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The electrical conductivity of salt-water-saturated rocks is modeled by a random resistance net-

work which has a zero percolation threshold. The porosity is varied by a random bond-shrinkage
mechanism. Numerical and analytical calculations of the model in different dimensions show an
Archie's-law behavior: o„=ao P, where P is the porosity of the rock, and o„ando are the con-
ductivities of the rock and water, respectively. We find that the Archie s exponent m is always

greater than unity and is related to the skewness of the "pore-size distribution" of the rock. Apply-
ing the same model to fluid-flow permeability {k, ) gives k„~P,where m =m {m +1) in one di-

mension, and m =2m in higher dimensions. This power-law form is consistent with the well-

known Kozeny equation and has been frequently suggested by empirical studies. Experimental tests
of the model are performed on artificial rocks, made by fusing small glass beads, as well as real

rocks. From resistivity measurements, we demonstrate that m is larger in samples with a wider

fluctuation of pore sizes, which is qualitatively consistent with the model. From fluid-flow experi-
ments on fused glass beads, we find quantitative support for the m =2m prediction.

I. INTRODUCTION

An interesting geometrical feature of rocks is that they
appear not to have a finite percolation threshold. When
their pore space is saturated with salt water, they exhibit
finite electrical conductivity (o.„)even when the porosity
(P) is below 1%. An empirical equation that links the
conductivity and the porosity was first proposed by Ar-
chie and has become known as Archie's law

CTr a crw4

where 0. is the conductivity of the water, and a and m
are empirical parameters that vary with the lithology of
the rock formation. Quite often, a is assumed to be unity
and m =2. The power-law dependence in this equation
resembles the behavior in the usual percolation problem,
except that it suggests a conduction threshold at / =0. In
addition, the exponent m is not entirely universal; dif-
ferent values have been given by Keller for different kinds
of formation.

For fluid flow through a rock, another empirical law,
known as the Kozeny equation, relates the permeability
(k, ) to the porosity:

Sp

where So is the specific surface area (i.e., internal surface
area per unit bulk volume) of the rock and c ( =0.2) is an
empirical constant. This equation again has both a
power-law dependence on the porosity and the suggestion
that the pore space is connected at any finite porosity.

Historically, these empirical relationships were justified
by modeling the pore space as a bundle of winding tubes
which do not intersect each other. With that assumption,
both equations above can be easily derived. Such a
model is highly unrealistic, however, since any micro-

graph of a thin section of a rock would show that the pore
space is multiply connected in a complicated and random
way. In Fig. 1 we show micrographs for two sandstones
and one limestone as illustrations. It should be clear from
these pictures that a more appropriate model of the pore
space should involve some kind of random network.
Indeed, such an approach has been widely used in the last
three decades to simulate the petrophysical properties of
rock formations and to study the behavior of other porous
media. A glance at the literature, however, indicates that
a basic understanding has not emerged from these studies.
We shall refer the readers to Refs. 5 and 6 for a survey of
these studies and not attempt to discuss them here.

In more recent years, Sen, Scala, and Cohen have pro-
posed a self-similar model to explain Archie's law, by con-
sidering the geometry of the grain space to be a random
assemblage of spheres of all radii. In essence, they applied
Bruggeman's theory which integrated the classical
Clausius-Mossotti equation for noninteracting dielectric
spheres embedded in a homogeneous media from the P = 1

dilute limit (hence, the model is also known as the "iterat-
ed dilute limit" ), and this gives m = —, . This method is
attractive in that it intrinsically preserves the pore-space
connectivity for any value of P. Furthermore, other
values of m can be obtained if spheroids with different as-
pect ratios are used. Experimental support for the
iterated dilute result can be found in the work of De La
Rue and Tobias. ' They measured the conductivity of di-
lute suspensions of glass spheres, polystyrene cylinders,
and sand grains in ZnBr2 solutions for P )0.60 and found
m =1.5 in each case.

Using the self-similar model to understand the behavior
of rocks presents two difficulties. First, one knows that
rocks generally have porosities less than 40%, which is far
from the dilute limit in which the assumptions of the
model have the most justification. When the porosity is
low, the grains are in close contact and the interactions
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with similar grain shapes the exponent m can vary signifi-
cantly and, conversely, in rocks with very different grain
shapes the values of m can be very similar. For example,
resistivity measurements on the three samples shown in
Fig. 1 give m = 1.94 for the Cotton Valley sandstone and
m =1.65 for the Berea sandstone [assuming a = 1 in Eq.
(I)], but these two rocks have similar grain shapes. For
the Indiana limestone, which has visibly different grain
shapes from the two sandstones, we find m =1.95, essen-
tially the same as that for the Cotton Valley sandstone.
These comparisons cannot be explained by a grain-shape
effect.

In this paper, we focus our attention on the variation of
the pore space with porosity and show how the "pore-size
distribution" can influence the conductiuity and permeabil
ity In .Sec. II we introduce a tractable random network
model which exploits the similarity to the bond-
percolation problem. We consider a lattice of random-
sized cylinders, and systematically reduce the volume of
pore space by randomly shrinking their radii. Although
the model is not completely realistic, we will show how it
allows us to qualitatively understand the meaning of
Archie's law and the Kozeny equation. Through this im-

proved understanding, we can suggest a modified form for
the Kozeny equation which relates the permeability to the
conductivity. In Sec. III we describe the results of some
simple conductivity and permeability experiments per-
formed on artificial rocks (Ridgefield sandstones) made of
fused glass spheres, which provide good support for the
theoretical predictions. Some further discussion will be

given in Sec. IV, where we clarify what we mean by
"pore-size distribution" and argue that the unrea/istic ele-

ments in our model do not affect the main conclusions that
we draw from it

II; BOND-;SHRINKAGE MODEL

reduces the local stress, strengthens the wall, and resists
further deformation. Deposition of irregularly shaped
particles in an irregularly shaped channel can never corn-
pletely block that channel, regardless of how many such
particles are deposited. Furthermore, thin lubricating
films of fluid, if present, will inhibit grain contact. To
model such behavior in our network, we randomly choose
a tube element and reduce its radius by a fixed factor x,

r; ~xr;, (3)

where 0 &x & 1 and i is randomly chosen. Since the elec-
trical conductance of a given tube is proportional to its
cross-sectional area, it will decrease by a factor x . Simi-
larly, the permeability of a cylinder (the ratio of fluid flux
to pressure difference) is proportional to r; and would be
reduced by a factor x . This shrinking procedure can be
repeated indefinitely with the same x to reduce the net-
work conductance and permeability, and the total volume
of the tubes. The length of the tube is kept unchanged, so
that if channel i is chosen n times, its conductance will be
reduced from G; to x "G;, and its permeability from k; to
x "k;. %'e will neglect the nodes at which the tubes are
connected. Although this is unrealistic, we will argue in
Sec. IV that this and other artificial elements in the model,
such as assigning uniform radii to the tubes, shrinking
them by a constant factor, etc , do .not affect the con
clusions that we will deriue from the model It is on. ly im-

portant to note at this point that the model has two at-
tractive features: (i) it preserves the network connectivity
in the P —+0 limit for any x &0 and (ii) the amount of
change in r; at any shrinking step is dependent on the
value of r; at that time. Both of these features are crucial
in obtaining the behavior of Eqs. (1) and (2). If we con-
sider the limiting case x =0, this model coincides with the
usual bond-percolation problem and there will be a finite
percolation threshold.

Our model is motivated by the similarity of Eqs. (1)
and (2) to the scaling laws that are characteristic of the
percolation problem, keeping in mind that we want to
make the conduction threshold occur at / =0. We consid-
er a random resistor network on a simple cubic lattice in

d dimensions. Each resistor R; represents a cylindrical
fluid-filled tube with radius r; In the us.ual bond-

percolation problem, one chooses a conductance element
at random and sets its radius equal to zero. This pro-
cedure results in a finite conduction threshold p, (d), for
when the concentration of unbroken bonds p is less than

p„the network becomes disconnected and ceases to con-
duct. The formation of a sedimentary rock, however, is a
somewhat different process. There, one imagines, that the
rock begins as a packing of unconsolidated grains, which
is analogous to a fully connected network, with some ini-
tial conductivity and porosity (-40%). In the course of
time, the cross section of any conduction channel can be
reduced by the pressure on the rock, by further deposition
of smaller particles, or by other mechanisms. The porosi-

ty and the conductivity mill, as result, be reduced simul-
taneously. The probability of the channel becoming com-.

pletely blocked is, however, very small. For example, con-
solidation of the wall of the channel under pressure

A. ' Solution in one dimension

The average conductance of that tube is

M

G;=G; gx "P(n)=G;
n=0

1V+x —1
'M

The average conductance of the whole 1D network is
therefore

To see that this model leads to Archie's law and the
Kozeny equation, we first solve it exactly (and trivially) in

one dimension (1D). We consider X tubes connected in

series and shrink them randomly according to Eq. (3) a to-
tal of M times. Since we keep the tube length I constant,
the total volume (or porosity) of this 1D network is pro-
portional to the average cross section, and hence the aver-

age conductance (G). To calculate P, we note that the
probability for any particular tube to shrink n times is

simply given by the binomial distribution

MI 1 X —1

(M n)!n! N — X
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2—(6)=(6;)=(6;) (6)
tivity. More importantly, it shows that both quantities
are governed by-the tube-size distribution and they can be
simply related, at least in one dimension. .

=N(G; ')
M

X+x —1

X

When the number of tubes is large, we have

In[1+ (x —1)/N]lim = lim
N ~ ln((G ) /(6 ) ) x m in[1+(x —1)/N]

x —1
—2

x —1. X2 '

which implies

(9)

for an infinite system. Since P ~ (6), we have Archie s
law,

where ( ) denotes the averaging over the network, which
is decoupled from the average over the shrinkage proba-
bility P(n) for an individual tube in Eq. (5). The true
conductance of the network G„„is not (6). Instead,
since the resistors are in series,

6„„'=R„„=N(R;) =N(6; )
M

=N(6, ') g x—-'"P(n)
n=0

B. Numerical results in higher dimensions

If we consider the same bond-shrinkage model in higher
dimensions (d & 2), we note that while the porosity is still
given by Eq. (6), the network conductance is not given by
Eq. (7). To calculate G„„,one can apply the Kirchoff's
law to finite-size samples and solve the network equations
numerically. We use this approach on simple cubic net-
works of dimension L '(L+1). The boundary condi-
tions are (i) constant potential at the two ends of the long
dimension, and (ii) periodic in the d —1 transverse direc-
tions. Typically, we assign an initial set of r; s to each
bond, which has a flat distribution in the range 0& r; ~ 1.
The initial porosity P(:—(r; ) ) is defined to be unity. We
also let G; =r; and k; =r;, i.e., all the prefactors are de-
fined to be unity. The r s are then randomly reduced by
the fixed factor x as in Eq. (3). When P is reduced by a
factor of 2, we calculate the network conductance G„„
and permeability k„„.The process is repeated until P is
reduced by about three orders of magnitude. For any set
of values for the sample parameters d, L, and x, we re-
peated the calculation for ten initial sets of r s and aver-
age the results to improve the statistics. Figure 2 shows a

10

1G„„ccrc where m = &1 .
X

(10)
10

—4

10
—5

CD

U
Co 10

When x ~0, we have m ~ oo and hence G„~~0 for any

/ &1, which is the correct behavior for 1D percolation.
The dependence of m on x indicates that the network con
ductance is sensitiue to the distribution of the tube radii
The reason that m &1 is that the network conductance 6„
and the porosity P depend on the distribution in different
ways: G„~is influenced mainly by the narrow tubes and P
is influenced mainly by the wide tubes Our mode. l allows
us to obtain an exact solution to demonstrate this simple
fact explicitly.

The above calculation can be easily modified to give the
fluid-flow permeability of the network. Since the permea-
bility of a single tube element is k; cc r;, to calculate the
network permeability in ID, we simply replace x in Eq.
('7) by x . Repeating the steps in Eqs. (8)—(10), we ob-
tain

k„„~Pwhere m'=m(m+ I'! - 2m, (11) m

E
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10 '
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Porosity

10
I l I I I

1O'

which is analogous to the Kozeny equation [Eq. (2)] ex-
cept for the factor 1/So. This factor may be inserted on
the basis of dimension analysis because permeability has
the dimension of [length] and I/So=(volume/area) is a
natural unit of length in a porous material. On the other
hand, many studies have suggested the use of other
characteristic lengths, such as the average particle size.
More will be said about this in Sec. IV. The fact that
m'&m shows that the permeability is more strongly
dependent on the tube-size fluctuation than the conduc-
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1O
'4

10
—15-

10 10 10
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100
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FIG. 2. Numerical results for the 2D 40&41 sample with
shrinking factor x =0.75: (a) conductivity vs porosity
( m = 1.32), and (b) permeability vs porosity (m'=2. 68).
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set of typical results for a 40X41 sample with x =0.75.
We can see that both G„„andk„have a simple power-
law dependence on P. In this particular case, we find
m =1.32 and m'=2. 68, which differ from the values
predicted by the 1D calculation.

To confirm that this finding is not fortuitous, we per-
form the same calculation for d =2,3,4, 5, using different
sample sizes and x values: L ranges from 5 to 60,
x =0.25, 0.50, and 0.75. Indeed, we find power laws in
each case. The values of m and m' we obtained are tabu-
lated in Table I. Several interesting observations can be
made from these results.

(1) m and m' increase with decreasing x, as in the 1D
case, but their values are always smaller than the 1D
values given by Eqs. (10) and (11), which are listed in the
first row of Table I.

(2) Except in the x =0.25 case where we were unable to
obtain reliable values for k„„dueto numerical problems,
we find that m'=2m regardless of d and L This . rela-
tionship is also different from that in 1D [Eq. (11)].

(3) Although m and m' seem to decrease with increas-
ing d in Table I, we note that they increase with I. for
d & 3, which means that our results are affected by the
finite-sample size in these higher dimensions. Taking that
into consideration, the results suggest that m and m' are
independent of d for d & 2.

(4) In addition to using a flat initial distribution for the
r s, we have also tried other initial distributions in several
cases and found no effect on m and m'. From Eqs. (6)
and (7), we can see that this is to be expected since the
average over P(n) is decoupled from the average over the
initial distribution.

C. Anabjtical cstiHlatcs 1n hlgktcI diIQcnsions

Some insights into the above results can be obtained by
analyzing the model in the thermodynamic limit, i.e.,
when M, X and M/X —+ oo. By the central-limit theorem,
we know that the shrinkage probability P(n) in Eq. (4) be-
comes a Gaussian distribution centered at n =M/N with
a width 5n = (n )

' . n is the most probable value of n as
well as its average. By our construction, however, the

most probable value of a conductance 6,™is

6mp 2nG

which is not the same as the auerage value G; in Eq. (5).
The reason is that the amount of change in G; at any par-
ticular shrinking step is dependent on the value of 6; at
that time and the central-limit theorem does not apply
under such conditions. (Similar behavior should also
occur in real rocks, since we expect the smaller channels
in the rocks to have smaller changes in their cross sections
regardless of what the reduction process is.) In the limit
that n —+co, fluctuations of order (n)'i are unimportant
and we can assume G; " appears in Kirchoff's equations.
We expect, therefore, the network conductance G„„to be

6 G ~P 2M/N
I1W E

Combining this with Eq. (5), we have

(13)

11Q1
WWMix In[1+ (x —I)/Xj x —1

(14)

For the permeability exponent m', we note that since
k, ocr; ~G;, it follows immediately from the above equa-
tion that

k„w~x ~ and hence m'=2m (15)

The values of m and m' calculated from these equations
are given in the last row of Table I. They are in good
agreement with the numerical results, especially with
those in two (2D), dimensions where we have been able to
study larger sample dimensions. The agreement worsens
with increasing d and decreasing x. The former can be
attributed to the limitation in our sample size as men-
tioned above. The latter is probably due to the fact that
when we reduce P by the same amount, M/1V is smaller
for a smaller value of x. The crucial step i:n deriving Eqs.
(14) and (15) is that we assumed G„„ccG; ~. This approx-
imation can have an error of the order of x ", which will
lead to a correction in Eq. (14) of the order of
5n /n = (M /%) 'i . One expects, therefore, a worse

TABLE I. Numerical values for m and m' obtained from simple cubic networks of different sizes L
in different dimensions d. Three values for the shrinking factor x were tried. The top rom gives the 10
exact values. The bottom row gives the analytical values in higher dimensions.

x =0.25 x =0.5
m'

x =0.75

10
10
20
40
60
53

10
15
54

84

55

ln(x2)
x —1

2

16.00
2.80
2.83
2.91
2.86

2.31
2.49
2.55

2.33
2.37
2.22

2.96

272.00

5.35

4.20
4.73

4.52

4.17

5.95

4.00
1.8-5 .

1.85
1.83
1.86
1.57
1.68
1.73
1.55
1.58
1.53

1.85

21.00
3.73
3.70
3.73
3.75

3.32
3.29
3.04
3.08
2.96

3.70

1.78

1.32
1.33
1.32
1.33
1.23
1.26
1.25

1.20
1.23
1.19

1.32

4.94

2.67
2.67
2.68
2.70
2.48
2.48
2.50
2.39
2.41
2.33

2.63
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agreement with the numerical results for a smaller x. In
practice, however, we find that the disagreement is much
less than (M/N)

A more rigorous argument for Eq. (13) may be given in
terms of upper and lower bounds on the network conduc-
tivity. ' ' Suppose for simplicity's sake that we let all
the initial bonds have a conductance of unity. In the ther-
modynamic limit, they will fall in the range

6 2(n —gn ) 6 2(n+5n ) G) (X Q

with an exponentially small number of exceptions. A
lower bound on the network conductance is obtained by
replacing all 6; ~ GI with 0 and all 6; & GI with GI, and
thus 6„„&bGt. The constant b is a function of the net-
work geometry, and corresponds to the conductance of a
network where most bonds have unity conductance and an
exponentially small fraction have zero conductance, and b
is therefore a finite number. Similarly, an upper bound of
the network conductance follows by replacing all G; & 6„
by infinity and all others by 6„,and we have 6„„&b'6„.
In the limit n ~ oo, fiuctuations of order 5n are negligible
and the two bounds converge to the most probable value,
and we obtain Eq. (13).

We expect Eqs. (14) and (15) to be correct for an infi-
nite system in the large-M/X limit, i.e., when P —+0.
They explain all the findings from the numerical calcula-
tions. In addition, these analytical results allow us to see
explicitly that m is related to the difference between the
most probable conductance 6; " and the average conduc-
tance 6;. The parameter x is simply a measure of that
difference or, in other words, the skewness of the distribu
tion. The smaller x is, the more skewed is the distribution,
and the larger is m. Applying this knowledge to rocks, we
can qualitatively explain the difference of m values for
the two sandstones in Fig. 1. For the Cotton Valley sand-
stone, we see that it has a small number of larger pores
which are connected via a large number of much smaller
pores. This implies that the pore-size distribution for this
rock is more skewed than the Berea sandstone and hence
its m value should be larger, which is what we observed.
In the next section, we will demonstrate this behavior in
synthetic rocks in a more systematic way.

Another interesting prediction of the model is that for
any d )2, the properties of the network are simply related
to the statistical distribution of the individual elements,
regardless of how they are connected in detail. This leads
to Eq. (15), which relates the conductivity and permeabili-
ty in a very simple way. It is common to use the forma-
tion factor (F:o~/o„=a/ —) to' describe the conduc-
tivity of rocks, and Eq. (15) suggests that the permeability
may follow the law

(16)

[Note that this relationship would be rigorous if a in Eq.
(1) were a universal constant, which is not established. ] In
the next section, we will show permeability data to sup-
port this prediction.

III. EXPERIMENTS

To test some of the findings of the model, we per-
formed conductivity and permeability experiments on ar-
tificial rocks made of fused glass beads. The glass beads
were obtained from the Ferro Corporation and sifted into
three size groups: 44 —53 pm, 88 —105 pm, and
177—210 pm. They were washed first in dilute hydro-
chloric acid and then in water. Low-density particles
were removed by water flow and magnetic particles were
removed by a 6-kOe field. Several melts with different
porosities were made from each of the size groups by fus-
ing them to different degrees. Cylindrical samples 1.5 in.
long and 0.75 in. in diameter were cut from each melt. To
saturate the samples with salt water, they were first placed
in a vacuum to remove the air in the pore space and the
water was then let into the evacuated container to fill the
pores. The porosity of each sample was determined by
measuring its dry weight, wet weight, and buoyancy in
water. These measurements also give the grain density pg
of the sample. For samples with P) 0.03, we find pg in
the range 2.485+0.010 gm/cm3, in agreement with the
value for bulk glass. From the small spread in the mea-
sured grain density, we can infer that there were essential-
ly no occluded volumes in these samples (less than 1%
volume fraction if they exist), i.e., the pore space is com-
pletely connected and can be fully saturated by the water.
In addition, we can also estimate that the accuracy of the
porosity measurement is about 0.01. In samples with
P (0.03, we find some samples with significantly lower
values of ps, implying the existence of occluded volumes
at such low porosities. We did not study those samples
further.

To make conductivity and permeability measurements,
the samples were fitted inside a Hassler collar which is a
double-wall cylinder with a length and inner diameter
matching those of the sample. The inner wall of this de-
vice is made of neoprene and the outer wall is made of
steel. Air can be injected between the two walls to pres-
surize the neoprene sleeve inward to grasp the sample
tightly. This prevents fluid or current leakage along the
wall. Four-terminal ac conductivity measurements were
made by using an impedance meter. The electrodes were
made of silver and chlorodized. The voltage electrodes
were placed against the ends of the Hassler collar and the
sample, and the current electrodes were far away from
them. To ensure that the measurements were not affected
by electrode-polarization effects, we varied the measure-
ment frequency (100 Hz, 1 kHz, and 10 kHz) and voltage
(50 mV and 1 V), and no significant effects were observed.
In permeability measurements the sample was placed vert-
ically with water injected at the bottom and extracted at
the top. %'hen the permeability of the sample is high[k„)100 md (millidarcy)], the pressure gradient across
the sample was determined by the difference in water level
between the inlet and outlet reservoirs. When the permea-
bility is low (k„(100 md), higher pressures were obtained
by using a piston with a regulator. The flow rate was
determined by measuring the amount of water collected at
the outlet and the time it took to collect it. The former
varied between 0.1 and 50 cm, the latter varied between 1
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and 50 min. The results of these experiments are
described below.

A. Conductivity and formation factor

The main interest in. conductivity measurements is to
determine the formation factov F as a function of porosity,
to test Archie's law. %"e typically measure the sample
conductivity a, for three or four different water conduc-
tivities (o~) which varied between 0.24 and 7.7 0 ' m
A 11ncar least-squaI'c fit of 0 ~ vcI sus 0~ glvcs a slope
equal to F ' for that sample. A total of 26 samples were
measured and the results are summarized in Fig. 3, where
we plotted F versus P on a log-log scale. The porosity (P)
ranges from 0.023 to 0.399. The dashed line in Fig. 3
represents the theoretical prediction of the spherical grain
self-similar model, which has a =1 and I =3/2. ' In
Ref. 7, data down to /=0. 026 were shown and they
agreed with this prediction. A subsequent study of
Johnson et aI. ,

' however, disagreed with those results
with data down to P =0.10. Our data in Fig. 3 agree with
the latter results, extending the porosity range down to
/=0. 023 and varying the grain size of the sample. We
observe that the data in the porosity range 0.2 &/ &0.4
can be approximated by the self-similar model prediction.
For P &0.2, however, the value of F is always higher than
the prediction, implying a higher value for m.

There are two possible ways to characterize the low-

porosity data. First, it can be approximated by the solid
11nc 1Il F1g. 3, which cofI'csponds to 0 =3.3 and m =2.3,
i.e., both a and m are constants over a large porosity
range. Alternatively, if we assume a =1, we can defineI =d(lno )/d (ln(()) and say that I increases continuously
with decreasing porosity. The high-porosity data points
correspond to m =1..5 and the low-porosity data points
correspond to m =2. Either way, m is higher for lower
porosity. Such a trend can be qualitatively understood by
studying the microgeometry of the samples. In Fig. 4, we

show the micrographs of two samples with different poro-
sities. We can see that the high-porosity one (/=0. 315)

{a)

10 i''4

Q 102
LU

U

G

E
0 10' =

10
10 10 10

Porosity

FIG. 3. Formation factor for different fused-glass-beads
samples as obtained by resistivity measurements. The dashed
line is the prediction of the self-similar model for spherical
grains (a = 1, m =

2 ). Data below 20% porosity show substan-

tial deviation from the prediction. They can be approximated
by the solid line, which corresponds to a =3.3 and I =2.3.

I

FIG. 4. Micrographs of two fused-glass-beads samples with
different porosities: (a) /=0. 315, and (b) /=0. 061. Thar con-

trasting microgeometry is similar to the two sandstones in Fig.
1.

has a more uniform pore-space distribution, much like the
Berea sandstone in Fig. 1. In contrast, the low-porosity
sample (/=0. 061) shows a larger fluctuation in its pore-
space distribution. Similar to the Cotton Valley sandstone
in Fig. 1, it has a sInall number of large isolated pores
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connected via much smaller pores. Following the discus-
sion in the preceding section, one expects the latter sam-
ples to have higher m values, which is exactly what we
found. Furthermore, since the pore-space distribution
changes continuously with P, it is perhaps more reason-
able to think of m as also continuously varying with P,
rather than being constant over a wide range of P. The
permeability results described below will further support
this view.

B. Permeability

k„„ccrc~. If a has different values for high and low
porosities, one would not expect Eq. (16) to hold for all
porosities. Since the data in Fig. 5 actually cover both
P &0.2 and P &0.2, it suggests that one may indeed have
a = 1 at all porosities and consider m as the single param-
eter that characterizes the pore-size distribution, which
varies continuously with P. In a large rock. formation, it
is conceivable that the local porosity varies over a wide
range and the distribution is similar throughout, in which
case Archie's law with a single value of m can apply.

104-
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FIG. 5. Log-log plot of permeability vs formation factors for
fused-glass-beads samples with different grain sizes. For each
grain size, the relationship k, ~ F is approximately obeyed.

Since fluid-flow experiments can be performed on the
same sample that electrical measurements are made, one
can readily test how the permeability is related to the con-
ductivity or the formation factor, i.e., one can test Eq.
(16). To determine the permeability, we measured the
flow rate at three or four different pressure gradients
across the sample. A linear least-square fit of the two
quantities gives a slope equal to k„/p,, where p is the
viscosity of water. Unlike the formation factor which is
dimensionless and independent of the grain size, k has the
dimension of (length) and hence must depend on the
grain size. In Fig. S we show a log-log plot of k„versus
F. We can see that the data points fall into three groups
corresponding to the three different grain sizes we used.
Within each group, the data can be approximated by a
straight line with a slope of —2, in agreement with Eq.
(16). Some data points deviate from the straight lines
when the permeability is below 10 md. They may be due
to the fact that some channels become completely blocked
in the low-porosity samples since we know that there are
occluded volumes when the porosity is below 3%. Anoth-
er possible explanation will be given in the next section.
We should mention, however, that there are difficulties in
measuring a small permeability. Because the flow rate is
low, high-pressure gradients across the sample and high
pressure in the Hassler collar must be maintained over a
long period of time. . As a result, there'can be small fluid
or air leakages in the measuring system which can lead to
large errors in the results.

We note that the network model only predicts

IV. DISCUSSION

The main conclusion that w'e can draw from our results
is that the scaling behauior of both the conductivity and the
permeability of rocks are determined by the skewness of
their pore-size distribution. The skewness results from the
rock-formation process which tends to reduce the large
pores by a large amount and the small pores by a small
amount. Such a process will gerierally produce a pore-size
distribution which is log-normal, instead of normal.
There is, in fact, ample empirical evidence that both the
pore- and grain-size distributions in rocks are roughly
described by a log-normal distribution. ' ' Our model, in
essence, shows how this microgeometrical property can be
related to the macroscopic properties such as the conduc-
tivity and permeability.

We use the term pore-space (-size) distribution loosely
since there is no mathematically precise definition for it.
It has a well-defined meaning only in simple models, such
as ours, which approximate the pore space as a network of
tubes. Such an approximation may be justified when one
is dealirig with physicaI properties that are associated with
a length scale that is larger than the characteristic grain
size (of order 100 pm), and conductivity and permeability
are among such properties. On the submicron length
scale, there is some evidence that the pore space of a rock
may have fractal characters, ' in which case it will not be
appropriate to think in terms of most probable value, aver-
age Ualue, etc. On the length scale of the grain size, howev
er, it is reasonable to represent the space between two
grains as a tube with a length comparable to the grain size
and a cross-section that varies along the length, like our 1D
network. On a still larger scale, one can assign a uniform
effectiue radius to each tube and enuision them being con
nected at "nodes" to form a network, like a higher
dimension network. Although we neglected the nodes in
our model, it is easy to see what they will do. The nodes
are basically pocketlike; they contribute much to the porosi-
ty and little to the conductiuity and permeability In other.
words, they add to the skewness of the pore-space distri-
bution and increase the value of m. Since our model is
not intended to predict an absolute value of m, neglecting
the nodes is permissible. Likewise, the artificial process
of shrinking the tubes continuously by a constant factor x
is only a way to generate a simple distribution that makes
the network analytically tractable. Had we used a distn-
bution of x values, the conductance distribution will be
more complicated but the scaling-law solution of the
model in the $~0 limit should be unchanged. In 1D for
example, Eqs. (5)—(10) can be followed through with any
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skewed distribution which gives different values for 6;
and 6, . In higher dimensions as long as the conduc-
tance distribution is broad (like a log-normal distribution),
the heuristic arguments given in Sec. II should apply re-
gardless of how the distribution is obtained in detail.
Conversely, we note that the agreement between the nu-
merical results and Eq. (14) demonstrates the validity of
those arguments in the $~0 limit.

The advantage of the analytic arguments is that they al-
low us to make a simple correlation between the permea-
bility and the conductivity exponents: m'=2m, and the
data on fused glass beads provide good support for this
prediction. It is interesting to note that the simple
power-law expression in Eq. (1 1) for the permeability can
be rewritten in the form of the Kozeny equation. The
surface-to-volume ratio So in our model is proportional to
the, average tube radius (r; ). Following Eqs. (5) and (8),
we have

S, (x) x —1

'M

pie power laws like Eq. (1 1) with various exponents m'& 3
and without the 1/S2o factor have been suggested by dif-
ferent studies. The variation in m in these studies is con-
sistent with the point of view taken here, since we predict
the permeability exponent m' to be nonuniversal just like
the conductivity exponent m, and the latter is empirically
well known to be nonuniversal. The data presented here
are not sufficient to distinguish whether Eq. (11) or Eq.
(17) is more preferable. It will be interesting to perform a
more extensive study that includes measurements of So to
test these relationships further.

Finally, it is important to make clear that the higher-
dimension result m'=2m in our model is a consequence
of assigning a uniform radii to the tubes. In any real sam-
ple, the cross-sectional area of a conduction channel varies
along its length. Provided that this variation is not too
severe (i.e., it does not have a broad log-normal —like dis-
tribution), the uniform radii approximation should be
valid. Otherwise, one would expect the one-dimensional
behavior [Eqs. (10) and (11)] to play an important role. In
the latter case, since the 1D analysis gives m'=m(m
+1)~ 2m, one expects

Zm &m'&m(m+ I) .

q= lim
1+x —1

ln

1 &1.1+x

We note that in Fig. 5, the deviations of the low-porosity
data points, although can be explained otherwise, are con-
sistent with m'~ 2m.

Substituting this result into Eq. (11) gives
m"

k, o=
2 where m"=m'+2q,

So
(17)

Except for the fact that m" is variable, this expression is
identical to the Kozeny equation. It should be em-
phasized, however, that there is considerable data on other
materials which do not fit the Kozeny equation and many
modified forms have been proposed. In particular, sim-
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