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Quantum-mechanical treatment of cerous magnesium nitrate in an external magnetic field
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The ground state of cerous magnesium nitrate [Ce2Mg3(NO3), z 24HzO] in a homogeneous external

magnetic field is treated quantum mechanically. The results obtained for the critical magnetic field
and the magnetization agree with the existing experimental data. However, a serious deviation from
the results of the semiclassical treatment appears when an external field is present. This deviation is
not only quantitative but also qualitative.

I. INTRODUCTION

In this paper the quantum-mechanical treatment of the
ground state of crystals with dipole-dipole and exchange
interactions in an external magnetic field is presented.
The classical case was treated in an earlier paper by the
same authors. '

The interest in studying these crystals is due to the ex-
cellent magnetic properties at very low temperatures
because their phase transition is in the millikelvin re-
gion. In such crystals the exchange interaction is com-
parable to the dipolar interaction or it is absent. So, they
can be used as low-temperature thermometers. Lower
temperatures, above their transition point, can be obtained
by the method of adiabatic demagnetization.
Ce2Mg3(NO3)~2 24H20 (CMN) is such a crystal whose
transition temperature is 1.8 mK. The exchange interac-
tion seems to be absent in CMN.

Crystals with no exchange interaction are of special
theoretical interest (as their Hamiltonian is exact), because
no phenomenological terms or parameters are present,
contrary to the crystals where the exchange interaction is
important. Thus one can directly compare theoretical and
experimental conclusions about many-spin systems. How-
ever, as the many-spin systems are not exactly solvable,
one has to resort to approximation methods. The compar-
ison of theoretical results with experiment is the best way
to check the validity of the approximation method.

The ground state of such crystals in the absence of an
external magnetic field was extensively studied. ' CMN
particularly has been studied by Niemeijer and his co-
workers.

A detailed account of theoretical and experimental re-
sults is given in Ref. 6.

Until now, no quantum-mechanical treatment of dipo-
lar crystals in an external magnetic field has been present-
ed. All previous papers are based on the semiclassical
theory of Niemeijer and the theory of Luttinger and
Tisza. " One of us' has shown that for Bravais lattices
with one ion per unit cell, using one Lagrange multiplier,
one can solve the semiclassical problem but only in the

case of an external magnetic field normal to the spin
orientation in the zero-field ground-state configuration.
The authors, in a previous work, show that two Lagrange
multipliers are sufficient for solving the problem for any
direction of the field. '

Theoretical calculations have also been made by Mar-
renga and Niemeijer' who used the method developed by
Theophilou' for the y direction of CMN; for other direc-
tions Marrenga and Niemeijer tried various spin configu-
rations to find a lower and an upper bound for the
ground-state energy. Broughton and Mullin'" employed a
Bloch transformation for dealing with the problem.

Since there is so much theoretical work with the semi-
classical treatment, it is of interest to explore the problem
quantum mechanically and to compare the results with
those of the semiclassical treatment. As can be seen from
Sec. III, the quantum and semiclassical results do not
agree, except in the case of zero external field.

In Sec. II of this paper we treat the Hamiltonian of the
cluster of system of ions in an external magnetic field and
we develop the method of solution. In Sec. III we present
the general conclusions and we compare the semiclassical,
quantum-mechanical, and experimental results.

II. THE DIPOLAR HAMILTONIAN
IN AN EXTERNAL MAGNETIC FIELD

The general form of the Hamiltonian of a system of
ions with dipole-dipole and exchange interactions in an
external magnetic field is'

g J RgJ
l+J

+g vh, JS;.SJ —g p; h,

1 for i,j nearest neighbors
6 ~ ——

0 otherwise,
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where the first term is the dipole-dipole interaction, the
second term is the exchange interaction, and the third
term is the interaction with the external magnetic field; U

is the strength of the exchange interaction. For conveni-

ence we have used the site vector R; for denoting the lat-
tice site i T. he first and the second terms consist of the
Hamiltonian A, i.e., the Hamiltonian without an external
field. In the case of CMN, the exchange interaction
strength v is taken as zero, but in general, a nonzero
value of v does not alter the general validity of the present
method.

After applying the procedure followed in Ref. 6, which
is based on the Luttinger- Tisza-Niemeijer approxima-
tion, "the resulting Hamiltonian is

H=—1

2

R, R',
a, p=x, y, z

,s sp,
R, R' R R'

+-,' g ~,' „(q iS„ ie)S'„—gh ~
R, R

a,p=x,y, z

where the quantities Ag~ are defined in Refs. 1 and 6.
i

qi ) is the wave function of the crystal.
The initial Hamiltonian, Eq. (I), has the same transla-

tional symmetry as the zero-field Hamiltonian, because
the external magnetic field is homogeneous. Also the
Hamiltonian resulting after the simplification, Eq. (2), has

30-
(a)

(b)

20—

hl) x

h = 24.6G

X
10—

-40 -30
I

-20 -10 0
E(mX)

10
I

30 40 -40
I

-30 -20 -10 0
E (mK)

10
n

20 30
I

40

30-

20-

6)Ix

h =57.5 G
20-

hgy
h =. 24.6 G

X
10— 10-

-40
, l1H- ir'

-30 -20 -10 0
E (rnK)

10 20 30 40 -40 -30 -20 0
E(mK)

10

- %Hh
20 30

I

40

30

h= 57. 5G

10-

-40
nn

-30 -20 -10 0 40
E (mK)

FIG. 1. Density of states versus energy for different values of magnetic field and for different x,y directions of the field. (a),
h =0; (b)—(e}, h&0.
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solutions belonging to the same irreducible representation
of the translation group, as that with the zero-magnetic
field. However, one should note that the point-symmetry
operations of the crystal lattice do not leave either Hamil-
tonian invariant because of the existence of the external
magnetic field term. This term

H~= mg —g g~ph S~ (3)
R

a, P=X,y, Z

can be written as

H = — g X~gSP„,
P=X,y, Z
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with unperturbed operator

(6)

(7)

The expression of H', in terms of the operators
b-=g-e'" S-, is given by Eq. (12b) in Ref. 6 to

k R R'
which one must add the magnetic field term

H = —g A~b(~) .
P=X,y, Z

III. APPLICATION TO CMN

In dealing with the magnetic properties of CMN one
has to consider only the Ce +. The sites of these ions
form a primitive rhombohedral lattice with hexagonal
pseudounit cell of dimensions a = 11.004 A, c = 17.296 A,
and point-group symmetry D3d. *'

All input data for our calculations were the same as
those of the zero-field case. Calculations were done for
the field along the x and y directions of the crystal axis
(see Ref. 1) for fields ranging between 0 and 100 G, i.e.,
above the critical field beyond which the ground state of
the crystal goes to the metamagnetic state. '

As the eigenstates of our Hamiltonian are too
numerous, 2 (as explained in Refs. 1 and 6), no details of
the states are presented in the paper but instead the densi-
ty of states is given for various values of the external
fields [see Figs. 1(a)—1(e)].

The ground-state energy versus the external magnetic
field is given in Fig. 2. As one can see from this figure
the ground-state energy of the crystal with the field along
the y direction always lies below that for which the field
is along the x direction. The two curves coincide for
small values of the magnetic field. A well-defined critical
field appears for the x direction at h, =57.5 G. This
value is very near to the measured experimental value of

~here

A~=mg g g ph
a=x,y, Z

Since the nonlinear term in the Hamiltonian (2) does not
involve the external magnetic field it can be treated as in
Ref. 6, i.e., by using a perturbation theory to the correc-
tion term

-50-

FIG. 2. Ground-state energy versus magnetic field. The solid
line and the dashed lines denote the cases when the field is
parallel to the x and to the y axis, respectively. The value of the
critical field is h, =57.5 G.

60 Cx by Fisher, Hornung, Brodale, and Giaugue.
The small deviation of our results from the experimen-

tal value is due to our approximation method and possibly
to our data for the unit cell. ' For this case we are plan-
ning to perform additional calculations to establish to
which extent the critical field is sensitive to the crystal pa-
rameters. In this way one will be able to estimate the ac-
curacy of our approximation method. The minima and
maxima of energy for the various k states appear in Figs.
3 and 4. It is clear that the lowest energy is that of a
k=0 state, with an intersection at zero field with the

k&, k2, k3 states. This degeneracy was discussed in a pre-
vious paper. The definition of k vectors is explained in
Refs. l and 6.

It is interesting to note that for the field along the y
direction no clear transition field appears, but a gradual
changeover toward the metamagnetic state appears. This
is also the case in the semiclassical calculation, although
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FIG. 3. Maximum and minimum energy for any k represen-
tation versus magnetic field when the field is parallel to x axis.
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FIG. 4. Maximum and minimum energy for any k represen-
tation versus magnetic field when the field is parallel to y axis.

there, because of the calculation being in closed form, one
find exactly the field above which the state becomes

1 lmetamagnetic. This field is 66.7 G. Since the class&ca
treatment does not involve lengthy calculations it is o in-
terest to compare it with the quantum-mechanical one.
For the x-direction the energy of the ground state below
th itical field is by about 10% smaller than the

ifferquantum-mechanical case. The critical fields too di er
by about 20%. Beyond the critical field of the quantum-
mechanical case the energies coincide. Thus the classical
calculations can give only a first estimate of the ground-
state energy and the critical field (see Fig. 5). For the y
direction, the estimate comes closer; see Fig. 6.

One of the quantities which can be easily measured ex-
perimentally is the susceptibility or equivalently the mag-
netization. Our calculations for the magnetic moment per
cluster, i.e., for an octade of Ce ions, appear in Fig. 7.
For the x direction a clear phase transition appears at the

FIG. 6. Ground-state energy versus magnetic field parallel to
y axis. The solid line denotes the semiclassical treatment and
the dashed line denotes the quantum-mechanical one. Critical
field h,"=66.7 G, appears only to the semiclassical treatment.

critical field above which the spins turn abruptly toward
the field direction. This is the case with the classical
treatment also. ' However, in the classical case transverse
components of the magnetization appear, i.e., magnetiza-
tion normal to the applied external field (see Fig. 6, Ref.
1). Such anisotropy does not appear either in the

2, 4quantum-mechanical approach or in the experiment. '

Thus, as far as magnetization is concerned, the classical
case is inadequate as it gives qualitatively different results.
The susceptibility for the classical case increases with the
magnetic field (contrary to the quantum-mechanical treat-
ment which is practically a straight line), in qualitative
agreement with the experiment. ' When the field is along
the y direction the two treatments give about the same re-
sults.

As for the calculation of thermodynamic quantities it is
necessary to know the density of states. We thought it
useful to present our results for these curves, Figs.
1(a)—1(e). Since the spectrum is not continuous the num-
ber of states, N(E), was averaged over energy spacings of
1 mK. The general feature is that as the magnetic field
increases there is an energy spread of the states. Energy
gaps appear in certain energy regions for zero external

10
I

w(G)
20 30 40 w", 50 h~ 60 70 80 90

I

-10-

-30-

3-
E

Ul

-50-

FIG. 5. Ground-state energy versus magnetic field parallel to
x axis. The solid line denotes the semiclassical treatment and
the dashed line denotes the quantum-mechanical one. The
values of the critical field is h,"=45.8 G and h, =57.5 G,
respectively.
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FIG. 7. Magnetic moment versus magnetic field. Solid and
dashed lines denote the cases when the field is parallel to x or y
axis. The critical field at 57.5 G appears very unreadable in the
first case.
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fields. The lowest such gap is in the millikelvin region of
the transition temperature. * Of course the real number of
states of such a crystal is infinite and not just 2 as
presented here. It is of interest to know whether these re-
sults of density of states present the trend for the exact
solution and whether these can be used to give thermo-
dynamic quantities.

Hitherto our results were presented by neglecting the
correction term [see Eq. (6)]. After this term is taken
into account the change in energy is very small, ranging

from 0 to O. l mK. Since the percentage of energy change
is less than 0.6%, the contribution of the correction factor
is negligible. This justifies the approximation method
used for finding the eigenstates of H.
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