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A numerical technique, termed the scaling-field method, is developed for solving by successive ap-
proximation Wilson s exact renormalization-group equation for critical phenomena in three-
dimensional spin systems. The approach uses the scaling-field representation of the Wilson equation
derived by Riedel, Golner, and Newman. A procedure is proposed for generating in a nonperturba-
tive and unbiased fashion sequences of successively larger truncations to the infinite hierarchy of
scaling-field equations. A "principle of balance" is introduced and used to provide a self-
consistency criterion. The approach is then applied to the isotropic ¹ectormodel. Truncations to
order 13 (10, when %=1) scaling-field equations yield the leading critical exponents, v and q, and
several of the correction-to-scaling exponents, 6, to high precision. Results for N =0, 1, 2, and 3
are tabulated. For the Ising case (%=1), the estimates v=0.626+0.009, g=0.040+0.007, and
6& =—5400——0.54+0.05 are in good agreement with recent high-temperature-series results, though ex-
hibiting larger confidence limits at the present level of approximation. For the first time, estimates
are obtained for the second and third correction-to-scaling exponents. For example, for the Ising
model the second "even" and first "odd" correction-to-scaling exponents are 6422 ——1.67+0. 11 and
5&00——1.5+0.3, respectively. Extensions necessary to improve the accuracy of the calculation are
discussed, while applications of the approach to anisotropic S-vector models are described else-
where. Finally, the scaling-field method is compared with other techniques for the high-precision
calculation of critical phenomena in three dimensions, i.e., high-temperature-series, Monte Carlo
renormalization-group, and field-theoretic perturbation expansions.

I. INTRODUCTION

The scaling-field method (SFM), ' which is based on
Wilson's exact renormalization-group (RG) equation, has
been very successful in the study of crossover phenomena
in anisotropic ¹vector models. ' In this paper the
method is developed into a tool for the high-precision cal-
culation of critical phenomena in three-dimensional spin
systems. In fact, the approach offers a powerful alterna-
tive to the field-theoretic (FT) expansion techniques. '

The debate concerning the correct numerica'1 values for
critical exponents in three-dimensional systems is continu-
ing and focusing increasingly on the values for the
correction-to-scaling exponents. The influence of the
latter on the critical behavior is always present but diffi-
cult to extract from perturbation expansions or experi-
mental data. Work on the critical exponents of the isotro-
pic ¹ ector model by FT perturbation expansions has
had a major impact. ' Specifically, the FT result for the
Ising model of @=1.24 showed significant disagreement
with the previously accepted estimate of y= 1.25 from
high-temperature (HT) series. The FT technique involves
Feynman-graph computations to high order, and requires
sophisticated resummation and extrapolation since the ex-
pansion parameter, which is the renormalized coupling
constant, is not small in three dimensions. Recently, sig-
nificant progress has been made in HT--series expansions;
new techniques for analyzing' ' HT series as well as for
generating"*' ' longer series have been developed. The

present consensus seems to be that the HT-series results
overlap the FT estimates, although suggesting a slightly
higher value for the first correction-to-scaling exponent
b, &=6,40o and a slightly lower one for y (or a slightly
higher one for g). '" Also being developed currently is the
Monte Carlo (MC) renormalization group for the three
dimensional Ising model &7, &8 In yet another approach
the critical behavior of the Ising model is simulated by a
specially designed MC array processor. ' The purpose of
the present paper is to present a new momentum-space
RG approach, termed the scaling-field method, which is
applicable to the high-precision calculation of critical ex-
ponents of a large class of isotropic and anisotropic X-
vector models.

The SFM satisfies two important criteria for high-
precision techniques. First, it is based on an exact equa-
tion, which is Wilson s functional RG equation, and,
second, it proceeds by. generating successive approxima-
tions systematically. The convergence of the method
must be studied a posteriori. Although the Wilson func-
tional RG equation appears not to be solvable by direct at-
tack, it has been transformed into an infinite hierarchy of
ordinary nonlinear differential equations, termed scaling-
field (SF) equations. For background, see Ref. 1, which
hereafter will be referred to as I. The key ingredient for
the numerical solution of the Wilson equation by succes-
sive approximation is the "principle of balance, " which
we will introduce below. This, principle allowed us to for-
mulate a procedure for generating, nonperturbatively, se-
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quences of successively larger truncations to the SF equa-
tions.

In this paper the SFM is applied to the isotropic N-
vector model and the computation of its critical ex-
ponents. Specifically, an approximation is considered
within which sequences of balanced truncations of up to
n, q = 13 ( n, q

= 10, when N = 1) SF equations can be
found. There is no technical reason that forces one to
stop at this approximation. Estimates for the leading crit-
ical exponents by the SFM for the cases N =0, 1, 2, and 3
are presented in Table V. The confidence limits include
estimates of systematic errors, and their assignment is
described later. To facilitate comparisons, Table VIII ex-
hibits a summary of current estimates for the Ising
( N = 1) critical exponents by the HT, FT, and MC
methods. The SF estimates for the Ising exponents are
v=0.626+0;009, g=0.040+0.007, and 6I =—64OO ——0.54
+0.05. These values agree well with the HT-series re-
sults, although they are less precise in the present approxi-
mation. However, like the latter, they suggest slightly
higher values for the exponents g and b, i than those ob-
tained by the FT method. For the first time we provide
good estimates for the lower-lying correction-to-scaling
exponents. For example, for the Ising model, we estimate
the second "even" and first "odd" correction-to-scaling
exponents to be 6422 ——1.05+0.08 and 65oo ——1.5 +0.3,
respectively. These results, which can be approximated
by 6422-2b, 4OO and b50O-364OO, are of interest in the
analysis of experimental data and HT series. ' Further
comparisons are provided in Secs. III and IV.

The SFM differs in several important ways from other
techniques.

(i) The approach is nonperturbative. Neither the Wil-
son equation nor the procedure for generating successively
larger truncations involve perturbation-expansion argu-
ments. - The implicit assumption in the SFM is that high-
precision calculations of critical exponents are possible,
based on the expansion of the RG Landau Hamiltonian in
terms of Gaussian operators [see Eq. (2.4) below], even if
one retains only certain kinds and limited numbers of
operators. The nonperturbative character of the SFM
makes it possible to compute critical exponents by a sim-
ple matrix diagonalization, i.e., without the need for ex-
trapolation or resummation procedures. This yields both
the leading and the correction-to-scaling exponents.

(ii) The SFM is applicable with only minor changes to
isotropic and anisotropic ¹vector models. The reason
for this is that the Wilson RG equation holds for general
¹component-spin Landau Hamiltonians. As yet, only
estimates for the critical exponents of certain classes of
anisotropic spin models in three dimensions have been ob-
tained, specifically, for the randomly dilute Ising and cu-
bic N-vector, and the percolation and Q-state Potts prob-
lems.

(iii) The SFM allows the investigation of trends in criti-
cal phenomena as function of the spatial dimension d
(e.g. , between the upper and lower critical dimensions) or
the number of spin components N. ' This fact has also
been used to test the computational algorithm in wel1-
understood limits, such as e expansion or special values of

Numerical calculations are always performed at the

spatial dimension of interest.
(iv) The calculations by the SFM can be easily extended.

This applies to the high-precision work for the isotropic
N-vector model considered here and our studies for aniso-
tropic systems. ' The steps necessary to calculate addi-
tional SF coupling coefficients are described in I. Al-
though the computation involves more complicated com-
binatorics, which can be performed with the help of
algebraic-manipulation programs, the integrals can still be
reduced to one-dimensional ones by Fourier-transform
techniques. In contrast, extending the HT or FT pertur-
bation expansions poses considerable difficulties, e.g. , the
evaluation of high-dimensional integrals in the FT ap-
proach '.For remarks concerning the computation of
scaling functions by the SFM, see I.

In summary, it is concluded that the SFM warrants a
large-scale computing effort which would yield, to good
precision, the leading and correction-to-scaling exponents
and other quantities for a variety of three-dimensional N-
component-spin systems. In view of the modest length of
the truncations considered for the isotropic N-vector
model so far, the precision of the results is excellent. The
procedure is nonperturbative and yields unbiased results.
We believe that the SFM has the potential for overtaking
the expansion techniques as the best source of calculated
information for three-dimensional ¹ ector models.

The outline of this article is as follows. In Sec. II we
develop the SFM for solving the Wilson RG equation by
successive approximation. A procedure is proposed for
generating sequences of successively longer truncations to
the SF equations that is "blind-folded" to the convergence
of the method. In Sec. III we apply the approach to the
high-precision calculation of the critical exponents of the
isotropic N-vector model. The computation of the
correction-to-scaling exponents is dealt with in a special
subsection, Sec. IIIB. In Sec. IV we contrast the SFM
with three other techniques for high-precision calculations
of critical exponents, j.e., HT-series, MC renormal-
ization-group, and FT perturbation expansions, and com-
pare, at a nontechnical level, the kinds of approximations
involved.

II. SCALING-FIELD METHOD

In this section a method of successive approximation
for solving the exact Wilson RG equation for critical phe-
nomena of three-dimensional systems is proposed. A
"principle of balance" is introduced and used to generate
sequences of successively larger truncations. The pro-
cedure described has as its principal virtue the fact that it
neither biases the results nor prejudices the convergence of
the method.

A. Scaling-field equations

The Wilson functional RG equation for RG Hamiltoni-
ans of the Landau type, written schematically, '

(2.1)
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is exact and explicit, but no general techniques exist
presently for its direct solution. The right-hand side of
this evolution equation for Ht[cr] as a function of the RG
iteration parameter l depends only on H~[cr] and a spin-
rescaling parameter b, (in the notation of Wilson and Ko-

I

gut, b, = 1 —dp/dl). Our approach starts from the SF
representation of the Wilson equation, which is given in
Eq. (2.5) below, and has been derived in I.

We adopt the following notation. ' The Landau Hamil-
tonian for the isotropic ¹ectormodel is

H~[a]= g f u (q, , . . . , q;l)5(q, + +q )[o(q, ) cr(q )] [cr(q, ).cr(q )] .
m even

(2.2)

In Wilson's formulation, integrals f:—f d"q, extend
over all space, and a smooth cutoff function g(q) [see Eq.
(2.16) below] is absorbed into the definition of the func-
tions u tq;;l j. The functional variables cr(q) are N-

component "spins"

o (q) =
t cr (q); ct = I, . . . , N; —ao & o (q) & co j .

We consider only Hamiltonians that are isotropic both in
the spin and momentum variables. The Boltzmann factor
P= 1/kjt T is absorbed in the definition of (2.2) in the usu-
al way. The free-energy density divided by kjjT is given
by

II
amj =~amj ~

a =ha" .

(2.6b)

(2.6c)

with

d(5p ) =g Y(m, j)5jjj,
j

(2.7)

In numerical work, we treat 6 as an input parameter
whose fixed-point value b, we determine by a side condi-
tion discussed in Sec. IIB. The linearization of Eq. (2.5)
about a fixed point, djc~/dl =0 for all m, defines the sta-
bility matrix Y(m, j). Using 5jc~=jt —p~, one obtains,
from Eq. (2.5),

F t HI p j = —V ' ln f exp( —Ht p[cr]) . (2.3)
al Y(mr J)=Vm 5m j +2 g amjkPk+aMJ

k

(2.&)

For further definitions, see Appendix A of I. Invoking
the universality hypothesis, one refers to the model (2.2)
as the Ising, planar, Heisenberg, or spherical model when
%=1, 2, 3, and oo, respectively. The case X=O is
relevant to the excluded-volume problem and X= —2 is
the limit of Gaussian critical behavior.

In the SF approach, the RG equations are parametrized
by the values of the nonlinear scaling fields p~(l). ' '
One expands Ht fcr] about the Gaussian fixed point
HG [o ], in terms of the set of Gaussian operators Q~ [o ],

Ht[cr]=HG[cr]+g jj, (l)Q [cr] . (2.4)

[Equations (2.4) and (2.2) are related in Appendix A.] An
exact transformation of the Wilson equation (2.1) then
leads to the infinite hierarchy of ordinary nonlinear dif-
ferential equations for the scaling fields p~(l),

d jj, (l) =y'j (l)+Xa jkPj(l)j k(l)
j,k

+pa jpj(l)+.a~, (2.5)

termed SF equations. This SF representation is the start-
ing point of our method of successive approximation for
solving the Wilson equation. In Eq. (2.5), the y denote
the eigenvalues associated with the Gaussian operators
and the a~jk, a~j,a are the SF coupling coefficients,
whose computation is discussed in I. Via the coupling
coefficients, the SF equations (2.5) depend on the physical
characteristics of the system, spatial dimensionality d,
number of spin components N, and spin-rescaling param-
eter 5, as well as conventions used in the formulation of
the Wilson equation. The coupling coefficients depend
linearly on 6,

where a*jk =a jk(b,*), etc. , are defined by Eqs. (2.6). The
exponents y associated with the fixed point are the
eigenvalues of the matrix Y(m J).

In calculations for the isotropic N-vector model, the
operators in the expansion (2.4) are generalized Laguerre
polynomials, which are characterized by two principal in-
dices, m and p, which label the order in the spins cr(q)
and momenta q, and an index t, which is used to distin-
guish between different types of momentum dependence
of the same order p. We use an index m to denote this set
of labels,

m =
t m,p, tj or m =

t m,p , t (2.9)

uG(q)=Aq /[Aq +exp( —2q )], (2.10b)

A being a normalization parameter. The Gaussian eigen-
values and eigenoperators are

y =d — (d —2)—p
6 PTl

rnpt (2.11)

Q~„[c ]=exp[ —P]Q—„[~]
where

exp[ —P]=exp ——,
' f [uG(q)]

5cr (q) 5cr ( —q)

(2.12)

(2.13)

For future reference, we hst the following other results. '

The Gaussian fixed-point Hamiltonian of Eq. (2.1) is

Ht p[o'] = f uG(q)cr(q) o ( —q), b G ——0 (2.10a)

with

r A

mjk mjk+~ mjk ~ (2.6a) and
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m

Q-„[~]=,f, , f „(-q i . q-)@q + . +q-)IIW(q;)[~(q ) ~(q )1 . [~(q- &) ~(q-)l.
E=1

(2.14)

The functions f—,Iq; ], which parametrize the momentum dependence of the Gaussian eigenoperators, are homogene-

ous functions of order p in the momenta q;, i = 1, . . . , m. For example, for p =0 and 2,

f-OoI q; I = 1

m

f;»Iq l=:Xq'I g' —1

m

f-zzIq I Q [~(qz' —1)'~(qz )1 =
i=1

m/2 m

g (q 2' —I 'q 2') Q [0 (qz' —1) 0 (qzi)]
i =1 i=1

(2.15a)

(2.15b)

(2.15c)

Note that for %&1 there are two types of p =2 functions
( t = 1,2) when m & 2, but only one when m =2; the latter
is due to the momentum-conserving 5 function between

q ~
and q z in Qzz&[o]. Similarly, for p =4 and m=2,

there is only the function fz4&(q)=q". When X =1, the
operators Q z&[o] and Q—zz[o] are linearly dependent.

For further details, see Sec. IIIB and Appendix C of I.
Finally, the momentum integrals extend over all space and
are effectively cut off by the factors P(q;), where

Trun(no, nz&, nzz, n4„. . . ) when X&1 (2.17)

denotes that the truncation includes the first no operators

Q oo[o] (i.e., m =2,4, . . . , 2np), the first nz~ operators

Q—z, [o] (i.e., m=2, 4, . . . , 2nz&), etc. However, since

Qzzz[0. ] = —Qzzt[o], we always choose nzz ——nz~ —1.
When % =1, Q z, [o] and Q—zz[o], as well as other sets

of operators, are linearly dependent. Then fewer types of
operators occur and the notation

g(q) =exp( —q')/[Aq +exp( —2q')]

= I ug(q) [ I uG(q) ]/—Aq J
'~ (2.16)

Trun(no, nz~, n4~, . . . ) when N = 1 (2.18)

is used. The total number of equations n, q
for a given

truncation is
The forms of this auxiliary function and of uG(q) in Eq.
(2.10) are the results of conventions used in the formula-
tion of the Wilson RG equation.

In numerical studies, the hierarchy of SF equations
(2.5) must be studied in truncations of manageable size.
(Solutions by asymptotic expansions in e or 1/X were ob-
tained in I and Refs. 3 and 4.) This raises the following
questions:

(i) The choice of operators to be retained in the truncat-
ed expansions (2.4).

(ii) The extraction of physical information (e.g., critical
exponents) from truncated sets of SF equations (2.5).

An approach of successive approximation must be based
on procedures that exclude (as far as possible) subjective
or biased decisions. Question (i) is answered in Sec. II C,
where a systematic procedure for generating successively
larger truncations is developed. Question (ii), which arises
because truncating the hierarchy of SF equations causes
some loss of universality, is discussed in Secs. IIB and
IIC2. The answers to both questions require a self-
consistency principle that allows one to decide which
truncations are admissible in high-precision work. In Sec.
II 8, we introduce the "principle of balance" to serve that
purpose. One may argue that the choice of truncations
that are admitted biases the results. This is not the case.
In contrast to earlier work, ' the "principle of balance"
sets into motion a "blind-folded" procedure for generating
systematically improvable results.

We label truncations to Eqs. (2.4) or (2.5) by specifying
the numbers of operators (or scaling fields) of each kind
that are retained. The notation

fleq =
p, t

(2.19)

1.e.,
n eq ~P +n 21 +n 22 +n 41 +

(with nzz ——0 when X =1). The parameters shown expli-
citly in the above definitions suffice to characterize all
truncations involving only operators with p =0, 2, and 4
(m =2). Only for those operators have the coupling coef-
ficients a~ik been computed so far. '

The calculation of the eigenvalues y from truncated
sets of SF equations is done by diagonalizing the corre-
sponding truncated n,q&&n, q matrix Y(m, j) of Eq. (2.8).
We label the eigenvalues by the indices of the correspond-
ing scaling fields, i.e., instead of the usual notation

yT,y», . . . and y~,y~2, . . . for the leading thermal and
magnetic eigenvalues, we use y2pp, y4pp, . . . and

y1pp, y3pp . , resPectively. Our notation is necessary for
identifying the lower-lying irrelevant eigenvalues, such as

y421, y4z2, and y241, etc., since these may cross as a func-
tion of X or d (e.g., see Figs. 11 and 12 below). We are
able to label unambiguously the eigenvalues by consider-
ing first short truncations, for which the identification is
trivial, and then observing which new eigenvalue or eigen-
values enter when the length of the truncation is in-

creased. Any ambiguity in notation can be resolved by
following the eigenvalue, as function of N, to either
N = oo or N = —2. The notation y, does not imply
that the eigenvector associated with this eigenvalue has as
its dominant component the field p*,. For the critical
fixed point in three dimensions, this is generally not the
case. The calculations for X =1 can be performed with



30 CRITICAL EXPONENTS BY THE SCALING-FIELD METHOD: 6619

g =2k*, (2.21)

or it can be obtained from the result for the leading mag-
netic exponent y~ =y ~oo, via

X ioo =
2 (d +2—n) (2.22)

For the case of the Ising model N =1, we have tested the
consistency of these two methods as discussed in Sec.
III 83.

B. Analysis of truncated sets of SF equations

To characterize the different behaviors encountered in
the study of truncated SF equations, we introduce the fol-
lowing terminology:

(i) The concept of balance evolved empirically during
our studies and different aspects of it will be elucidated
here and in the following sections. Most crudely, fixed
points do not exist unless, in the truncated expansion (2.4),
the different and competing operators Q~ [o] are
represented in a certain "balanced" way. This is easily
understood for anisotropic S-vector models, where opera-
tors of isotropic and anisotropic symmetry in the spin
variable a(q) compete. For example, in studies of cubic
and Potts models, ' we used truncations that retained in
Eq. (2.4) all isotropic and anisotropic operators to order
o. with p =0 and the marginal redundant operator
Qz2, [o]. For high-precision calculations the situation is
more subtle. Then one must also carefully balance the
competing contributions of operators Q—,[o ] with dif-
ferent dependences on the momentum and the spin. (We
restrict the discussion again to the isotropic N-vector
model. ) For example, in a calculation that employs only
the operators Q, [o ] of order p =0 and 2 in the momen-
tum, but of arbitrary order m )2 in the spin, we find that
the largest possible "balanced" truncations contain only
12 SF equations (or 10 SF equations for the Ising case,
N =1). Furthermore, if we attempt to improve that cal-
culation by including p =0 or 2 operators with larger m,
we find that, instead, the truncations exhibit increasingly
irregular behavior until finally the fixed point is lost. One
might expect this result already from a ranking of the rel-
ative importance of the operators Q—,[o.] in Eq. (2 4) by
the values of the Gaussian eigenvalues (2.11).

(ii) The term balanced truncation is used to denote trun-
cations that exhibit fixed-point behavior that is closely
analogous to that of the untruncated RG equations (e.g. ,
the Gaussian fixed-point solution, or e expansion). There
will always be some loss of universality when the device
of truncation is used. Our criterion for "normal" or "bal-
anced" behavior is multifaceted: Fixed points exist but
exhibit a typical "false" fixed-line behavior as function of

the basis appropriate for %&1. The spurious eigenvec-
tors are clearly identifiable since they have vanishing
components in the directions indexed by m00. The criti-
cal exponent v and the correction-to-scaling exponents h~
follow from the usual relations, e.g. ,

v= 1/Xzoo b4oo= —3'4oo/3'2oo h~ = —y~/Xzoo (2 20)

The correlation-function exponent q can be computed
from'

o ~o /g and q ~gq (2.23)

The operator S&[H~[o]j that generates motion in the
redundant direction [see Eqs. (2.36) and (2.37) of I] is
marginal, i.e., it has zero eigenvalue.

When truncations are considered, the situation is dif-
ferent. The truncated form of this operator, 8', [H~[cr][
(indicated by a prime), is no longer necessarily redundant
and marginal, i.e., universality is violated. This is seen in
two interconnected ways: Exponents and other universal
quantities show nonuniversal behavior as function of g
and fixed points exist for a continuous range of b, rather
than a discrete value of 6*, only. We resolve the latter
ambiguity by observing that, for a certain value of 6, a
marginal operator Q,

' [o ] can still be found (with

6 (to be described below); the spectrum of eigenvalues
contains few complex pairs among the correction-to-
scaling eigenvalues (see Sec. III A2); and the potential as-
sociated with the fixed-point Hamiltonian is thermo-
dynamically stable in all or most of its coordinates (see
Sec. II C3). Large truncations become increasingly sensi-
tive to proper balancing, which is consistent with the fact
that universal behavior is. approached (compare Sec.
11C4).

(iii) Truncations that exhibit no fixed point or show ab-
normal fixed-point behaviors are called aberrant or unbal
anced. There are some borderline cases of "almost bal-
anced" truncations.

(iv) In Sec. II C, a procedure for generating sequences of
successively larger balanced truncations is introduced.
Only the balanced truncations that appear in these se-
quences are admitted to the data analysis. The procedure
uses a marker scaling field to signal the end of sequences
of balanced truncations and to optimize the calculation by
maximizing the length of such sequences.

(v) The above ideas are summarized by the term princi
pie of balance The pr.inciple of balance provides the self-
consistency criterion for the generation of sequences of
successive truncations in our approach for solving the
Wilson equation. For operational definitions of the above
concepts, see the "rules for generating sequences" at the
end of Sec. II C I.

In the remainder of this section we consider typical bal-
anced truncations, emphasizing the determination of the
fixed-point value b,' of the spin-rescaling parameter h.
The significance of b,* lies in the fact that this parameter
is directly related to the value of the correlation-function
exponent g, via Eq. (2.21), and indirectly to all other criti-
cal exponents, via Eq. (2.8). In numerical work, b. is
treated as an input parameter. For the untruncated equa-
tions one expects fixed points to exist for discrete values
of the spin-rescaling parameter b„which we label b,"„the
subindex denoting "exact." A similar situation exists for
asymptotic expansions, i.e., e or 1/N expansions, where
6*, can be determined analytically under certain condi-
tions. (For details, see Sec. V of I.) The fixed-point value
b,*, is universal for a manifold of equivalent fixed-point
Hamiltonians

H~ [a] that are those that differ only by the
values of redundant parameters, g. ' In I this was
shown specifically for the transformation U~ that changes
the scales of the spin and momentum variables by g:
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Q„'[o]—S', IH~[o]J .), and we use this vestige of the ex-
act RG equation as a side condition to determine the best
approximation 4* to the unknown 6', . Our side condi-
tion, which is stated in Eq. (2.27) below, is similar to an
idea proposed by Bell and %ilson. The ambiguity of the

g dependence is resolved by choosing the scale of the spin
and momentum variables such that the effect of the
operators Q, [o.] missing from the truncation. is mini-

mized. This is discussed in detail in Sec. IIC2. Such a
determination is not unlike the "gauge" choice used in our
e-expansion work, which there had the purpose of making
possible the analytical solution of the equations. Since the
SF expansion (2.4) is about the Gaussian fixed point, we
select the Gaussian normalization A in Eq. (2.10b) as our
"model" redundant parameter.

In I we showed that, for the Gaussian fixed point (2.10),
the parameter A is related to the choice of normalization
of spin and momentum [Eq. (3.8) of that reference]. The
redundant direction generated by varying 3 is associated
with the operator Qzzi [o.] with marginal eigenvalue

yzzi ——0 [see Eqs. (2.11) and (2.14)], i.e.,

Q4
I I

0-
-Q4—

I 241
-0.8-

-l.2—

I 1 l

-I.2 -0.8 -0.4

2.2 x IQ

2.0-

I.8-

1.6—

12 l ~ I i I

-1.2 -0.8 -0.4

I

4 x IQ

I
I

I
I

I
I

'
I

(a)

0

I

I

04 08 1.2

{b) .

0
I 22I

I

{c)

1 1 I i I

0.4 0.8 I.2

BHG

aw
==Qzzi [~]=(2~) '&1IHo [~]] (2.24)

0-
"221

[see Eq. (5.3) of I]. This means that the line of Gaussian
fixed points can be parametrized either by 3 or by the
fixed-point coordinate P,zzi. This can also be seen directly
from Eq. (2.10b). Replacing 2 by A'=2+52, one ob-
tains

uo(q;A')=uo(q;A)+P (q;A)[(5A)q —(5A) q + . ],
(2.25)

i.e., the fixed point at A' with pz~& ——0, for all p, is
equivalent to-the one at 3 with Pzzi ——5A, Pz41 ———(5A),
etc. , which shows that all operators Qz~i[o. ], with p )2,
are redundant at the Gaussian fixed point. ' Hence the
line of Gaussian fixed points parametrized by pzz, has the
following properties:

P241 (Pzz1 )

(ii) bo ——0 for all pzz, ,

(2.26a)

(2.26b)

(iii) ~221(~~G) 0 for all Pzzl . (2.26c)

For further comments, see Appendix 8, where the limit
X= —2 is discussed, or see Sec. V of I, where the use of
the gauge choice pz2&

——0 for the solution by e expansion is
discussed.

Remnants of the above behavior are found for the criti-
cal fixed points exhibited by balanced truncations. Fig-
ures 1(a)—1(c) show such results for a typical balanced
truncation, Trun(4, 4, 1) with A' =3, for the three-
dimensional Ising model (%= 1). We make the following
observations [using the same subheadings as in Eqs.
(2.26)]:

(i) Truncating the SF equations leads to "false" fixed-
line behavior as a function of 5. Now view this behavior
as being parametrized in terms of the fixed-point coordi-
nate Pzzi ——Pzzi(b, ). The Parabolic shaPe of Pz41(b ) versus

0.012 0.014 0.0 I 6 0.018 0.020 0.022

FIG. 1. Remnants of fixed-line behavior exhibited by trun-
cated SF equations: (a) SF coordinates p24&(h) versus p»&(h);
(b) spin-rescaling parameter 4 versus SF coordinate JM»~(4); (c)
negative of the almost-marginal eigenvalue, —y»~(h), versus
the spin-rescaling parameter A. The locations of y»I(h) =0 are
marked by 6 and A. Data is for %=1 from the truncation
Trun(4, 4, 1) with 3 =3.

Pzzi(b) shown in Fig. 1(a) is reminiscent of the result
(2.26a) for the line of Gaussian fixed points. The result is
found for small values of the fixed-point coordinates, for
which the SF expansion applies.

(ii) The "variation" of the parameter b, with pzzi(b, ) is
shown in Fig. 1(b). We interpret the striking "S"shape of
this curve as showing the attempt by the truncation to
confine 6 to the fixed-point value. Fixed-point coordi-
nates are typically single- or triple-valued functions of A.

(iii) For an exact fixed line, with. b,*=A.*„ the operator
associated with ihe redundant direction has zero eigen-
value y22&

——0. For balanced truncations, one typically
finds a "loop'-' for —

y22& as a function of 5, as shown in
Fig. 1(c). Two locations, denoted b; and 6, are special, in
that for those values yzzi (b, ) =0. In the interval
Pzzi(b, *)(Pzzi(b, ) (Pzzi(h), the eigeilvalue yzzi(b, ) (0,
and, therefore, the corresponding singly unstable fixed
points are accessible from the physical subspace Hi o[o.]
by adjusting one temperaturelike parameter (which is pzoo
to leading order). The locations b,

* and b, match with the
points in Fig. 1(b), where db, /dpzz, ——0, i.e., the regions
where the fixed points are (locally) confined to a plane of
constant b, , b,*=const (or 6=const). These two features
together single out the values 6* and A.
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Studying balanced truncations in exactly solvable limits
suggests that one should select b.* to define uniquely the
critical fixed point. Therefore, we determine b '

by
searching for the largest value of 6 that produces a criti-
cal fixed point with marginal eigenvalue',

(2.27)

We give the following reasons for this side condition.
(i) Short truncations. Short truncations always exhibit

a positive b,* even if no "loops" [as seen in Fig. 1(c)] are
found (as for truncations with nz] ——1), or if large "loops"
with negative i]], are found [as for Trun(3, 2, 1,0)].

(ii) Numerical e expansion. One can study the effect of
criterion (2.27) close to four dimensions, e.g. , for d =3.99
by numerical e expansion. (Compare also Sec. VA of I.)
For truncation Trun(2, 1,0,0), which is sufficient for @-

expansion work to leading order, one finds a critical fixed
point as function of 5 with]L]2pp O(e ) ]L]happ O(e), and

pz2] —O(e ). The g determined from 6* agrees with the
analytic result

g=(%+2)e /[2(%+8) ]+O(e ) .

(iii) Limit N = —2+5, 5 small. For X = —2, the SFM
reproduces exactly the Gaussian exponents and line of
fixed points. Details are given in Appendix B. The
'false" fixed-line behavior is exhibited in Fig. 2 by graphs

of —y22](h) versus 6 and —y22](b, ) versus p22](b. ),
respectively, obtained from Trun(3, 2, 1,0) with A =2 for a
sequence of X approaching —2. No fixed-point solution

exists for b, ) b,*. The location of b,*, the width of the
loops, and the maximum amplitude of the loops scale
linearly with 5=%+2. Figure 2(b) shows that for 6 = b,*

(but not for b, =5) the solution for the truncation has an
almost-marginal eigenvalue over an extended region of
@zan&, as N —+ —2. Hence we conjecture that 5* connects
smoothly with the exact result yz2](b, *, =0)=0 found at
& = —2 for all @22](&e).

Here we add a comment concerning the linkage of the
operator 8 ] [H"[o][ with the marginal redundant opera-
tor Q„[o], discussed in Sec. II 8 of I. This linkage sup-
ports our procedure for analyzing truncated sets of SF
equations. In the SF representation, Q,'[o] is given by
the eigenvector associated with the marginal eigenvalue
y22](b.*)=0,which we will denote by ], with components

while, as shown in Eqs. (2.38) and (2.39) of I,
8'] IH[cr]I can be represented as a vector A, with com-
ponents A,m, which, when evaluated at the fixed point
H [o], is writ. ten as A, ",with

~m am +g' ami~i +X' amj'kpzpk
J j,k

(2.28)

r= g'(t A,*) (2.29)

[The sums marked by primes are over truncated sets of
scaling fields, and the coupling coefficients a "Jk, etc. , are
defined in Eq. (2.6).] Using least-squares analysis to com-
pare the components ~ with A,*, we define the correla-
tion r,

1/2

IO-

4—
-y (lo )-

22l 2
=l.99

0—

—2

IOi

4—
-y (lo )

2— "22l

6 48a(lo')
I

10 l2

(b)—

Typically, we find values of r =0.95 for truncations with
n,q=10 or 11 for the Ising model (X =1).

The above discussion has been for a constant value of
our "model" redundant parameter A. The viewpoint, that
the variation of 5 maps out a portion of a genuine fixed
line, proved useful in determining the best numerical
value, 6', at which critical exponents should be calculat-
ed. Thus, the first seemingly ambiguous aspect of the SF
calculation of critical exponents is removed and turned to
advantage. We will apply a variation of this argument in
Sec. IIC2, where we show that for different values of 3,
different portions of that fixed line are generated. We will
argue that 2 can be chosen so as to minimize the need for
operators Q—,[o.] in the SF expansion (2.4) that are
presently inaccessible because the corresponding SF cou-
pling coefficients a jk have not yet been determined.
This then turns the second seemingly ambiguous aspect of
the SF calculation into a benefit.

C. Generating successive approximations

—l.5 —l.O - 0.5
I

0
+Z2l

I

0.5 l .0 l.5

FICx. 2. Remnants of fixed-line behavior in the limit
N = —2+6, 5 « l, from the truncation Trun(3, 2, 1,0) with
3 =2: Negative of the almost-marginal eigenvalue, —y22l(h),
versus (a) the spin-rescaling parameter 6 and (b) the SF coordi-
nate p22l(6). Exact results are approached for 6~0. The right
and left locations of y221(h) =0 in (a) are referred to as 6* and
5, respectively.

1. Sequences of truncations

An approach of successive approximation must be
based on procedures that exclude (as far as possible) sub-
jective or biased decisions. Here we address the technical
question of how to generate sequences of truncations of
increasing length without biasing the results or prejudic-
ing the convergence of the method.

In generating sequences of truncations, we dis-
tinguished between "static" and "dynamic" procedures,
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and discarded as ineffective all static procedures. Static
procedures are those that first rank the importance of
scaling fields p~ in Eq. (2.5), or operators Q~[o] in the
expansion (2.4), by their eigenvalues y~ at a fixed point
different from the one of interest, and then define trunca-
tions by retaining the equations for all scaling fields with

y greater than a certain negative number. For example,
we attempted to rank the scaling fields according to their
eigenvalues y~ at the Gaussian fixed point in three di-
mensions [see Eq. (2.11)] or by the eigenvalues y" at the
critical fixed point in d =4—e dimensions, which were
calculated to leading order and then extrapolated to @=1.
(For a tabulation of y~", see Table I of I.) We found that
both schemes become unstable for larger truncations, i.e.,
they either fail to produce fixed points or produce fixed
points that behave abnormally as a function of b, .

In dynamic procedures for generating sequences of
truncations, the selection of successively larger trunca-
tions is guided by feedback from the fixed point under
consideration. Increasing . the length of a truncation
occurs by including one or more additional terms in the
expansion (2.4). In turn, this increases the number n, of
coupled SF equations (2.5) to be considered. For simplici-
ty, we will speak of adding "new" scaling fields p —,to
some "old" truncation of SF,equations. When p &0, the
group of scaling fields p —„with t =1,2, . . . , tz, is added
simultaneously. Two questions must be addressed. First,
there is, in general, a choice among several types of scal-
ing fields that can be added. After extensive tests, which
will be described below, we have adopted the following
procedure. Given a balanced truncation, whose properties
are well understood, we generate a sequence of trunca-
tions by adding successively the scaling field(s) that cause
the largest shift in the results for the critical exponents
I/v=y2OO and g. Second, in practice, not all kinds of
scaling fields are available for constructing truncations.
The most time-consuming part of the SF calculation of
critical exponents is the determination of the coupling
coefficients a jk, which are typically determined for

p &p' (here, p'=2). We thus adopted the following rule
to assure self-consistency. We include a "marker" scaling
field in the calculation, which we chose to be the simplest
field of the inaccessible set, i.e., p — 2,+2, „and stop
the procedure of' generating larger truncations when the
marker scaling field is required for the first time.

By understanding the mechanisms that control dynamic
procedures for generating balanced truncations, we may
answer, at least partially, why we can expect to calculate
critical exponents to high precision from SF expansions
that retain only certain kinds and limited numbers of seal-
ing fields [or, respectively, operators in the expansion
(2.4)]. The importance of a newly added scaling field to a
given truncation can be measured in terms of the numbers
and strengths of its couplings a Jkpjpk, etc. to the "old"
SF equations. Consider the matrix Y(m,j) of Eq. (2.8),
which characterizes the stability of the RG flow in the vi-
cinity of the critical fixed point tp* [. The structure of
this matrix is shown schematically in Fig. 3. The diago-
nalization of this matrix yields the eigenvalues y~ associ-
ated with the fixed point I

p' I. For calculations to lead-

ing order in e expansion, this matrix is block diagonal,

ps Q p=2 =p 4m

p=Q 0-0 0-2 0-4

p= 2 2- 2 2-4

p=4 4-Q 4-2 4-4

FIG. 3. Schematic representation of the fixed-point matrix
~(~,j)=X(m,p, t;j,pJ, tj. ) of Eq. (2.8) for a truncated set of
SF equations. The matrix is arranged in blocks characterized by
subindices (p,p, ); inside each block (not shown explicitly) the
indices m,j are in the order tm, 0,0} for m=2, 4, . . . , 2nD,

I2, 2, 1 J; f m, 2, 1] and [ m, 2,2] for m =4, 6, . . . , 2n2t, etc.

and the blocks that must be diagonalized couple only scal-
ing fields that differ by the degeneracy index t, i.e.,

Yt~j —Y(m,p7ttjp27p7tj)

as shown in Sec VA .of I. A similar simplification is
found for calculations in the limit N~ oo. Then the ma-
trix is triangular, i.e.,

Y(%&pm ~tm ~J Pj ~ j)
for m &j. (For details, see Sec. VB of I.) However, for
dimension d =3 and general N, the matrix Y(rn, j) has no
simple form and must be diagonalized numerically. How-
ever, since some coupling coefficients a Jk are zero either
due to the linked-contraction condition [defined in Eqs.
(4.7) and (4.8) of I] or due to the symmetry of the sets of
homogeneous functions f , I q; I involv—ed (see Appendix
D of I), certain general statements can be made about the
form of Y(m, j). We arder the matrix elements
Y(m,p~, t~;j,pj, tz) into blacks p~-p~ (see Fig. 3). The
blocks 0-0, 2-2, 4-4, etc. contain more nonzero and
stronger couplings a*jkpk than blocks 0-2, 0-4, 2-4, etc.
Numerically, we find that the matrix elements
Y(m,p, t;j,p~, tj ) of these off-diagonal blocks decrease
typically by 1 order of magnitude for each step increase in

j. We conclude that when computing the leading eigen-
value of block 0-0 to high precision, i.e., yzco ——I/v, the
form of the coupling coefficients a~jk suggests that the
scaling fields p~ with m =Im, O, OI are required in Eq.
(2.5) before those with I m, 2, tI, which, in turn, are re-
quired before those with I m, 4, t ], etc. Fortunately, in
practice, one does not have to keep track of the specific
form of Y(m, j) (and the couplings a*jkpk), but rather
can measure the need for a given new scaling field by its
effect on the calculated critical exponents. The remainder
of this subsection describes such a procedure.

The test case of the dynamic procedure for generating
sequences of balanced truncations was the three-
dimensional Ising model (N =1). The approximation
used retained only the scaling fields p —,with p (p'=2
and the "marker" p24, ~. Starting from the short trunca-



30 CRITICAL EXPONENTS BY THE SCALING-FIELD METHOD: 6623

l.7

N=l, A=5-
(CI)

&200

l.5

412 4 2s41
2s 41

12, 2l
I 2LOO

, 21
,oo

o. io
t s I s t s I

0.08 (b)

0.06

0.04

0.02

,21
12, OO
2, 41

12s21
2,41

21 8,21
s ~ 241
412,41

0 I s I s

6 8 IO

FIG. 4. (a) Thermal exponent y200 and (b} correlation-
function exponent g of the Ising model versus the number n, q of
SF equations for truncations with A =3. The labels I rn, p, t)
denote the scaling field added to the preceding balanced trunca-
tion. The continuous line traces the exponent values of the se-
quence of balanced truncations. The determination of error bars
is discussed in Sec. III A.

tion Trun(2, 1,0), the procedure generated, without diffi-
culties, balanced truncations that show normal (in the
sense of Sec. II B) fixed-point behaviors. Figures 4(a) and
4(b) exhibit the thermal eigenvalue yipp ——1/v and the
correlation-length exponent st=26* as functions of the
length of the truncation for 3 (n, q & 10 with the choice of
the normalization parameter 3 =3. The label on the lines
in this figure indicate the indices m = I m, p, t I of the scal-
ing field last added to Eq. (2.S). The sequence of balanced
truncations is defined by those successive truncations that
exhibit the largest change in y200, relative to the value ob-
tained from the preceding balanced truncation. When the
shifts in yzpp are almost equal and, therefore, inconclusive
for the identification of the next balanced truncation, the

shifts in sl are used to identify the next new truncation.
In general, the largest shifts in yzpp and sl are correlated.
In a few cases (e.g., n, q

——10 in the present sequence), nei-
ther the shifts in yahoo nor those in g allowed us to
discriminate between possible scaling fields to be added;
then, both truncations were accepted as new balanced
truncations. The sequences of balanced truncations are 3
dependent and are tabulated in Table I for A =1, 2, 3,
and 4. We note that the largest balanced truncations at
the present level of approximation are found with 2 =2
and 3 and have n,q=10. (A dependence is further dis-
cussed in the following subsection. ) The largest balanced
truncation in each sequence is the one that includes the
marker p24i for the first time. This criterion for terminat-
ing the sequence of truncations works by determining
when this scaling field becomes as important to the calcu-
lation of critical exponents as the scaling fields p~pt with
p(p'=2. Larger truncations can be found, but their
fixed points show increasingly abnormal behaviors until
the considered fixed points disappear. We view this as an
indication of the soundness of our self-consistency pro-
cedure based on the principle of balance (see Sec. IIB),
and do not admit into our data analysis any truncations
with larger neq than shown in Table I. The advantage of
our procedure for generating sequences of truncations is
that it can be performed without prejudice. Simply, the
need for a "new" sc'aling field p~ in the larger truncation
is measured by the effects it has on the values of the criti-
cal exponents. As the results in Fig. 4 indicate, large os-
cillations in the values of the exponents occur for short
truncations and then damp out as neq is increased. The
assignment of error bars, as determined from these types
of figures, is discussed in Sec. III A.

In summary, sequences of balanced truncations to the
SF equations (2.5) are determined by the following rules.
For simplicity, the wording of these rules applies to the
approximation considered in this article (i.e., truncations
that retain the scaling field p —,with p =0, t =0 and

p =2, t =1 and 2, for arbitrary m )2, as well as @24&).
Their generalization is straightforward (see also Sec.
II C4).

(1) Begin with a short truncation for which yzpp, y4pp,
and sl can be computed, e.g. , Trun(2, 1,0,0).

(2) Add one or two "new" scaling fields to the "old"

TABLE I. Sequences of truncations for the Ising model, generated by the procedure described in Sec. II Cl, for four values of the
redundant parameter A. The balanced truncations are underlined. The total number of equations in each truncation is denoted by
n~; see Eq. (2.19). Two balanced truncations exist for A =3, when n, q

=9 and 10.

neq

10

3, 1.0
4, 1,0
4,2,0
4,3,0

2. 1.0
2,2,0
3.2.0
3.3.0
3,4,0

2, 1,1

3,1,1

3 2 1

3.3. 1

3.1,0
4, 1,0
4.2.0

5,4,0

2, 1,0
2,2,0
3,2.0
3,3,0
4, 3.0
4.4.0
4.5.0

2, 1,1

3,1,1
3 2, 1

4,2, 1

4,3,1

4 4 1

4, 5. 1

3.1.0
4, 1,0
4.2.0

5.4.0

6,4,0

2=3
2. 1.0
2,2,0
3.2.0
3,3,0
4, 3.0
4.4.0
4.5.0

4,6,0

2, 1,1
3,1,1

3,2, 1

4,2, 1

4,3,1

4,4, 1

I S.4. 1

[4.S. 1

3, 1.0
4, 1,0
4.2.0

2. 1,0
2,2,0
3.2, 0
3,3,0
4,3,0

2, 1,1

3,1,1

3,2, 1

4.2. 1
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points: either in terms of the scaling field p22~, as was
done in Sec. II 8, or as function of the redundant parame-
ter 3, as will be done here. Both ways were discussed for
the Gaussian fixed line in Eqs. (2.23)—(2.25). By compar-
ing the Landau Hamiltonians (2.2) and (2.4), the functions
u —(q ~, . . . , q;l) can be expressed in terms of the SF
coordinates p —,(l) and homogeneous functions f—,Iq; ]
[see Eq. (2.14)]. For example, the small-q expansion of
u2(q ~l) 1s

I

I

2.0
I

I.Q
I

2.50 I.5

FIG. 5. Approximate line of Ising fixed points in terms of
the parameters u»1 and u241 as defined in Eq. (2.30). The dif-
ferent segments are generated by varying the spin-rescaling pa-
rameter 6 for three A values and truncations: A =I and
Trun(3, 3,1) (dotted line), A =2 and Trun(4, 4, 1) (solid line), and
A =3 and Trun(4, 3,1) (dashed line). Marked are the locations
of 6* and 5 within which y»& & 0.

0.5 3.0

truncation by increasing no, n2I, or n4& by 1, with
n22 ——n2I —1. Compute y20o for the "new" truncation at
the fixed point with 5=A*.

(3) Discard any "new" truncation for which aberrant
behavior or no critical fixed point is found.

(4) Accept as the "new" balanced truncation the one
with the largest change in y200 relative to the "old" trun-
cation. If two or more truncations exhibit shifts of com-
parable magnitude, exatnine the shifts in q, and if these
are also similar, accept both truncations as "new" bal-
anced ones.

(5) Repeat steps (1)—(4) to generate a sequence of trun-
cations until the balanced truncation includes the marker

p24I (i.e., n4I ——1). Then, we assume, new balanced trun-
cations require the presently unavailable scaling fields

I m4t ~m61

2. Choice of redundant normalization parameter A

The results in Table I suggest that a range of A values
exists that is optimal in the sense that it postpones the
need for the scaling fields that are not available. Here we
formalize this argument.

There are two ways of parametrizing the line of fixed

u2(q;l)=u2oo(l)+uz2I(l)q +u24&(l)q +. . . (2.30)

Explicit formulas are derived in Appendix A. Note that
the factors P(q;) in the definition (2.14) of Q—,[a.] contri-
bute to u —Iq;;l ] to all orders in q, even when p =0. In
this parametrization, the A dependence is completely ab-
sorbed in the definition of the set of q-independent coeffi-
cients u —,(l).

Now we show that the effects of the scaling fields that
are unavailable can be reduced by minimizing, as a func-
tion of A, the fixed-point value of the coefficient u24I
that is related to the marker scaling field pz4I through
Eqs. (A3)—(A5) and (A13). (For generalization, see the
end of this section. ) Note that for the Gaussian fixed
point, the small-q expansion of Eq. (2.10b),

uG(q)=Aq +A(2 —A)q +A(A —42+2)q +. . .

(2.31)

indicates that for 3 =2 the coefficient of the quartic term
vanishes. For the case of the Ising model (%=1), Fig. 5
exhibits the fixed-point values of uz4I(b, ) versus uz2I(h)
for three values of A from three different truncations.
The locations 6* and 6 are marked. Now considering

uzi, (h) [instead of pz2I(b, )] as an independent variable
that generates a (true) fixed line, we interpret the result as
showing that different portions of the fixed line are
mapped out when, for different A, 6 is varied in the
range Z&A&b, *. %'e find the remarkable separation
that, for all truncations, b,' is associated with positive
values u z4I when A = 1 and 2, and negative values when
A =3. That observation suggests that the importance of
the q contributions to the fixed-point Hamiltonian can
be minimized by choosing A in an "optimal'* range such
that u24I(h')=0 is bracketed. Results for uz4&(b, '),

I

TABLE II. Fixed-point values of the expansion parameter u241 in Eq. (2.30) for N =0, . . . , 3 as
functions of A for the largest balanced truncations studied. The optimal range of values of A is chosen
to bracket u 241

——0.

A=3
Truncation

Trun(4, 4,3,1)

~ 241

0.586

Truncation

Trun(5, 4,3,0)
Trun(4, 5,4,0)

& 241

—0.213
—0.498

Trun(4, 5, 1) 0.683 Trun(4, 5,1)
Trun(5, 4, 1)

—0.607
—0.877

Trun(4, 5,4,0)

Trun(4, 5,4,0)

0.820

0.878

Trun(5, 4,3,0)

Trun(5, 4,3,0)

—0.827

—1.063
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TABLE III. Parameters in reduced units characterizing the critical fixed-point potential 8'(0.) of
Eq. (2.33) for Ising systems. Results for three truncations with n,q

= 10 SF equations are shown.

Truncation

Trun(4, 5, 1)
Trun(4, 5,1)
Trun(5, 4, 1)

~ )fc

V 200

—2.10
—2.16
—2.17

1.2)
1.32
1.36

—0.19
—0.18
—0.20

0.003
0.009
0.017

V i0,00

—0.000 S8

when N =0, . . . , 3 and the longest truncations studied,
are given in Table II for A =2 and 3. A comparison with
Table I shows that indeed the above choice of 3 yields the
longest sequences of balanced truncations. When 3 & 2 or
A & 3, the construction of balanced truncations requires
the addition of the scaling field p24i at an earlier stage.

We suppose that the idea of determining optimal
values by minimizing the "marker" fixed-point coefficient

p+ 2)}appliesalso to other levels of calculationa1
precision. For short truncations that have available only
the p =0 scaling fields (with the exception of @2'&), we
minimize numerically the value of uzi&(b, *). The cri-
terion yields A =0.5. Indeed, for this value of A we ob-
tain the best results for the critical exponents for all small
truncations arid all 3 values studied. For this reason,
A =0.5 was used for the estimation of critical exponents
of the cubic and Potts models. ' For an extended calcula-
tion involving longer truncations, i.e., those retaining all
scaling fields p, —,with p &p', but none with p =p'+2
except p2 & +& i, we propose to minimize the coefficient
u z z +z &(6*)by appropriately choosing A.

3. Stability of the fixed-point potential

A different perspective on the concept of "balanced
truncations" is provided by considering the boundedness
and universality of the fixed-point potential associated
with the approximate critical fixed points. We answer
this question qualitatively by characterizing, as in Landau
theory or Wilson's approximate RG approach, the ther-
modynamic potential in terms of the q =0 components of
H*[o ]. Using formulas derived in Appendix A, we
parametrize H" [o] in terms of the coefficients u~ Iq;I
and expand those coefficients into the set of homogeneous
functions f, t q; I. This defines a set of numbers u* „in
terms of which, for N =1, the thermodynamic potential
can be approximated:

[defined by Eq. (2.17)] have unstable (unbounded) poten-
tials W(o ). This behavior is reflected in the signs of u

*
00

(shown in Table III), which alternate as function of m.
(ii) The stable potentials have the form shown in Fig. 6;

specifically, the figure shows the fixed-point potential for
the Ising model for truncation Trun(4, 5, 1) with A =2.

(iii) The potential W(o) of Eq. (2.33) approaches a
universal form with increasing n, q, when the sequences of
truncations and optimal ranges of A are chosen as
described in Secs. IIC1 and IIC2. The values of u F0
and u 400 vary by less than 2% and 6%%uo, respectively, for
the balanced truncations with 6 &n,q & 10 for A =2 and
3. The absolute value of u'—00 decreases rapidly with in-

creasing m ~4 (see Table III).
(iv) The depth of the minimum of the potential, W;„,

and the square of its width, o;„,scale roughly as I/A, in
agreement with Eq. (2.23).

On a more quantitative level, the fixed-point Hamil-
tonian is a functional of the spin variables cr(q) and,
therefore, the q&0 contributions must be included in the
consideration of boundedness. For a quick overview, it is
convenient to parametrize the other fixed-point coordi-
nates likewise in terms of the set of numbers u'—,. We
find that the pattern of alternating sign of u'

00 as func-
tion of m is repeated for U*

p 2 f Furthermore, we note
that no large (n,q & 7) balanced truncation has been found
for which more than one of the numbers nz, [defined by
Eq. (2.17)] is odd. Truncation Trun(5, 4, 1) in Table III is
an example of a truncation that is unstable for large 0.,
but, due to the p & 0 contributions, is sufficiently balanced
so that its potential for small cr differs only insignificantly
from those of neighboring truncations. On the other
hand, truncations such as Trun(5, 5,4,0) are always unbal-
anced and often so aberrant that no fixed point can be
found for N =0 to 3. In summary, the truncated form of

4~(cro) =u 200cro+ u ~oocro+ u 600cro+ (2.32)
l.0

with oo=cr(q =0). The uniuersality of the shape of this
potential may be examined by expressing Eq. (2.32) in re-
duced units, W= W/8";„ar.d cr =o0/o;„, where W;„
and o;„denote the depths and location of the minimum
of 8'(o.0),

W(o.)

W(V) =u 200& +u 400& +u 600& + (2.33) -0.5

Numerical results for the parameters in Eq. (2.33) for
X =1 are exhibited in Table III for three representative
large truncations with A =2 and 3. In summary, we find
the following:

(i) All truncations with odd numbers of equations n0

—I.O

I

0.5 l.50 1.0

FIG. 6. Critical fixed-point potential for the Ising model.
Results are for Trun{4, 5, 1) with A =2.
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the SF equations (2.5) is sensitive to the criterion of
boundedness of the fixed-point potential. We expect this
issue to become more important at the higher levels of ap-
proximation.

4. Approximations with p'&4

The study of sequences of balanced truncations that in-
clude sealing fields with p') p =4 awaits the computation
of the associated coupling coefficients a ~k. However,
even the extension for the Ising model (X =1), which is
the simplest nontrivial calculation at the next level in p, is
not easy. There are three linearly independent operators
of the type p =4 for X= 1; the corresponding homogene-
ous functions f « Iq; I a—re listed in Appendix E of I. We
summarize here possib1e changes in the computational
procedures necessary to implement the next levels of cal-
culation.

(i) Determination of coupling coefficients a zk. As out-
lined in I [see Eq. (4.21) of that reference], the a~jk are
generally sums of products of combinatorial factors and
of integrals. As mentioned there and in Ref. 3, algebraic-
manipulation computer routines will aid in deriving the
analytical expressions as functions of X for the momen-
tum and spin combinatorics. The dependence of the a Jk
on the spatial dimension d originates from the integrals.
Their computation for the extended calculations should
not pose significant difficulties since all integrals encoun-

tered can be expressed as one-dimensional integrals by us-

ing Fourier-transform techniques. '

(ii) Numerical precision. The precision of the numeri-

ca11y determined integrals, currently 1 part in 10, may
need to be increased. We tested for the propagation of er-

ror from the integrals to the critical exponents by measur-

ing the effect of an additional larger random error added
to each integral. Currently, Control Data Corporation
double-precision (120-bit) routines were necessary only for
computing the Fourier transforms that enter each in-

tegral. It is possible that quadruple precision will be re-
quired for extended calculations.

(iii) Locating fixed points for large n, q
The clea. rest

procedure for finding a fixed point is through RG flow
(see Sec. II B of I). Since this method is time consuming,
we usually reserved it for checks when other procedures
failed. Instead, the fixed-point coordinates of the preced-
ing truncation are used as input to a routine based on
Newton's method.

(iv) Adding sets of scaling fields. There are two cases
when one may need to add sets of scaling fields, rather
than a single scaling field, when increasing the length of
the truncation. First, we always add simultaneously scal-
ing fields p pf that differ only by the index t. This is be-
cause the structure of the coefficients a Jk causes the new
SF equations dp, , /dl, dp —,jdl, etc. to couple to the

old ones in a similar way. Second, the tendency of bal-
anced truncations to have bounded or almost bounded
fixed-point potentials implies that the larger balanced
truncations will have al1 or most of the no, n2], n4~, etc.
even (for details, see Sec. II C3).

(v) Using @22~ as the free parameter. As evidenced in
Figs. 1(b) and 2(b), the line of fixed points as a function of

In this section the SFM is applied to the high-precision
calculation of the critical exponents of the isotropic K-

I.8
N=O, A=2
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FIG. 7. Critical exponents of the isotropic X-vector model
with X =0 from sequences of balanced. truncations to the SF
equations. Shown are (a) thermal exponent y200, (b) correlation-
function exponent q, and (c) correction-to-scaling eigenvalue

y4OO versus the number n, q of SF equations for truncations with
A =2. The labels on the line segments are explained in the cap-
tion of Fig. 4 and in the text.

p22~ is localized to a range of 6 that approximates the
discrete value 5*,. Since, for large truncations, this range
in b, can be smaller than the fluctuations of 5* as a func-
tion of n,q, it may be easier to treat pz2& as the free pa-
rameter, rather than b, and determine b, (pz2&), rather
than p~~)(b, ).

(vi) Determination of A. For the extended calculation,
the parameter A must be redetermined such that the larg-
est sequences of balanced truncations are obtained. As
described in Sec. IIC3, we expect one should choose A
values that bracket Q2 p'+p ] 0. It is possible that more
than one range of A values exists with that property.
This is indicated by the result for the Gaussian fixed point
that the uG. qz& with p )6 depend nonlinearly on 3 [e.g. ,
u6. 26& in Eq. (2.31) is quadratic in 2]. In addition, the
idea that the choice of A becomes less stringent for ex-
tended calculations is consistent with the notion of univer-
sality.

III. DETERMINATION OF CRITICAL EXPONENTS
FOR THREE DIMENSIONS
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vector model with N=0, 1, 2, and 3. New results for
several correction-to-scaling exponents are obtained. The
evaluation of the quality of the exponent estimates and
comparisons with other methods are deferred to Sec. IV.
The limit of large X is also considered and results com-
pared with exact analytical information.

"200

l.8
4, RI

l,7
N=l, A=2-

(a)
~241 8, Rl

Rs41 R 41 IO, OO
eoo —' 'R 4,6e Rl —I

8, RI

I

l.5
e,oo

A. Critical exponents v and g

In the SF approach, estimates for the values of critical
exponents and their confidence limits are obtained by
studying sequences of balanced truncations. The self-
consistent generation of such sequences has been described
in Sec. IIC. Rough estimates for exponents can be pro-
duced by considering one or two specially selected trunca-
tions, as was done, e.g. , in Refs. 3 and 4. In high-
precision work, both the length of the truncation, n, q, and
the value of the redundant parameter, A, are varied sys-
tematically. This procedure leads to unbiased estimates
for the values of critical exponents and to confidence lim-
its that include systematic errors due to truncation.

Consider first the raw data. For the isotropic X-vector

"200

1.7 I
I I

I
1

I
~

4 22 6,2I 84, 2l N=2, A =2-
1.6

2 I 8j
22

model with X=O, 1, 2, and 3, Figs. 7—10 display the re-
sults for the exponents yzao, q, and y4ao as functions of
the total number of SF equations n,q for A =2. Similar
results are obtained for the parameter value A =3; see, for
example, Fig. 4, which exhibits for the Ising model
(N =1) the corresponding yahoo and g versus n,q. In the
figures the labels on the connecting lines denote the in-
dices m =

I m, p, t I of the scaling field(s) last added to the
truncation, and the continuous lines trace the exponent
values of the respective sequences of balanced truncations.
The sequences for N&1 are identical with the ones in
Table I for N =1 with the following exception: At
n, q

= 12 with A =3, the balanced truncation for N =0, 2,
and 3 is Trun(5, 4,3,0). Two minor modifications in the
procedures are made when N&1. The scaling fields p —»
and p zz are always added simultaneously and, since cou-
pling coefficients a Jk with m & 5 have not been comput-
ed, the sequence of balanced truncations is stopped when
the scaling fields pq4~, p~p 00, ol p~a g~ and p&0 zz are add-
ed.

By examing the sizes and signs of the shifts in yahoo and
rI when new scaling fields p, —,are added to the trunca-
tions, one finds the following patterns in the fluctuations
of critical exponents as functions of n, q (The.
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FIG. 8. Critical exponents (a) yahoo (thermal), (b) g (correla-
tion function}, and (c) y400 (correction-to-scaling eigenvalue} of
the isotropic X-vector model with X =1 versus the number n, q
of SF equations for truncations with A =2. For details, see
caption of Fig. 7.
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FIG. 9. Critical exponents (a) yahoo (thermal), (b) g (correla-
tion function), and {c) y40O (correction-to-scaling eigenvalue) of
the isotropic X-vector model with X =2 versus the number n,q
of SF equations for truncations with 3 =2. For details, see
caption of Fig. 7.
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with increasing m until n,q=9 (or 7, when N =1). The
addition of this pair of scaling fields marks the beginning
of the smooth regime. The shifts caused by p ~ com-
pa~ed with those of p —2i pm22 are larger at s~all m and
become of about the same size for m =10. We suppose
that this latter pattern continues when scaling fields p —,
with p & 2 are added, which would be consistent with the
structure of the stability matrix Y'(m, j) discussed in Sec.
II C1. Presumably, the scaling fields IM~«will cause
shifts of the same sign as p —oo. The size of the shifts, we

expect, should be smaller at small m than those due to

p —oo or p 2„decrease with increasing m, and approach
in size the shifts caused by p 00 or p —2, just prior to the
addition of the marker pz6&.

We determine estimates of the critical exponents v and

z) and their confidence limits from the sequences of bal-
anced truncations in the following way. We assume that
the existence of the smooth regime in the plots of y2OO and

g versus n,q indicates that the exponents have begun to
settle towards their universal values. Thus, for each num-

ber of spin components X and value of the parameter 3,
we take the values of v= I/yzoo and z) to be those of the
largest balanced truncation available (typically, n, q

——13,
for N+I, and n,„=10, for N =1). Then we define confi-
dence limits by the width of the "window" that contains
all values of critical exponents obtained within the smooth
regime, n, q

&9 (or 7, for N =1). Typical results are
-shown in Figs. 4 and 7—10 for the parameter choices
3 =2 and 3. Varying 3 at large n, q

leads to small verti-
cal shifts in the curves. (Compare Figs. 4 and 8, for ex-

ample. ) Typical results for the variation of the critical ex-

ponents with 3 are shown in Table IV for N=1 for
A =2 and 3. (The choice of A values is discussed in Sec.
IIC2.) To obtain the results shown in Table V, we aver-

age the results obtained for 3 =2 and 3, weighted by the
squares of the inverse of the confidence limits. Since
there are presumably correlations between data for 3 =2
and 3, our cumulative confidence limits of Table V
represent error estimates obtained by averaging the square
of the confidence limits. In addition, when there is more
than one balanced truncation for a given value of 3, those
results are similarly averaged before averaging results for
3 =2 and 3. Results for other critical exponents, such as
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(a)

4,2I
4, 22l.6
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FIG. 10. Critical exponents (a) yahoo (thermal), (b) g (correla-
tion function), and (c) y4oo (correction-to-scaling eigenvalue) of
the isotropic N-vector model with N =3 versus the number n.,q

of SF equations for truncations with 3 =2. For details, see

caption of Fig. 7.

correction-to-scaling eigenvalue y4OO is discussed separate-

ly in Sec. III B.) The general pattern of yzoo and z) versus

n, q in Figs. 4 and 7—10 is oscillatory for small neq and
smooth for n,q) 9 (or 7, when N =1). In general, the
scaling fields p —oo and p 2&,p 22 cause shifts in opposite
directions. The absolute value of these shifts decrease

Confidence
limitsExponent Truncation Value

Trun(4, 5, 1)
Trun(4, 5, 1)
Trun(5, 4, 1)

0.0104
0.0063
0.0071

0.6283
0.6252
0.6259

Trun(4, 5, 1)
Trun(4, 5, 1)
Trun(5, 4, 1)

0.0075
0.0050
0.0055

0.0423
0.0384
0.0389

Trun{4, 2,0)
Trun(4, 2,0)

0.056
0.095

—0.853
—0.8603

y4~
y4oo

TABLE IV. Critical exponents of the Ising model and their confidence limits from the largest se-

quences of truncations with 3 =2 and 3. Exponents y4oo are determined from shorter truncations for
reasons described in Sec. III B2. Averaging of results yields the exponent values in Table V for N = 1.
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TABLE V. Critical exponents of the isotropic X-vector model in three dimensions calculated by the
scaling-field method in an approximation using balanced truncations that include up to 13 equations.
The correction-to-scaling exponents 6 are defined by 6 = —vy . For X = 1, the "even" eigenvalue

y4» is unphysical and not shown, while the "odd" eigenvalue y5po is of interest for the liquid-gas transi-
tion. Confidence limits include systematic errors due to truncation.

0.585+0.005
0.034+0.005
1.15 +0.01

0.626+0.009
0.040+0.007
1.23 +0.02

0.672+0.015
0.043+0.007
1.31 +0.02

0.715+0.020
0.044+ 0.007
1.40 +0.03

—74oo
—,74Z&
—74zz

0.87 +0.06
1.68 +0.08
1.83 +0.17

0.855+0.07

1.67 +0.11

0.85 +0.07
1.77 +0.07
1.79 +0.07

0.84 +0.07
1.78 +0.11
1.98 +O. OS

—
yahoo 2.4 +0.4

~4oo

~4ZZ

0.51 +0.04
0.98 +0.06
1.07 +0. 11

O.S4 +0.05

1.05 +0.08

0.57 +0.06
1.19 +0.07
1.20 +0.07

0.60 +0.07
1.27 +0.11
1.42 +0.08

1.5 +0.3

o., y, or 5, can be obtained using the usual exponent rela-
tionships. The result for y, shown in Table V, is obtained
by applying the relationship y=v(2 —g) directly to the
sequence of balanced truncations, and thus takes into ac-
count correlations in shifts of y2OO and g.

Our method of determining critical exponents and con-
fidence imits is inevitably somewhat subjective, although
it is based on a "blind-folded" procedure (see Sec. II C1).
Our confidence limits are chosen based on a pattern of
shifts of the exponents due to scaling fields of types p
compared with p „that were discussed above. We have
assigned symmetric confidence limits, thus ignoring the
overall trends as functions of n, q

of yppp (decreasing) and

g (increasing). In fact, given the trends in yzpp and q
versus n, ,q, one needs to worry that the exponent values
"overshoot, " which would explain the somewhat low
value of the critical exponent y=v(2 —g) given in Table
V. The procedure can be tested at the next level of ap-
proximation (see Sec. IIC4) by adding scaling fields of
types p —«, thus checking the predictions for the pattern
of the exponents as functions of n, q

and m ={m,p, tI.
The reader can judge our procedure for determining ex-
ponents and confidence limits by using the evidence
presented in Figs. 4 and 7 and Tables IV and V.

We defer a comparison of the results in Table V to
those by other techniques to Sec. IV. In the following we
discuss the determination of the other entries in the table.

B. Correction-to-scaling exponents

l. Oueroiem

The universal correction-to-scaling exponents charac-
terize the critical behavior of thermodynamic and correla-
tion functions beyond the asymptotic terms. Recently,
the estimation of those exponent values is attracting much
interest. In the analysis of HT series, the leading correc-

tion exponent 54oo is incorporated into the fitting pro-
cedure through a confluent singularity term. The discus-
sion of experimental data usually requires the values of
correction exponents as input parameters. FT expansion
techniques and the MC renormalization group have also
been used to determine the exponent 64oo, although results
from the latter' are unsatisfactory at present. For fur-
ther details, see Sec. IV.

The SFM is ideally suited for the estimation of several
of the correction exponents b,~ since they are defined in
terms of the lower-lying irrelevant eigenvalues of the ma-
trix (2.8). However, there are two difficulties inherent in
that procedure. First, the set of basis operators is over-
complete and some of the irrelevant eigenvalues may be
either nonphysical or redundant, in the sense of
Wegner. ' Their identification at the critical fixed
point is not easy. Second, correction-to-scaling eigen-
values sometimes cross as a function of X. In trunca-
tions, one finds that when eigenvalues are too close they
can form complex pairs for some interval of X. This can
significantly affect the precision to which the eigenvalues
can be determined. In the following we address these
questions, first for the exponents of the "even" or O(K)-
symmetric operators for N =0, . . . , 3, and second, for the
exponents of the "odd" or symmetry-breaking operators
for N =1.

2. Even eorreetion-to-sealing exponents

In Fig. 11, which exhibits the portion of the spectrum
of "even" eigenvalues as functions of N as obtained from
Trun(4, 4,3,1) with A =1, the eigenvalues that are non-
physical are indicated by two dots. For example, in the
exact Gaussian limit N = —2, certain operators decouple
from the set of physical operators (see Appendix 8 for de-
tails) and do not contribute to a calculation of the free en-
ergy. (Among those nonphysical eigenvalues is y4pp, in-
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N"--2 N= I N =2 N=3
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(q=o)

2 —-—

(0.044) (0.046) (0.048)
4a)

(0)
)'4oo

4oo

-l 2-

-14-

y4oo, instead, y4» ———1 provides the first correction-to-
scaling exponent when N = —2.) Similarly, for N=1,
the SF basis set is overcomplete and all eigenvalues ym21

are recognizable as being nonphysical (see comments in
Sec. IIIB of I). In the limit N~ao, the set of basis
operators is smaller than for N & oo, but the nonphysical
eigenvalues y—,coincide in value with the physical eigen-

values y —,, (see Sec. VB of I for details). Redundantsph

eigenvalues ' are identifiable by invariances of the Lan-
dau Hamiltonian under the RG transformation. The only
"even" redundant eigenvalue that we have identified is the
marginal eigenvalue y2z~ (see Sec. II of I), which is associ-
ated with the transformation (2.23). (Redundant "odd"
eigenvalues are discussed in the next subsection. )

Figure 12 illustrates the problems inherent in calculat-

-05—

"400

-2.0

-2.5-

422

J42Z--

&42l

I I-3.0—2 -I ' 0 l 2 3
N

FIG. 12. Correction-to-scaling eigenvalues y4oo, y42I, and

y422 of the isotropic N-vector model as functions of N from
truncations Trun(5, 4,3,0) (solid lines) and Trun(4, 2, 1,0) (dashed
lines) with A =2. When eigenvalues cross, they may form com-
plex pairs, indicate in the figure by the joining of two lines.

-18.8

FIG. 11. Spectrum of eigenvalues as function of N of the
critical fixed point of the isotropic ¹ector model from

Trun(4, 4,3,1) with A =1. Nonphysical eigenvalues are indicat-

ed by two dots.

ing the correction-to-scaling exponents from irrelevant
eigenvalues ym that cross as functions of N. We show in
this figure typical behaviors of these eigenvalues for small
and large truncations (dashed and solid lines, respective-
ly). The labeling of the eigenvalues is discussed at the end
of Sec. IIA. For small truncations, i.e., n2& &2, no scal-
ing fields p, —,with m & 4 are included in the truncation;
then y42& and y422 are the last eigenvalues of the block 2-2
of the determinant shown schematically in Fig. 3. For
n2» 2, the eigenvalues y42~ and y422 are immersed in the
block 2-2 and are found closer in value to y4oo. When the
eigenvalues are too closely spaced, they tend to form com-
plex pairs. (In the figure, only the real parts of the eigen-
values are shown. ) The range of N over which complex
pairs of eigenvalues are found is truncation dependent.
Outside the range of complex-pair formation, the eigen-
values that form complex pairs are curved as a function of
N. For example, this causes larger systematic errors in

y400 when determined from Trun(5, 4,3,0) at N =0 and 1

than at N =3. This kind of observation one is only able
to make in methods in which N can be varied continuous-
ly. Presumably, the existence in our calculation of com-
plex pairs of eigenvalues is an artifact of truncation, al-

though, for noninteger N, the formation of complex pairs
is not excluded on physical grounds. We believe that this
difficulty can be removed by including scaling fields of
the types p —,with p &2, Then there will be new eigen-

values y, that are close in value to y4z& and y&2z, and if
any complex pairs are found, hopefully they will be at
lower levels of the spectrum.

The graphs of y40O as functions of n, q
in Figs.

7(c)—10(c), for N =0 to 3, reflect the above complica-
tions. Compare, in particular, Figs. 7(c) and 10(c). For
N =0, y400 versus n, q

exhibits a strong downward trend
for n, q p7 and a lack of settling towards an asymptotic
value. For N =3, in contrast, y4OO versus n,q exhibits os-
cillatory and smooth regimes resembling those found in

y20O or g as functions of n,q. Since the aberrant behavior
is probably due to truncation (i.e., the complex pair of
y4oo with y422 when n, q &7 and N &0, as shown in Fig.
12), we determine for all N the first correction-to-scaling
eigenvalue y400 as follows. We ignore all values of yahoo

obtained for n,q & 7 and estimate y40o by the value of the
largest truncation for which all eigenvalues are real, i.e.,
Trun(4, 2, 1,0). The estimates of y4OO so determined are
shown by circles in Figs. 7(c)—10(c). We estimate the
confidence limits on these values for y4oo by the size of
the shifts relative to the previous balanced truncation.
This confidence limit is conservative for N =3 [see Fig.
10(c)], but may not be large enough for N =0 and 1,
where less trustworthy information is available. In this
way, exponent values are determined for each sequence of
balanced truncations and then averaged. The results are
summarized in Table V. Finally, the estimates for 64OO,

as shown in Table V, are computed from the results for v
and y4oo in the table. Our derivation of these estimates
stresses the influence of lower-lying eigenvalues on the
precise calculation of the leading correction-to-scaling
eigenvalues.

The next-to-leading correction-to-scaling eigenvalues

y42~ and y422 are estimated as follows. Returning to Fig.
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TABLE VI. Consistency check of the scaling-field method for the computation of critical exponents
using relationship (3.1b) between the exponents y»&, y200, and g. Last two columns show the numerical
results for y32l and percentage deviations from equality for the balanced truncations with n,q =8, 9, and
10.

neq Truncation

Trun(4, 4,0)
Trun(4, 4,0)

2
3

y3ZI

—0.840
—0.819

Deviation
(%)

4.3
6.9

Trun(4, 5,0)
Trun(4, 5,0)
Trun(5, 4,0)

—0.874
—0.858
—0.819

1.3
3.6
7.9

10 Trun(4, 5, 1)
Trun(4, 5, 1)
Trun'(5, 4, 1)

—0.880
—0.868
—0.826

0.8
1.5
6.5

3. Exponents of symmetry breaking terms -for N= I

Two important physical examples of Ising phase transi-
tions are seen in liquid-gas and binary-fluid mixtures.
Model Landau Hamiltonians for those include both even
and odd powers in cr(q) in the expansion (2.2). The loca-
tion of the critical fixed point is unchanged, i.e., the
fixed-point coordinates of all "odd" scaling fields are zero
(see Sec. IVB of I). However, new corrections to scaling
for the critical transition originate from operators formed
from odd powers in o(q).

Two of the three leading "odd" eigenvalues of the criti-
cal fixed point are associated with operators that are
redundant. ' ' All three are related to the correlation-
function exponent g, and one is related to the thermal ex-
ponent y200. The leading magnetic eigenvalue y&00 is
given by Eq. (2.22), while

y3oo= 2 (d —2+9) ~

y3zi =
2 (2y2oo —5+'r)) .

(3.1a)

(3.1b)

12, we note first that the relative ranking of these eigen-
values is truncation dependent. For short truncations,
ones in which y42i and y422 are the last added eigenvalues
in block 2-2, we find y&2, &y422 for all small N (i.e.,—2&N &3), while for larger truncations, i.e., ones in
which these eigenvalues are immersed in the block 2-2, we
find y42» yq2q for N )2. Presumably the latter ranking
is the correct one for X)2. Second, it is evident that the
formation of complex pairs affects the estimation of y42z
at N =0 more than that of y42& at N =0, . . . , 3 and y422
at N =1, 2, and 3. Therefore we estimate y422 at N =0 as
described above for y4oo and the other eigenvalues as
described in Sec. IIIA for yahoo and t). Owing to this
difference in procedure at N =0, we quote y42»y&2z in
Table V, although we expect y42& &yq22 (as shown in Fig.
12). For N = 1, the eigenvalue y42i is unphysical (see Sec.
IIA). To summarize, for N =1, there is one correction-
to-scaling exponent, 5422, located at approximately 26400,
while, for N =0, 2, and 3, there are two correction-to-
scaling exponents, b,4z, and 6422, with b,42i&b.422, located
at approximately 26400.

H* [o +o'] =H" [o ]+I o.'{q )
6cr(q)

(3.2)

Both the eigenvector associated with this operator and the
eigenvalues y&00 and y300 are obtained correctly when we
use n 0

——no and n z&
——n2i —1. Truncations that preserve

relations for yahoo and y3oo, however, do not simultaneous-
ly satisfy Eq. (3.1b). However, as shown in Table VI the
degree of agreement found using Eq. (3.lb) is excellent,
with deviations from equality usually decreasing with in-
creasing n,q.

The eigenvalue y500 provides the first new correction to

—2.0

- 2.2-

I
'

I

N=l, A=2

"5oo
—2.4-

-2.6—

6, 21 2i4I
, 2,4I

-28—
2) 4l

2I

—5.0 I I
241

I

4 6 8 lo
rI eq

FIG. 13. "Odd" correction-to-scaling eigenvalue y&00 of the
Ising model versus the number n, q of even SF equations for
trnncations with 3 =2. The labels I m, p, t] on the line seg-
ments denote the even scaling fields added to the preceding bal-
anced truncation. Asterisks indicate complex pairs with y&2&.

Thus these exponent relationships allow one to test the
consistency of the SF calculation. We find that the rela-
tions for y&oo and y3oo can be satisfied exactly when com-
patible "even" and "odd" truncations are chosen. That is,
in analogy to Eq. (2.18), we determine the numbers no
and nqi of the operators Q —,~[o] and Q—,~&[o], where
m' is an odd integer, that need to be included in the SF
expansion {2.4) in order to properly reproduce the redun-
dant operator associated with y3oo at the critical fixed
point. %egner ' " has shown that this operator is related
to the spin-shift operator 5H*/5cr(q), which can be de-
fined using a generalized Taylor-series expansion in o. (q)
about the critical fixed point,
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scaling for liquid-gas or binary-fluid mixtures. This
eigenvalue has not been calculated with any accuracy in e
expansion: Fade approximants for 650O from series to
0 (e ) yielded for d =3 an estimate 0.5 & A~oo& 1.0, and
from series to O(e ), b, 500&1.0. Figure 13 shows the
SF results for the eigenvalue y5OO as a function of n, q for
the sequence of balanced truncations for A =2. A com-
plex pair of y500 with y5z~ is found for n, q & 7. The result
for b, &DO

——1.5+0.3 quoted in Table V is thus obtained as
described for y400 (see Sec. IIIB2). We note that this
correction-to-scaling exponent is roughly of size 35400.

-y ((0 ')

-3
-4

N=m, A=2

I I

0 2
a, (io ")

C. Limit of large N

We have tested the SFM in the limit of large N by com-
paring numerical results for critical exponents with the
analytical results:

z1=cN '+O(N ),
yzoo ——1+4cN '+O (N ),
y400 ———1+8cN '+ 0 (N ),

(3.3a)

(3.3b)

(3.3c)

(i) Location of the fixed point. The SFM uses a
parametrization that is different from that of other tech-
niques, i.e., the SF expansion (2.4) about the Gaussian
fixed paint. This expansion can be traublesome if the
fixed point of interest is located "far" from the Gaussian
one in the SF coordinate space, as is the case for the
spherical-model fixed point. After rescaling the scaling
fields p~, operators Q~ [o j, and coupling coefficients

a~jk and a~J by the appropriate powers of N, so that the
renormalized coupling constants are defined in the limit
N~oo (see Sec. VB of I), we still find large SF fixed-
point coordinates, e.g., with A =2, phoo

——0, p&O0-1.6,
p 60o- —18, and p 8O0-483.

(ii) False fixed-line behavior at N = oo. Because of the
disparity between the Gaussian and spherical-model fixed
points, exact SF results in the limit of N = oo can only be
obtained for the "gauge" choice, or location on the line of
fixed points, pzz~

——0. (This is in contrast to the Gaussian
limit N =—2, where the line of fixed points can be stud-
ied exactly, as discussed in Appendix B.) In numerical
work, where pzz~ is not a free variable, the parameter r of

where c =8/(3m )=0.2702. ' Exact results for z1 and all
eigenvalues y —,in the spherical-model limit N~ oo have
been obtained analytically by the SFM (for details, see
Sec. V B af I). Here we use the methods developed in Sec.
II to test the effects of truncation on numerically deter-
mined critical exponents. We calculate the eigenvalues

y2OO, y40O, and g in the spherical-model limit using
N =10 and estimate the 1/N corrections. in Eqs. (3.3)
using N =2' . The computation of these corrections pro-
vides a severe test of the method, due to the large pre-
cision necessary to determine c from numerical values of
y200~ y4oo~ and 9

Since both numerical and analytical SF calculations of
the spherical-model critical exponents yield exact results,
one might expect that the 1/N corrections of Eqs. (3.3)
are also easily obtainable from the SFM. This proved
false, for a number of reasons, which we now list.

FIG. 14. "False" line of fixed points for N = ap. Negative of
the near-marginal eigenvalue, —y22~, versus 6, shows the effect
of truncation to Trun(4, 4,3,1) with A =2.

Eq. (2.29), which measures the degree of correlation be-
tween the marginal eigenvector ~ to the vector A, *, is
found to be r =0.87. As for small N, truncated sets of SF
equations yield exponents that exhibit a false dependence
on the variable b, . Figure 14 shows —yzz& as a function
of 5 determined from the truncation Trun(4, 4,3,1) with
A =2 at N =10 . The spherical-model eigenvalues are
obtained when y22i ——0, i.e., at the cusp 6'=0.

(iii) False fixed-line behavior at large N. Behavior simi-
lar to that at N = oo is found for large N. Typically, the
eigenvalue —yzz&, when plotted as function of 5, shows
either cusps, as shown in Fig. 14, or, more rarely, "loops, "
as shown in Fig. 1(c). When cusps are found, then

yzz~ &0, for all h. When loops are found, then their
width 6h is much smaller than the size of
54/b, * &0.1.

These behaviors makes calculations difficult for large
values of N.

In the following we summarize the differences in pro-
cedure for calculations at large and small N:

(i) b,* determination. We relax the procedures described
in Sec. II by accepting into our data analysis truncations
with cusplike diagrams of yzz& versus b when, at the
cusp, yzz& & 10 . We then define b," to be the value of 5
at the cusp.

(ii) Optimal value of A. We find that the longest bal-
anced truncation at large N is shorter than that at small

For example, for N =2', a relatively long sequence
ending in Trun(4, 4,3,0) is found, when A =3, and a much
shorter one ending in Trun(3, 2, 1,0), when A =2. We
choose 3 =3 as the optimal value of A for no other
reason than that it yields the longest sequence of balanced
truncations.

(iii) Sequences of truncations. For each truncated set of
SF equations, we calculate c in three ways using Eqs.
(3.3). Table VII tabulates the results for the largest se-
quences of truncations with A =3. Observing-that the
scaling field p24& causes very large shifts in the 1/X
correction to yzoo (but not in those to g and y4oo), we stop
the sequence of balanced truncations at a level that ex-
cludes p24i.

Table VII presents the results from the balanced trunca-
tions of A =3. For truncations with 3 & n,q &9, the 1/N
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TABLE VII. Determination of 1/X corrections for the iso-
tropic ¹ector model using Eqs. (3.3) with %=2'5 by the
scaling-field method at A =3. Shown are the largest balanced
truncations (underlined) and numerical results for c obtained via
the three relations (3.3). Asterisks indicate truncations exhibit-

ing cusp behavior as described in Sec. III C.

9
10
10
11

Truncation

Trun(4, 3.2.0)
Trun(4, 3,2, 1)*
Tr un(5, 3,2,0)
Trun(4, 4.3.0)

0.29
0.29
0.29
0.29

C 200

0.10
0.13
0.29
0.20

Caoo

0.48
0.48
0.17
0.48

correction to y200 shows strong positive and negative fluc-
tuations, that to y400 exhibits modest Auctuations of both
signs, while the value of c determined from g decreases
smoothly from 0.5, at n, q

——3, to 0.29, at n,q
——9. On the

other hand, the size of the shifts in yahoo and g correlate
well and both patterns lead to the same sequence of bal-
anced truncations. In summary, our calculated value of c
is in the range O. l &c &0.5, in comparison to the exact
value c =8/(3' )=0.2702.

IV. COMPARISON WITH OTHER METHODS

The SFM differs in important ways from other tech-
niques for the high-precision calculation of critical ex-
ponents. In this section, we present brief, nontechnical
comparisons between the HT, MC, FT, and SF methods.

A. High-temperature-series expansions

For the purpose of comparing results for critical ex-
ponents, we use as standards the HT-series estimates for
the Ising model (X=1). The first row of Table VIII
summarizes the results of three analyses of Nickel's 21-
term series for the body-centered-cubic lattice as calculat-
ed by Zinn-Justin, ' Chen, Fisher, and Nickel, ' and Nick-
el and Rehr. ' The quoted uncertainties denote statistical
errors only, and represent +1, 0.675, and 1.5 standard de-
viations for the three respective sets of results.

The above series analyses took into consideration the

first correction-to-scaling term albeit in different ways.
The task of finding both the leading exponent and the
first correction exponent involves an intrinsically unstable
fitting procedure. ' New techniques' have been
developed to deal with this difficulty, e.g., Roskie s
method, ' ' a refined ratio method, ' and a partial-
differential-approximant method. ' ' The exponent re-
sults obtained by these procedures are more or less biased.
In Roskie's method, a fixed value of 6400 is assigned. In
the ordinary differential-appmximant method, an as-
signed 6400 is varied and best values for the critical ex-
ponents determined by the 6400 that yields the most
universal value of y when results are compared from cer-
tain sets of models. The exponent estimates by the
partial-differential-approximant method' are largely un-
biased, although the multicritical point is constrained and
approximants used in the data analysis are selected by the
criterion of their invariance under Euler transformation.
For further details and comments, see Refs. 14 and 16.
Since series for different models are extrapolated to a
common universal limit (see, e.g. , Figs. 7 and 8 of Ref.
16), one is confident that the HT exponents in Table VIII
characterize the asymptotic behavior rather than a spuri-
ous "plateau. " (The latter had been the case with earlier
analysis of single series of 15 terms or less that yielded
v=0. 638 and y=1.25.) However, since certain higher-
order correction-to-scaling and/or analytic background
terms are assumed to be negligible in the HT-series analy-
ses, the value for 5400 may still have the character of an
effective exponent in the sense of Riedel and Wegner.
In contrast, such difficulties do not arise in calculations
by the SFM because there the leading and correction-to-
scaling exponents follow without a fitting procedure by
matrix diagonalization;

In comparison to the FT estimates (second row of Table
VIII), the HT results indicate a slightly higher value for
Aqoo and a slightly lower one for y (i.e., a larger ri). The
new SF estimates for X= 1 exhibited in Table IV are con-
sistent with that conclusion, although the larger confi-
dence limits must be noted. Rehr" has attempted to
deduce the second correction-to-scaling exponent from
HT series for the spin- —,

'
Ising model. Using v=0.63, he

obtained y400-0. 79 or, 5400-0.50, and an effective ex-

TABLE VIII. Summary of current estimates for the critical exponents of the Ising model (N = 1) by
the high-temperature (HT), field-theoretic {FT), and Monte Carlo (MC) methods. Results by the
scaling-field {SF)method are contained in Table V. Confidence limits are one-standard-deviation sta-
tistical errors, except Refs. 14 and 15, where the uncertainties are +0.675 and 1.5 standard deviations,
respectively.

Reference

HT 0.6305+0.0015

0.6300+0.0015

0.035%0.003

0.0359+0.0007

1.2385+0.0025
1.2385+0.0015
1.237 +0.002

0.52 +0.07
0.54 +0.05
0.51 +0.03

13
14
15

0.630 +0.0015
0.630 +0.002
0.628 +0.001

0.031 +0.004
0.031 +0.011
0.035 +0.002

1.241 +0.002
1.241 +0.004

0.498+0.020
0.496+0.004
0.50 +0.02

6
7

46

MC 0.629 +0.004 0.031 +0.005 0.63 +0.07
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ponent y422-1. 4 or 6422-0.90. We note that the only
calculation in three dimensions of the leading odd
correction-to-scaling exponent 65pp is by the SFM.

No survey of recent experimental results for the Ising
exponents has been gathered. For older results, the reader
is referred to the reviews in Refs. 6 and 10. Beysens
summarizes the experimental results for ten binary
mixtures and concludes that v=0.625+0.005,
y=1.236+0.008, 13=0.326+0.002, and a=0.112+0.005,
with uncertainties of one standard deviation. Pestak and
Chan determined the correction-to-scaling exponent 64pp
near the liquid-gas critical point of N2, and obtained
@=1.233+0.01, P=0.327+0.002, $i]d b4oo ——0.51+0.03.
We are not aware of an experimental determination of the
correction-to-scaling exponents 65pp, although several
methods, of varying degrees of feasibility, have been pro-
posed 27& 37' 38

The question has been raised whether the HT-series-
expansion method can be further extended. ' The method
proved powerful for high-precision calculations of the
leading relevant exponents of the Ising model. Nickel'
has estimated a factor of 20 in resources for an extension
of the series for the Ising model from 21 to 23 terms. For
isotropic and anisotropic ¹ ector models, the present-day
series are too short to yield unbiased results of high accu-
racy, and it is presumably too difficult to generate series
of sufficient length.

B. Monte Carlo renormalization group

A promising new, development is a recent application of
the MC renormalization group to the three-dimensional
Ising model by Pawley, Swendsen, Wallace, and Wilson. '

The present calculation is for simple cubic lattices of up
to 64)&64)&64 sites in an approximation that retains
seven operators, including three different four-spin prod-
ucts. In contrast to work in two dimensions, conver-
gence is slow and the raw data for 1/v do not reach a pla-
teau of values for neighboring lattice sizes and blocking
levels. Nevertheless, after interpolating to obtain the criti-
cal coupling constant K, and correcting for transient and
finite-size effects, the authors deduce estimates for v and

g which, although exhibiting larger statistical errors (one
standard deviation), are in good agreement with the HT
results. They are presented in the third row of Table VIII.
However, a rather poor result for the correction-to-scaling
exponent, y4pp

——1.0+0.1 or 64pp ——0.63+0.07, seems to
indicate that the method has not yet converged. From the
viewpoint of the SF approach, it is not surprising that a
satisfactory calculation of y4pp requires the inclusion of
additional four-spin and higher-order operators. We note
that Pawley et al. ' find a second positive eigenvalue,
which they associate with a redundant operator. They
test the correctness of the relationships (2.22) and (3.1a)
between the leading odd eigenvalues and g. In contrast to
the SFM, they find poor agreement. The relationship for
$132] Eq. (3.lb), has not been tested.

Swendsen' has proposed to improve upon the above
calculation by including 17 operators, among them one
six-spin and one eight-spin operator (i.e., the eight spins
on an elementary cube), and then to optimize the RG

transformation. The usefulness of the MCRG approach
for general ¹vector models is an open question. So far,
the accuracy of results for the planar model ' is far from
that of other methods.

C. Field-theoretic perturbation expansions

The major difference between the Wilson RG approach
and the FT perturbation techniques is that the former in-
volves an infinite number of coupling constants (which
are called scaling fields), while the latter concentrates on
the coupling constant u of the cr term in the Landau
Hamiltonian. The definition of the renormalization func-
tion Z(u) involves perturbation theory in an essential
way. The expansions are asymptotic and exact calcula-
tions can be performed only in the limit of small e.
There are two main difficulties for the FT approach to
critical phenomena in three-dimensional systems:

(i) Even once the Z(u) functions are defined perturba-
tively, sophisticated resummation and extrapolation pro-
cedures are required for reconstructing their forms from
the expansions. The available information consists of the
six leading terms for Z (u), Zr(u), and Z]](u)/u plus the
behavior at large order. ' '

(ii) New functions Z(u) must be determined and subse-
quently analyzed in order to determine higher-order
corrections to scaling —a procedure that has yet to be ap-
plied in practice.

The FT estimates for the exponents of the isotropic X-
vector model are widely regarded as the definitive results
for three-dimensional critical phenomena. We do not dis-
cuss here whether this is justified, but instead compare in
Table VIII the FT results for X =1 with the correspond-
ing results from HT, MC, and SF methods (see also the
discussion in subsections A and D) and propose a series of
challenges for the FT and SF methods. First, one should
test, by computing via the SFM the fixed-point value of
the renormalization coupling constant u', the FT as-
sumption that the function Z(u) is smooth and can be ex-
trapolated to a region not accessible by direct calculation.
Rehr and Nickel and Sharpe have computed u using
HT series for the Ising model and find 0.1602 and 0.1594,
respectively, which are to be contrasted with the FT esti-
mate of 0.1616. ' Second, the universal amplitude ratios
for the isotropic ¹ectormodel should be calculated us-
ing the SFM and compared with the FT estimates.
Third, it would be interesting to test the degree to which
the FT estimates for the critical exponents are universal
under variation of a redundant parameter, such as the
normalization parameter A of Eq. (2.10). We suggest that
a loss of universality in calculations involving truncations
[in FT, that of the series for Z(u)] is one unconsidered
source of systematic error. Finally, we suggest that the
next-to-leading critical exponents be calculated using FT
methods. This involves a matrix diagonalization; there-
fore, in certain approximations, one may encounter (as in
the SFM) the artifact of complex pairs of eigenvalues.

It is unlikely that the FT work for the isotropic N-
vector model can be extended to higher order. Technical
difficulties in computing large-dimensional integrals ap-
pear prohibitive. Recently, FT loop approximations using



30 CRITICAL EXPONENTS BY THE SCALING-FIELD METHOD: 6635

E expansion have been carried to order e and yielded
high-precision results for the exponents v, q, and b,400 of
the three-dimensional isotropic X-vector model with
N =1, 2, and 3. The results for N =1 are included in
the second row of Table VIII. In the study of anisotropic
N-vector models, FT loop expansions at fixed dimension
have been employed. Results for the percolation prob-
lem via the Q =1 Potts model are not satisfactory (for
further details, see Sec. III C of Ref. 4).

D. Scaling-field method

The SFM differs from the other techniques in several
ways. It is based on an exact RG equation, is nonpertur-
bative, and yields unbiased results. It applies with only
minor changes to isotropic and anisotropic X-vector
models. It allows the investigation of trends in critical
phenomena as functions of dimension d and number of
spin components N. Finally, it is feasible to proceed to
the next levels of successive approximation.

The accuracy of the exponent estimates in Table IV for
the isotropic N-vector model is excellent in view of the
modest length of the truncations considered. The uncer-
tainties denote confidence limits including systematic er-
rors. The estimates for v, q, and b,&00, although less pre-
cise, agree well with the FT results for N =0, 1, 2, and 3.
As discussed in subsection A, for N =1, they are con-
sistent with the conclusion from HT series of higher
values of 6400 and g than the FT estimates. If we assume
that this trend is also significant for N&1, we can make
the following statements. For g and b,4OO, the SF esti-
mates indicate slightly higher values than the FT results
also for the other values of N. For v, the SF estimates are
lower, at X =0 and 1, and higher, at X =2 and 3, than
the FT results. We note that for N =2 this conclusion
would be consistent with the experimental result at the X
transition in He, where +=0.6717+0.0004 with an un-
certainty of one standard deviation excluding systematic
errors. Furthermore, we have obtained new information
about the spectrum of correction-to-scaling exponents.

We believe that the SFM provides a method of succes-
sive approximation for solving the Wilson equation.
There is no proof that convergence must occur. However,
general observations indicate that high-precision results
for leading critical behavior can be achieved keeping only
certain kinds and limited numbers of operators in the ex-
pansion of the Landau Hamiltonian. Although approxi-
mation takes place by the severe device of truncation, it is
controlled by the "principle of balance" and the order in
which successive truncations are constructed is fine-tuned
by feedback from the fixed point under consideration.
The idea of a "marker" is used to stop the sequence of
truncations before it enters the "noisy" regime. We be-
lieve that the procedure of approximation does not bias
the results for critical exponents. The length of the se-
quence of truncations is optimized (or, the effect of un-
available terms in the Landau Hamiltonian is minimized)
by the choice of the redundant normalization parameter
A. Varying a redundant parameter is also an important
device to test universality or the degree of convergence of
the results. The only other method that examined the ef-

feet of a "tweaking" parameter was the HT technique.
Presumably, our optimization procedure can be improved.
A severe test of the SFM wi11 occur at the next level of
approximation, when scaling fields of the type p~pf with

p =4 will be included, and p26& will act as the "marker. "
One current problem that can lead to systematic errors for
the leading irrelevant eigenvalues is their tendency to
form complex pairs. Our proposal is that, as the number
of equations n, q is increased, the effect of truncation will
be further removed to lower-lying eigenvalues, resulting in
a further settling of the fluctuations in the values of the
exponents as functions of n, q (as exhibited in Figs. 7—10).
Hopefully, then, any problems with formation of complex
pairs of eigenvalues will also be removed to lower levels.

The scope of the SFM is discussed in Secs. I and V of
Ref. 1. Here we have. demonstrated that high precision
can be achieved in the SF calculation of critical ex-
ponents. The determination, e.g. , of scaling functions,

. critical amplitudes, or the fixed-point value of the renor-
malized coupling constant u*, has yet to be addressed.
Several crossover phenomena have been investigated for
various cubic and Potts models, but so far only for short
truncations. '" In these studies, as well as the ones of the
irrelevant eigenvalues of the isotropic N-vector model (see
Sec. III 8), it proved useful that trends in critical behavior
could be followed as functions of d and N We ex.pect
that this idea can be applied advantageously to a wide
variety of problems. For example, for the Potts model,
the interpolation as a function of spatial dimension d be-
tween the upper and lower critical dimensionalities led to
a better understanding of the role of critical and tricritical
fixed points. The versatility of the SF approach derives
from the fact that the exact Wilson equation is an equa-
tion for Landau RG Hamiltonians. The SF coupling
coefficients can be calculated for the dimension of in-
terest, including noninteger dimensions. And, as
described in Sec. II C4, there are no technical reasons that
would force one to stop the calculation at the present level
of approximation.

V. SUMMARY

A method for the solution by successive approximation
of Wilson's exact RG equation for critical phenomena has
been proposed. The approach is termed scaling-field
method (SFM). In this paper we have demonstrated that
the method is well suited for the high-precision calcula-
tion of critical exponents. In this and other papers'
the method has been shown to offer a versatile and reli-
able tool for the investigation of critical phenomena in
spin systems over a large range of dimensions. The ap-
proach is not limited to the level of approximation dis-
cussed here. A discussion of the steps necessary to extend
our calculation has been included in Sec. II.

It is concluded that the. SF approach to the Wilson
equation offers a sound basis for a large-scale computing
effort of the critical parameters for isotropic and anisotro-
pic X-component spin models. We believe that the
method has the potential for surpassing the field-theoretic
approach as the best source of RG data for such systems.
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APPENDIX A: PARAMETRIZATION OF THE LANDAU HAMILTONIAN

Three parametrizations of the Landau Hamiltonian (2.2) are used: Either Eqs. (2.2) or (2.4), or

Hl[o] ~G[~l+ g J Q |1'(q') {q 1 q 1)[o (ql ) 0 (q2)l [0 (q- ) o (q-)]&(q 1+ +'q
q &, . . . , q

m even

(A 1)

Equation (Al) defines a new set of functions v —Iq;;lI that are related to the functions u —Iq;;1 I of Eq. (2.2). The
u —[q;;1I functions are found through expansion of the Gaussian eigenfunctionals [Eqs. {2.12)—{2.14)]. The isotropic
homogeneous functions f, Iq; I defined in Eq. (2.15) allow expansions of both the u —

I q;;1 I and u Iq;;1] functions,

u (q, , . . . , q;1)=g u, (l)f, (q 1, . . . , q —),
p, t

etc. Then, for the truncations studied here,

(A2)

v —oo(l)= p, —oo(l)+ g C(k, k —m)R()
mI

k even

k —m+ 'R+ koo(l)+ — R pk21(1)
k , X+k —2

(A3)

=1
u221( 1)= —p221( 1)+ g C (k, k —1 ) —R o p&21(l)—

I-, ~ k
E even

]"uz2(1) (A4)

1

u241{1) 2 p241{1)

and, for m &2 and even,

(A5)

1
u —„(1)=

mf
p 2,(l)+ g C(k, k —m) —Ro pk2, ( )

k
k even

v —22(l) = p —22(l)~ g C(k, k —m) Ro pk22(l)
m! g — k(1V+k —2)

(A7)

where m =m /2, etc. , and

C(m, i)= ( —1)'

gf

The integral R~ is

iV+2(m i)—
2(m —i)+ 1

g(q) = 1tl2(q) exp( —2q )

uG(q) Aq [Aq +exp( —2q )]
(A10)

The coefficients v, Iq;;1] are related to the u —,[q;;1)
through a small-q expansion of g(q),

Rp=2 tg g g

where

(A9)
u ~(1) = u —oo( 1),

u 221(l) =—+2(1—3)v2oo(l) +u221(l),
2

(Al 1)

(A12)
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/

u241(l)= +(3A —8A +2)v2011(l)
A (2—A)

2

p* =0 for all m,
(85)

+2(1—A)uzzt(l)+ v241(l), (A13)

and, for m &2,

u —z, (l) = u —z, (l) +2m (1—A)u —00(l)

and

(A14)

u 22(l) = u zz(l) . (A15)

APPENDIX B: N = —2, OR THE GAUSSIAN MODEL

The exponents of the isotropic X-vector model in the
limit N = —2 are the Gaussian critical ones. Here we
discuss the distinction between the Gaussian critical and
the Gaussian tricritical fixed points at N = —2, as we11 as
show explicitly the behavior of the line of fixed points for
both of these Gaussian solutions.

In the SF approach, the limit N = —2 is special be-
cause, for this N value, the SF equations decouple into
two sets. For all truncations considered in this paper, the
"Gaussian" set that decouples from the rest is
Trun(1, 1,1,1). We conjecture that the decoupling of the
equations into a "Gaussian" set Ip~ I and a remainder set

I p~ I is exact, i.e., that

—2(1+2q +~)4 (q)q '

=crazy

1;zy. 1;zq„tq
&m

from which one finds (for b, =0)
dP200

dl
=2p200 2p200 z

(86)

dpp2&

dl
4(2 ~ )P200 4P200 P221 (88)

t G e t
ym =ym~ ~ ='9 =0

The distinction between these two solutions is that
@400

——0 for the Gaussian tricritical one, and thus y400
——1,

while P400, &0 for the Gaussian critical one, and thus

y400 (0. Equation (82) must be solved numerically for
the SF coordinates p'- and the eigenvalues y'-. The
latter are found to be noninteger.

Finally, both for the Gaussian critical and the usual
Gaussian tricritical fixed points, the line of fixed points as
function of pzzi may be studied. One may trivially derive
the required coupling coefficients a Jk from Eqs. (4.3)
and (4.9) of I:

dPm'

dl Ip (81)
d924& 2 2

dl
2p241 2(3~ 12+ +6)P200

dpmit

dl Ip (82)

The decoupling implied by Eqs. (81) and (82) occurs be-
cause

—8(2—A)pzoop221 —2p221 2pz00p241 —
) (89)

etc. Equations (87)—(89) have the simple solution given
by Eqs. (2.26) and

a ' k cc(%+2) (83)
)fc G

yzp i =y2p &
=2—p (810)

for p~ E Ip~ ] and p~. E tp I. The set Ip~ I is prob-
ably composed solely of pq~, for all p, t and P4~, for p&0
and t&1; however, we were not able to show this in gen-
eral.

The decoupling of the SF equations at N = —2 leads to
a Gaussian critical fixed-point solution:

which is described in Sec. IIB. Hence, for 6*=0, there
exists a line of Gaussian fixed-point solutions as functions
of pzz, or normalization of the spins cr and momentum q .
If a nonzero 5 is chosen, then only one fixed-point solu-
tion, with y200

——2, is found with a corresponding eigen-
value y22i given by

0 gc

(84) y22& = —2~ . (811)

in addition to the usual Gaussian tricritical solution:
Thus the line of Gaussian fixed points is destroyed by the
wrong choice of A.
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