
Sommerfeld's y? Note that we are not looking for devia-
tions from quasiparticle behavior of the type considered in
Ref. 3, i.e., we are primarily interested in the case where
co, is small compared to co„i, and cos„, if spin fluctuations
are important.

We were motivated to investigate this question by de-
tailed experimental observations of many cyclotron orbital
areas on Pd by Dye et al. using the dHvA effect. These
authors concluded that the measured masses predict an
electronic specific heat about 15%%uo lower than observed.
This discrepancy has apparently now disappeared. ' In
Pt, Nb, and noble metals, the fitting of the dHvA data to
their Korringa-Kohn-Rostoker (KKR) parametrization of
the Fermi-surface geometry leads to a prediction of
specific-heat masses which are in good agreement with ex-
periments. On the other hand, there is another metal with
strong spin-fluctuation effects, TiBe2, " where the ob-
served dHvA masses are much smaller than the specific-
heat mass. ' As a first step in an investigation of the pos-
sibility of such discrepancies we consider the effect of the
momentum dependence of X, , Later we will briefly dis-
cuss another possibility.

The quasiparticle effective mass m', which is the
"specific-heat" inass at low temperature, ' is defined by
the expansion of X(p, co) near the FS,

c) ReX(p, co)

c) ReX(p, co)

Bco p =pF, et)=0

We write the e eself-energy as-
X, ,(p, co) =X„(p)+X,(p, co), (2)

where X„and X, are the Hartree-Fock and correlation
terms, respectively. In simple metals there are large con-
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tributions to the derivatives of X, , with respect to both co

and p. The p dependence of X, , is governed by X» which
yields the Hartree-Fock divergence of m . This is com-
pensated for by the co dependence of X, . This divergence
difficulty can be avoided by including at least the static
correlation effects with the help of a screened Coulomb
potential when calculating the exchange self-energy

X, , -X„"'(p). We show later that a corresponding diver-

gence does not occur in a Hartree-Fock evaluation of the
dHvA amplitude.

A low-frequency, momentum-dependent contribution to
X, (p, co} occurs in d-band metals that have a tendency to
become itinerant ferromagnets or antiferromagnets. The
exchange-enhanced e-e interaction gives rise to spin fluc-
tuations which cause renormalization effects due to the
emission and reabsorption of one or more virtual
paramagnons. The spin-fluctuation model is not based on
a fundamental theory of correlation effects as is Landau's
quasiparticle theory. It does allow us, however, to calcu-
late the effects of a well-defined class of particle-hole
correlations thought to be the most important ones in
nearly ferromagnetic metals at low frequencies and small
momentum transfers. We note that although the Landau
theory has been quite successful in liquid He, it has failed
in predicting, in a consistent manner, the renormalization
effects for the electron gas in metals. ' There is, in addi-
tion, the difficulty of extending the Landau f function to
finite frequencies and momentum transfers. At this point
let us assume that any spin-fluctuation effects are con-
tained in X, , (p, co). Later we comment on the nearly fer-
romagnetic case where the spin-fluctuation contributions
dominate.

To evaluate the dHvA amplitude we start from the
standard formula for the total electron density n Using.
the notation of Ref. 2 (where mfico, was set equal to 2},
we have

g f f f( co)A(/, p„co),
I o 2' 2'

cg A x —
& p Q) (4)

The term n, is the contribution of the rth harmonic of the
dHvA oscillations;

where 0„,.„ is the rth harmonic of the oscillating part of
the thermodynamic potential given by Luttinger. ' In
terms of the new integration variables,

2mfico, fdx = fdpi =sr ' fd p,
Eq. (4) becomes

n, =(—1)'Ref 3 exp f A (ez, co),d p &~Vs de
(2~)3 mfa, 2n

(5)

where e~=p /Zm —p. The momentum integration is
converted to an energy (e) integration by a standard pro-
cedure. Then,

where

f (co) = I exp[(co —p)/k~ T]+1]-',
and A (l,p„co) is the spectral weight function of the elec-
trons whose orbital motion is quantized by a magnetic
field H oriented in the z direction. The function
A (l,p„co) is obtained from the one in zero field when p
is replaced by

p, +2mirico, (l + —,
' ):p, +—pi

and the sum over the Landau level quantum numbers I is
defined by 2mirico, g& =—dpi. By applying the Poisson for-
mula' to Eq. (3), n is decomposed into a sum n =g„n„
where

m Aco,
n, = ( —1)' Re dx exp(2n. irx)

m' 0

( —1)" de %co,
n, = Re N(e)

2 —~ 2n 2r (e+p)

1/2

exp — f dco f (co)A (e,co),
C

L

(6)

where N(e) is the unrenormalized density of states per spin. This is the general form of n„containing the spectral func-
tion A (e,co) which is determined by the p- and co-dependent self-energy X(ez,co),

~ ( )
ImX(e, co) (7)

[co—e—ReX(e,co)] + (ImX/2)

Using this form of A we cannot obtain a closed-form expression for the co integration in Eq. (6). In order to proceed
analytically, we make the pole approximation for A, that is, we assume that ImX(e, co) =constant and take the limit
ImX=0. Then we have

3 (e,co) =2~5[co—e —ReX(e,co)] .

We are thus considering undamped quasiparticles and hence the effect of the p dependence of ImX(p, co) is neglected.
This is probably not a bad approximation since, as shown in Ref. 3, quasiparticle damping effects are not important for
co, much smaller than the characteristic frequencies of the system (cosh or cosp). With the pole approximation, the co in-

tegration in Eq. (6) yields

dE' ~en„=(—1)'mRe f N(e)—v 2m 2r(e+p)

' 1/2
2vrir(a+p) i~ 8 ReX(e, co)

exp
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where i)~ is the quasiparticle energy measured with respect to p and given in terms of e by the solution of the equation
I

rip ——gp+ReX(gp, i)~ ),
with fz

——ez —p. To proceed with the e integration we assume a parabolic band and use the relation

dg' 1 —c) ReX/di)
dpi 1+c)ReX/c)g

Then Eq. (8) becomes

%co,
n„=(—I)"N(er)

8rfF

1 /2
21TlI'fF

Re exp
C

le di) exp[2n. ir(g+5p, )/%co, ]
4 Jv~ v~ [—exp(i)/kti T)+ 1][1+c) ReX(g, i) )/c)g]

(10)

Q exp
27TlPfF

Ace,

l&
4

where the amplitude A, is given by the g integral in Eq.
(10) multiplied by the factor (2mir/fuu, ). This result can
be compared with Eq. (25) of Ref. 2. Closing the i) in-
tegral in the upper half of the complex il plane yields

exp[ m2.ir(/+5')/fico, ]
A, =2rx (12)1+aReX(g, ~)/ag

where g is given by Eq. (9) in terms of i).
The amplitude A„ is found immediately when we per-

form the usual expansion of X(g, ri) around its value at
the FS, X(pr, O). The result is given by Eq. (12) with the
replacement

5p l&v
(m*/m)

C C

(13)

in the exponent. Here m*/m, defined by Eq. (2), is exact-
ly equal to the specific-heat mass. Furthermore, the
denominator in Eq. (12) is to be replaced by

Here g=g(ri) is given by Eq. (9); for the case i)z ——0, we
have 5p=ReX((r, 0)=p ez, w—here e~ pg/2——m The.

basic assumption underlying Eq. (10) is the pole approxi-
mation, Eq. (7).

The rth harmonic of the magnetization, m„ is given by
integrating Eq. (10) with respect to p and the differentiat-
ing with respect to H. We obtain

1/2
%co,N(eF) fico, ez

m„= ( —1)"A„Re
H 2m. 8p

3

X„(g,O)=5@+(e m/irpr)(/+5')ln
~
4e~/(g+5p) ~,

The resulting dHvA amplitude is well behaved, even at
T =0. A more realistic approximation to a p-dependent
self-energy is obtained by screening the Coulomb potential
in the self-energy with the Thomas-Fermi screening func-
tion. The result for the self-energy is

X„„(g,O) =(e'p /ir)S„„(g),
where

S„„(y)= — 1+
1 —3 '+3 0 (1+3»'+3 0

ln
2 24y (1—y) +y0

yo2—tan
y —& —yo

(19)

Here y =P/Pp y0=Prp/Pp /=ed(y —1)+(e /irPp)
XS „(y =1), and prz/fi is the Thomas-Fermi screening
wave vector. For (/+5', )/er « l,y0, we find the quasi-
particle form of the amplitude, Eqs. (12)—(14), with Z =1
and

(16)

assuming that /+5' « er', 5p = —X„(g&,0). When

g+5p is found in terms of ri, we can calculate the ampli-
tude factor, A, ", from Eq. (12) after substituting for
c) ReX/c)g the quantity

c)X„($,0)
(e m/mpz)[ln

~
4'/(/+5')

~

—1] . (17)

8 ReX($,0) )(, )+ = m m (14)
m me (3'0+2) 3'0+4

~ =1+ lnm' ~PF 4 yo
(20)

where

c) ReX(pr, co)Z= 1—
BQ) CO=0

(15)

is the usual quasiparticle renormalization constant at the
FS.

There are two cases where X depends on g' (i.e., on p)
only: the Hartree-Fock and the screened HF approxima-
tions. In the first case we use Eq. (12). The quasiparticle
energy i) is given by Eq. (9) with

Finally, for a frequency-dependent self-energy part,
ReX, , (p, co), such as that found in the plasma-pole ap-
proximation for the electron gas in simple metals, ' we ex-
pect no deviations from the quasiparticle behavior of Eqs.
(13)—(15). The instantaneous nature of the dynamically
screened Coulomb interaction causes ReX, , to vary slow-
ly with co, on the scale of the plasma frequency co&.

From our results it seems reasonable to conclude that
the momentum dependence at the FS of the self-energy
does not lead to a deviation of the dHvA amplitude from
quasiparticle behavior, i.e., there should be no difference
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in the dHvA and specific-heat masses due to this effect.
In view of the fact that such a discrepancy may exist in

other systems (e.g. , TiBe2, " as previously mentioned), we
would like to comment briefly on how this might occur in

nearly ferromagnetic systems. We are not concerned here
with the type of deviation from quasiparticle behavior dis-

cussed in Refs. 2 and 3, i.e., deviations due to quasiparti-
cle- damping effects not included in our pole approxiina-
tion to the electron spectral weight function. This type of
deviation is not likely to be important in most nearly fer-

romagnetic systems since the average spin-fluctuation
(SF) energy is large compared with phonon energies and

the condition co, »cosF would be difficult to satisfy. In-

stead, we want to speculate about a possible deviation that
could also occur within the pole approximation.

In Ref. 3, it was apparently concluded that SF effects
(paramagnons) contribute to the dHvA amplitude in the

same manner as phonons. The analogy between phonons
and paramagons is, however, not as good as has often
been assumed. In particular, due to the absence of
Migdal's theorem for spin fluctuations, the one-

paramagnon-exchange self-energy may be a rather poor

approximation. ' ' In the case of He it was argued'
that multiparamagnon processes could lead to a scaling,
or "renormalization, "of the quasiparticle renormalization
constant Z in situations where the electron spectral func-
tion is integrated over a range of momenta rather than
evaluated directly at the FS (as for the specific heat). The
incoherent part of the spectral function, which is neglect-
ed in the pole approximation, was shown to give contribu-
tions that could be accounted for in a pole approximation
by effectively increasing the magnitude of Z. If this ef-
fect occurs in the dHvA case, the factor Z occurring in
the amplitude would be increased resulting in an effective
mass smaller than the specific-heat mass.

Experimental measurement of the specific heat and the
temperature dependence of the dHvA amplitude in nearly
ferromagnetic metals would be helpful in clarifying these
effects.

We would like to thank J. Ketterson and G. Crabtree
for bringing this problem to our attention and P. Hertel
for some helpful comments.
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