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Thermal diffuse scattering in harmonic and nonharmonic crystals
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The total thermal-diffuse-scattering intensity is calculated as a function of temperature for a
series of harmonic and nonharmonic chains. The intensity forms walls in reciprocal space, the
widths of the walls being approximately inversely proportional to the pair-displacement correlation
length. For the harmonic chains the wall width is constant with temperature, but for the nonhar-

monic chains the width decreases dramatically as the temperature approaches zero, reflecting the
approach to infinity of the correlation length. The maximum intensity for the walls decreases ap-
proximately linearly with temperature for the harmonic systems. For the nonharmonic chains a
slower decrease or an increase in peak intensity occurs for decreasing temperature and may be re-

garded as evidence of mode softening associated with a displacive phase transition at zero tempera-
ture.

I. INTRODUCTION

Thermal-diffuse-scattering (TDS) intensities, measured
as a function of temperature by x-ray, y-ray, or electron
diffraction, can provide information about the pair-
displacement correlations and, ultimately, the vibrational
Hamiltonian for the system. Thus, for example, x-ray
TDS intensities' in the commensurate phase of RbzZnC14
have been used to obtain the critical exponents associated
with the, correlation length and the static susceptibility.

In certain cases the measured TDS indicates that the
atomic thermal vibration is correlated along chains or
planes. Then the TDS occurs as, respectively, walls or
rods of intensity in reciprocal space, while the Bragg
peaks are points for a three-dimensional crystal, and so
there is no difficulty in separating out the Bragg scatter-
ing from the TDS. The presence of chainlike correlations
has been deduced from x-ray and electron diffraction
TDS for the essentially harmonic system, Si, whereas
planar correlations resulting from motion of a nonhar-
monic character are apparent from the x-ray TDS (Ref. 4)
for KMnF3.

Theoretical treatments of TDS (Ref. 5) tend to consider
harmonic systems, for which the breakdown of TDS in-
tensity into one- and two-phonon terms, etc., is a natural
consequence. For nonharmonic systems, e.g., crystals at
temperatures near a displacive phase transition, the pho-
non concept is less useful and such divisions of the TDS
are of dubious validity. In the'present paper we consider
both nonharmonic and harmonic systems and, according-
ly, the total TDS,is calculated.

For mathematically tractable nonharmonic crystal sys-
tems we are limited to one-dimensional models, for which
transfer integral techniques are applicable. Here we treat
double-quadratic (DQ), flat-bottomed quadratic (FQ) and
harmonic chains (as defined in the next section), with the
aim of gaining some insight into the behavior of three-
dimensional crystals in which displacement correlations
are predominantly along chains. Since both the DQ and
FQ chains become ordered at zero temperature, these sys-

tems are closely analogous to the high-temperature phase
of crystals possessing a displacive structural phase transi-
tion.

The remainder of this paper is arranged as follows. In
the next section the chain Hamiltonians are defined and
expressions are presented for the one- and two-particle
probability density functions, the correlation length, and
the Bragg and TDS intensities. Then, in Sec. III, results
are given for calculations of the TDS intensity for the
various types of chains and for strong and weak interpar-
ticle coupling in those chains. These results are discussed,
with particular reference to the correlation length and to
mode softening. A short summary concludes the paper.

II. MATHEMATICAL FRAMEWORK

Detailed treatments of the statistical mechanics of the
DQ and related chains already exist, ' so we present
here only the basic formulas and some expressions of par-
ticular relevance to the derivation of TDS intensities.

A. Hamiltonians

p=1 p=1

Here yp is the displacement, up, of the pth atom from its
mean position, scaled by the chain spacing a, so that yz is
dimensionless. The frequencies co, and coo are associated
with the harmonic nearest-neighbor coupling and the
one-particle potential V(yp ), respectively.

The one-particle potentials are, for the harmonic chain,

V(y) =y',

The vibrational Hamiltonian, H, for a monatomic
chain containing X atoms, each of which is coupled har-
monically to its nearest neighbors, is given by

N

H(Iy))= —,'mcooa g V(yp)
p=l

N N
2 2 2 l 2+ —,mco, a y (yp —yp+[) + —,ma gyp .
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B. Probability densities and correlation length

Assuming an infinite chain and periodic boundary con-
ditions, all of the physical properties to be considered may
be evaluated using classical statistics in terms of the eigen-
values Ak and eigenvectors Pk(y) of the transfer integral
equation

f expI —U(y, y')/k~T]gk(y)dy=kkgk(y'), (S)

where kz is the Boltzmann constant, T the temperature,
and

Nl C00a mao, a
U(y, y') = [ V(y)+ V(y') I + (y —y')' .

4 2

Note that the eigenvectors Pk(y) are of alternating even
and odd parity when ordered according to decreasing
magnitude of the corresponding eigenvalues A,k.

In evaluating the Bragg and TDS intensities, we shall
need the one- and two-particle probability density func-
tions pt(y) and p2(y, y'). These are given by

pt(y) =Pt(y), (6)

g(u)
t
I

t

I

where tI) t(y) is the eigenfunction corresponding to the larg-
est eigenvalue of Eq. (S), and

/m —n
/

4k(y )4t(y»0k(y. )0 t(y. ),
k=1

for the DQ chain

V(y)=( )y ~

—d/a)',

and for the FQ chain

( [y f

—d/a)2, fy f
)d/a

0, fy /
~d/a . (4)

The three types of chain are represented schematically
in Fig. l.

{c)
FIG. 1. Schematic representation of the chains, showing

one-particle potentials V(u) as a function of displacement of the
atoms u(=ay) from their equilibrium positions, and harmonic
nearest-neighbor coupling for (a) a harmonic chain, (b) a DQ
chain, and (c) an FQ chain.

(7)
for the rnth and nth particles in the chain.

We shall be referring to the correlation length g, which
we define as the site separation at which the pair-
displacement correlation function (yy')/(y ) falls to —,'.
The correlation functions and the correlation length g
have been evaluated for all the chains considered here by
Johnson and Mair' and these results for g will be related
to the ones for the TDS obtained in Sec. III of this paper.

C. Bragg and TDS Intensities

The total diffracted intensity Iz for a chain of length N
atoms is given, in the first Born approximation (single
scattering), by

N —1

Iz gexp[ih——a (p q)](ex—p[ih (u~ —u~ )]),
p, g =0

where h is the projection of the scattering vector along the
chain and uz is the displacement of the pth atom

(uz ——ay~), assunied to be along the chain. Using

pq(u~, u~) from Eq. (7) to evaluate the ensemble average,
we obtain

IIz.——g exp[iha (p —q)] g f PI(uz )Pt(uz)exp(ihuz)du& f P~(uq )P&(uz )exp( ihuz )dum . —
p v=0 7=1

The terms for 1 = 1 are uncoupled in the particle displacements and give the Bragg scattering I(Bragg) as [see Eq. (6)]
N —1

I(Bragg) = g exp[iha (p —q)](exp(ihuz ) ) (exp( ihu~ ))—
p, Q =0

sin (Nha/2)
( (.h ))z

sin (ha/2)



30S L. MAIR

'
d b the Debye-Wailerf ction multiPlied y

Dirac notation,
b the shape un o

' '
terms as, using

is given
he rema»»g

i.e., t e r
TDS) is 0

gragg scatte~ g '
bt ined from tDS intensity I(

.
Iu —q I

exp( —tA+q)
I
1) .

6562

N —&

2(N —s),(TDS)=i &,m=] s=

h t the atomlated to the a . .
bu

ctor may be rela
t i& intensity est~

a t rin. ~ . "itself a a e
2—4. They

at the 0 g
h alla are dlspay

1 ccuracy of

ri in "sees
.

la ed in Figstions throug
timated nu .

h d out-

he wa .
mericato an es

cal met o s
were calculate ~

9) ~sing numer„, from Eq.

Appendix

luated numerica y'}lwhich may be eva ua

III. RESULTS

d' ' of TDS intensitydistribution o
of walls in reciproca pwhic a

p

h TDS
accor ing
temperature. T zeTeze I (TDS) /N

The T

I (t
I
exp & p

o that eigenvectors

"m
e„p[tha(P —

& )~
s and recogn1zlng

1(TDS)=

single sum over

p q=0

and q by a '
we obtain finally

1) fo, tan d t e sums over p
tisymmetric, weo

(9)

S~bstituting (~+,
whereas 4 ~4'~6' '

.
1 in(gu)

I

1 ), I od
cos(gas) —»& (m+1I co

40— (a)

t (Tos)/N

12—

IO— 25—

08— 2 0—

15—

0.4— 10—

00 I

175 200 2251.25 I 50 1.75
00

0 100 150 200
ha

1:(Tos)/N

10—

(b)

I(TDS) /N

(/a

40

30

(b)

25—
20

15—
o- -I

I I

IOO 2000

I'C

19
ha

1-0 212.00.9

DS onicDS)/N for harmoner atom I(TDS
llel to the

TDS intensity per
directions para e000 atoms in
to reduce e

chains of 1000
Curves 1, 2» c to

T (=AT/mcoococ a o

h lf height of the peaat the estimated a
(a) %'eak coup

'
ling ~, =no, b s rbackground. a

co = 10coo.C

10—

0
09 10 I I 1.9 20 2. 1

ha

D chains of 1000 atomser atom for D c '
atom. 3. TDS intensity per D c

e
' . the correlation lengtThe inset to Fig.

a function of inverf. 10, plotted as a ulated in Re .
half peak height a



30 THERMAL DIFFUSE SCATTERING IN HARMONIC AND. . . 6563

]:(TDS) /N

12-

IO—

0.9 10
CJ'

I I 19 21
ha

tially inversely proportional to the correlation length. '

The narrowing of the peaks is a reflection of the ordering
in the chain as T~O. For the DQ chains the peak nar-
rowing is much more rapid than for the FQ chain, in
agreement with the slower increase in g, as T~O, found
by Johnson and Mair' for the FQ chain.

The second nonharmonic effect is observed in the peak
heights which, for the DQ chains, increase with decrease
in T for T' & 0.004. For the FQ chain the peak height de-
creases more slowly than linearly with T, even at the
lowest temperatures. This behavior may be interpreted in
terms of mode softening if we recall that the peak in the
one-phonon TDS I

&
is proportional to the static suscepti-

bility X(T) (Ref. 12},

FIG. 4. TDS intensity per atom for an FQ chain of 1000
atoms in length, for coupling co, =10iuo. Notation as for Fig. 2.

A. Harmonic chain

The harmonic chains, Figs. 2(a) and 2(b), have overall
TDS intensity distributions which get .stronger (at least
for ha ~ 3} with distance ha from the origin of reciprocal
space. The intensity distribution has modulations peaking
at ha =n(n =+1,+2, +3. . .). This intensity modulation
gets weaker as the coupling decreases [cf. Figs. 2(a) and
2(b)] until for a set of Einstein oscillators (ai, =O) the
modulation disappears altogether. For a harmonic sys-
tem, the h dependence of I(TDS) is then given by

I 1 —exp( —h (u ))I (see Ref. 11). The peaks in fact re-
sult from the presence of correlations in the system and
their widths o. are inversely proportional to the correlation
length g. Figure 2 demonstrates that the peak widths are
essentially constant, which is a reflection of the fact that g
is constant for a harmonic chain (see Ref; 10). For the
chain with weaker coupling [Fig. 2(a), co, =cop] g/a =0.7
and for the other chain [Fig. 2(b), co, =10cop] g/a =6.9.
Note that the finite length (X= 1000 atoms) is effectively
infinite for the weakly coupled chain and is only just
becoming detectably finite with respect to the sum over s
in I(TDS) in the chain with co, = lapp.

The peak heights in Fig. 2 decrease as T decreases. At
low temperature the peak heights are almost linear with
T, but increase less rapidly at higher temperatures when
the Debye-Wailer factor component of I(TDS) becomes
appreciable. This component of I(TDS) is not obvious in
Eq. (9}, as written, but is well known in conventional ex-
pressions for the harmonic one-phonon TDS [see also Eq.
(10) below].

B. Nonharmonic chains

Figures 3 and 4 show the TDS intensity for DQ and FQ
chains, respectively. There are two main differences be-
tween these nonharmonic results and the harmonic distri-
butions of Fig. 2. The first is that the widths of the peaks
are not constant, but decrease as T decreases. As can be
seen from the inset to Fig. 3(b), the peak width cr is essen-

Ii ~ TX(T)M(T),

where M( T) is the Debye-Wailer factor and is almost uni-
ty for T small. The static susceptibility is inversely pro-
portional to the square of the soft-mode frequency 0 and
to ( T —T, )r, where y —1.0 and T, is zero for a nearest-
neighbor chain. Thus

IP TM(T) M(T)T(i y)

Q

Insofar as we can apply the one-phonon approximation
to the TDS calculations presented here, we can say that
both the FQ and DQ chains are showing the effects of
mode softening. For the temperature range shown, y ap-
pears to be less than one for the FQ chain and greater
than one for the DQ chains.

The effect of coupling strength [cf. Fig. 3(a) with Fig.
3(b)] is similar to that observed for the harmonic chains,
smaller coupling resulting in a decrease in the modulation
producing the peaks in I(TDS).

IV. SUMMARY

(1) The presence of pair-displacement correlations in
chains of spacing a produces modulations in the TDS in-
tensity, in the form of walls in reciprocal space at spac-
ings a-'.

(2) The widths of the walls are inversely proportional to
the displacement correlation length. The widths are con-
stant for the harmonic chains, but for the nonharmonic
chains they narrow as the temperature approaches zero
and the correlation length goes to infinity.

(3) The maximum intensity for the walls varies almost
linearly with temperature for harmonic chains at low tem-
peratures, but for the nonharmonic chains the maximum
intensity decreases more slowly or even increases as the
temperature approaches zero. This may be interpreted as
an effect of mode softening.
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