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Simple model for crystal shapes: Step-step interactions and facet edges
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The terrace-step-kink model for equilibrium crystal shapes is considered. Noninteracting steps
are known to correspond to a free-fermion model which leads to a continuous transition from facets
to curved surfaces. We study both short- and long-ranged interactions between steps within mean-
field theory. For nearest-neighbor step interactions, the model can be solved exactly, and details are
given. The possibility of a slope discontinuity between facets and curved surfaces is explored within
the interacting terrace-step-kink model {which ignores voids and overhangs); this possibility is real-
ized only for sufficiently long-ranged attractive interactions. As physical examples of such interac-
tions we consider both elastic and dipolar interactions between steps. These have the same range,
and may be comparable in magnitude. It is argued that elastic interactions (which are repulsive) do
not change the free-fermion predictions for the exponent governing the facet-curved surface edge
while dipolar interactions, if attractive, can lead to slope discontinuities and associated tricritical
phenomena.

I. INTRODUCTION

The topic of equilibrium crystal shapes (ECS) is
currently of considerable interest. ' The physics of
facets and curved surfaces which constitute the ECS and
their thermal evolution can be described in terms of the
venerable terrace-step-kink (TSK) model, ' ' ' in which an
interface of orientation n possesses steps which separate
flat terraces of orientation no The d. ensity of steps deter-
mines the slope of n with respect to no. At finite tem-
peratures, the steps meander due to kinks excited within
them. Steps are assumed to neither cross nor overlap due
to the large energy cost of multiple-height steps and
overhangs. Voids beneath the terraces are also tacitly
neglected. Furthermore, steps are not allowed to ter-
minate (due to high-energy costs of dislocations) and
hence run across the entire surface. The model is thus
best suited to describe low-temperature and low-step-
density situations. The interfacial free energy y(n) was
calculated by Gruber and Mullins" (in a somewhat sim-
plified version of the TSK model) for the case of nonin-
teracting steps. In particular, they computed the entropic
contribution due to both the wandering of steps and the
restriction of noncrossing. Essentially identical considera-
tions have arisen recently in the context of
commensurate-incommensurate (C I) phase transitions in-
two-dimensional adsorbates. ' ' The correspondence
arises from identifying steps between terraces with
domain walls between commensurate regions. Thus facets
correspond to commensurate phases, and curved (rough)
surfaces to incommensurate phases. In the C-I problem
the statistical mechanics of noncrossing domain walls has
been studied by exploiting the mapping to a one-
dimensional spinless free-fermion model. ' ' We follow
this procedure to study an interacting TSK model, focus-
ing on the effect of long- and short-ranged interactions on
the singular lines between distinct facets and those be-
tween facets and curved surfaces. This approach provides
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FIG. l. Sketches of crystal-shape profiles [(a) and (h)] and as-
sociated phase diagrams [(c) and (d)]. In (c) and (d) solid lines
indicate second-order (Pokrovsky- Talapov) transitions while
dotted lines mark first-order transitions. Shaded regions indi-
cate rough (curved) surfaces. See Sec. I for further details.

a simple and appealing discussion of ECS profiles.
To set the stage we review earlier. work briefly. Consid-

er two facets and a curved portion of a crystal surface
connecting them. The curved portion can join a facet
continuously [see Fig. 1(a)] or with a slope discontinuity
[Fig. 1(b)j. These correspond to second- and first-order
phase transitions, respectively. 1 4-9 The continuous tran
sition can be characterized by an exponent 8 defined by
z(x)- —x in Fig. 1(a). This geometry is a function of
temperature T and can be displayed as a phase diagram in
the T xplane. -Let the two facets be, for example, the
(100) and (110) facets of a simple cubic crystal. A possi-
ble thermal evolution which leads to Fig. 1(a) is shown in
Fig. 1(c). For 0&T &T„ the facets join with a sharp
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edge. For T, (T there is a curved portion between the
facts which joins them continuously at boundaries shown .

by full lines. Such a picture has been found in an exact
solid-on-solid (SOS) model calculation. Figure 1(d)
shows a situation which can lead to Fig. 1(b). Here the
curved portion joins the facets discontinuously for
T, & T & T, (shown with a dashed line). At the tricritical
temperature T, the first-order line becomes second order.
Figure l(b) corresponds to a slice at T, &T &T, . This
behavior has been found in a mean-field theory of an Ising
lattice gas. Theory' ' also predicts 0= —,

' for the con-
tinuous case, characterizing a transition known as the
Pokrovsky-Talapov' (PT) or Gruber-Mullins" transition.
Experiments show both first-order edges (in small gold
crystals) and second-order edges with 8=1.60+0. 15,
consistent with theory (in small Pb crystals).

The TSK mode1 will produce a phase diagram like that
of Fig. 1(c) for the ease of short-ranged attractive interac-
tions. In this case it is incapable of dealing with the van-
ishing (roughening) of the facets as T is increased. How-
ever, for the case of short-ranged repulsive interactions,
the edge between the (100) and (110) facets is replaced by
the (120) facet, which does roughen. Associated with
roughening is a universal jump in crystal surface curva-
ture obtained in other work ' ' and recently observed in
the elegant work on He crystals by Gallet et al.

The TSK model also provides a framework for the
study of the effects of long-ranged interactions such as
those which arise as a consequence of elasticity. Elastic
interactions, which are repulsive, will be shown to be im-
portant at low temperatures. Dipolar interactions play a
similar role if they are repulsive. It will be argued that at-
tractive long-ranged dipolar interactions can give rise to
tricritical behavior at facet edges, such as that shown in
Fig. 1(d).

in the y direction is given by the ground-state energy of
H.

The connection to the crystal-shape problem goes as
follows. If f(s) is the free energy per unit area of the
TSK model for given (positive) slope s, then the crystal
profile z(x) is determined by

A.z(x)=f(rt)
~ „ (2)

where f( g ) =min, [f(s) —gs] is the Legendre transform
of f (s) to the conjugate field variable rl, and A, (equal to
one-half the pressure difference between the crystal and
the fluid surrounding it) is a parameter fixing the overall
size of the crystal. We let s=O correspond to no steps on
the crystalline surface and s= 1 to a step running along
every column of our lattice. Thus s is the step density per
site in the y direction.

In constructing T we make use of the following restric-
tions: (i) step number is conserved from row to row and

(ii) steps do not cross. The matrix elements of T are then
determined by a kink energy I, an energy go for a unit
length of a straight step, and an interaction energy U;~ be-
tween unit lengths of parallel straight pieces of steps la-
beled i and j. To render interactions between different
rows (steps interacting at different values of y) tractable

'we treat them in an average way: We compute U;J as the
interaction between a unit length of step at i and an infi-
nite straight step at j. We expect this approximation to
preserve the qualitative physics of interest here.

The fermion representation of H =a~H is (see the Ap-
pendix)

H=rto g a;a; ——g (a;a;+, +a;+)a;)
i=1 i=I

II. FERMION PICTURE + g U~Ja;a;ajaJ+const,

In order to render the TSK model tractable, we now
proceed to map it onto a T=O fermion problem. Let the
steps in the TSK model run in the y direction. Periodic
boundary conditions in this direction are imposed so that
the slope of the crystal face is always in the x direction.
One can describe a configuration of the model by specify-
ing the x coordinates of each of the n steps at each of the

y coordinates. This point of view leads naturally to a
transfer-matrix description of the propagation of the steps
from one row (y coordinate) to the next. Let T denote the
(n &&n) transfer matrix. For mathematical convenience
we take the continuum limit in the y direction (lattice
spacing a~~0). This is not expected to change the phys-
ics qualitatively. In the limit a~ ~0 we may write (see the
Appendix)

—a 8T=e

where 0 is a quantum Hamiltonian which describes fer-
mion propagation along the Euclidean time (y) direction.
As is well known, the free energy per unit length in the y
direction (multiplied by —1/ks Ta~) is given by the larg-
est eigenvalue of T. Thus the free energy per unit length

where a; is a fermion operator which creates a step at site
i. The hopping matrix element t is given by
t =P 'exp( —Pl'), where P= 1/k&T. The Pauli principle
condition (a; ) =0 guarantees that steps do not overlap.
Note that the density of fermions (1/N) g,. a; a; is equal
to s, the slope of the interface. The free energy f(s) is
computed from the ground-state energy Eo(s) of H via

f(s)= &o(s)+fo,1

where A =a„a~ is a unit-cell area of the flat (s=O) crystal
surface, and fo ——f(0) is a constant.

III. EFFECTS OF STEP-STEP INTERACTIONS

In this section we explore the effects of step-step in-
teractions on the PT behavior that arises in the nonin-
teracting TSK model. The latter corresponds to U;J

——0 in
Eq. (3), in which case the ground state is readily analyzed,
and which produces, for small s,

f(s)=f0+(gos+bs + . . )/A,
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in which fp is a constant and b =tv /6 .This is the same
form as found by Gruber and Mullins. " The bs term is
an entropy piece arising from the no-overlap condition,
and there is no s term. The s and s terms in Eq. (5)
lead directly, via Eq. (2), to the PT transition at a facet
edge.

We will now include UJ in the continuum limit of the
fermion model and investigate how it alters Eq. (5). This
limit will restrict us to small s, i.e., near the s=0 facet,
where Eq. (5) is exact, Global effects involving other
facets are ignored. We invoke the Hartree-Fock version
of perturbation theory to deal with the interactions. In
this case, the correction fU to Eq. (5) is

00

fp ——f dx U(x)sG(x),
Aa

(6)

in which a is a short-distance cutoff taken equal to the
step height, and G(x) is the free-fermion pair correlation
function given by'

sin (msx/a)Gx=s 1—
(m.sx /a)

(7)

Here s/a is the fermion wave vector. Combining Eqs. (6)
and (7) produces

fU= f du U(au) 1—
A (nsu)

(9)

Short-ranged interactions thus contribute to Eq. (5) in or-
der s". The Pokrovsky-Talapov result is unaltered. Note
that a simple Hartree approximation ignoring the step-
step correlations of Eq. (7) would have given an s term in
place of Eq. (9).

If the potential U(x) is sufficiently long ranged, i.e.,
U(x)=g/x for A, &2, the above argument fails, as more
care is required in the evaluation of the integral in Eq. (8).
We treat specifically the case A, =2, which is important by
virtue of the fact that both elastic' and dipolar interac-
tions between steps have the form ga /x . For elastic in-
teractions g ~0 since all steps have the same sign. Dipo-
lar interactions can in principle have g of either sign (see
Sec. V). Then, to lowest order in s, Eq. (8) becomes

ms g " 1 siny mg
0 "y2 '

y2
—

3A

Combining Eqs. (5) and (10) yields

f(s)=fp+ gps+ &+ s'+
3

(10)

Thus, within the context of perturbation theory, if
b +m g/3 &0, interactions varying as ga /x will not af-
fect the PT exponent 0= —,', which follows directly from
the algebraic form off (s) in either Eq. (5) or (11).

If U(x) has a range much smaller than the distance be-
tween steps a /s, we may expand the term in large
parentheses in Eq. (8) to find

2s4
fU f du u ——U(au) .

3A

As noted in Sec. I, the Rottman-Wortis mean-field re-
sults produced a tricritical point separating first- and
second-order transitions at facet edges. This occurs here
when 6+m g/3=0. Since b =m e ~ /613, we see that
the coefficient of s will change sign at a temperature T„
solving

—I /k T
~ g ~

=kIi T,e '/2 . (12)

Simple analysis of f(rl)=f (s) its s—hows that, indeed, T,
is a tricritical point. One might well worry whether or
not this argument is too dependent on the simple pertur-
bation theory used. Fortunately, Sutherland' has solved
exactly the continuum fermion problem with an interac-
tion, U(x)=ga /x . He finds a coefficient of the s term
proportional to [1+(1+4g lt)' ] . His result reduces to
our Eq. (11) for g «1. Furthermore, the solution holds
only for g/t) ——,', making low T inaccessible in the
crystal-shape problem. This is because for g/t & ——,

' the
interaction overcomes the Pauli principle which, in the
two-fermion problem, leads to bound states with arbitrari-
ly large binding energy. Since a transition to a bound
state as a function of chemical potential in the fermion
problem is a first-order phase .transition, one is led to
suspect that cutting off the 1/x potential at small x
would lead to well-behaved bound states and tricritical
points separating the extended and bound-state regimes.

IV. NEAREST-NEIGHBOR INTERACTIONS

In this section we explore the consequences of nearest-
neighbor interactions between steps. The Hamiltonian of
Eq. (3) becomes, adding in the field r) coupling to the
slope,

H=( —g+qp}ga a ——g(a;a;+&+a+&a;)

+ U a; a;a;+~a;+~+const . (13)

X Xg (tritri+i++i +i +i)''

+ g vari tri +1+ Up 1+
l

(14)

where the o.;'s are Pauli spin operators. This model has
been solved exactly by Yang and Yang, and their results
can be directly transcribed into the language of equilibri-
um crystal shapes. We consider two cases.

U&0. This corresponds to step attraction, and Hzzz
describes a ferromagnetic spin chain. The magnetization
variable y =(1/iV) g,. (cr,') corresponds to 2s —1, where
s is the fermion number density (crystal-surface slope in
the original problem). The anisotropy parameter 6 and
the magnetic field H of Yang and Yang are given by
b, = —U/2t and H =(1/2t)[rl rip U]——

Using the standard Jordan-Wigner transformation, ' we
rewrite this model as the quantum XXZ chain:

H= Hxxz= 2(U+—np rt) ga'i—
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A schematic phase diagram is displayed in Fig. 2(a).
The boundary between the facets (s=O and s= 1) is first
order and persists to a temperature T, solving
U/2t = —1. Within this model the two facets do not
roughen. The transition between the curved parts and the
facets belongs to the Pokrovsky- Talapov universality
class. This is seen from the expansion for the free energy
around s = 1 (y = 1) which yields

1f=fp+ —(g —gp —2U —2t)(1 —s)
2t

2

+ (1—s) +0((1—s) ) .
3

A similar expansion exists around s =0. There is no
temperature range where the transition from faceted to
curved surfaces is discontinuous in this model, in agree-
ment with the analysis of Sec. III.

It is of interest to ask what types of phase diagrams re-
sult from standard approximations for the fermion model
of Eq. (13). Via a straightforward analysis we find that
the self-consistent Hartree-Fock approximation ' pro-
duces Fig. 2(a) with associated PT exponents but with a
spurious extension of the first-order line above the vertex
at Tc

U~ 0. This corresponds to step repulsion and H~~z de-
scribes an antiferromagnetic chain. For t=0, the ground
state of the Hamiltonian varies from s=O for g &gp to
s = —,

' for g in the interval [7)p Y/p+2U] and to s= 1 for

q ~ go+ 2 U. These states correspond to having three
facets at zero temperature. We note in passing that intro-
ducing further-neighbor repulsive interactions introduces
new facets (corresponding to fermion density waves with
different periodici ties) at T=0. Any repulsive interaction
not cut off at a finite distance produces infinitely many
facets between s =0 and s = 1. The phase diagram, ob-
tained using the analysis of Yang and Yang for b, &0, is
shown in Fig. 2(b). We comment on some of the impor-
tant features which are the same as for SOS models and
which have been discussed in detail elsewhere. '"' The
free-energy expansion for the region near the central facet
edge yields, for ( U/2t) & 1,

I
l
I

S. =O
I

S=l

(b)

FIG. 2. Phase diagrams for the nearest-neighbor interacting
TSK model in the cases of (a) attractive interactions and (b)
repulsive interactions. Dotted lines are first-order transitions.
Shaded regions indicate rough (curved) surfaces. In (b), T~ is
the roughening temperature for the s =

2 facet, while in (a), T,
is the (first-order) transition temperature at which the sharp
edge between the s=0 and s= 1 facets vanishes.

f=fo+a Is ——' I+b Is ——' I'+ (16)

where a and b are positive constants which we do not
display here [see Ref. 20(b), Eqs. (48)—(49)]. In addition,
the facet with s = —, roughens (vanishes) at a temperature
TR defined by U/2t=l. As T~T~, a-g~, b-gz,
and the correlation length g~ diverges as exp[ —c/(Ttt
—T)'~ ]. This temperature dependence is expected to be
universal; the constant c is not. For T & TR, Eq. (16) is
replaced by

f(s) =fp+ c ( &)(s ——,
' )'+ (17)

where c(T) is a temperature-dependent parameter. A
self-consistent Hartree-Fock analysis for this case is not
of great interest, since it fails to give roughening. '

V. DISCUSSION

Within the TSK model we have examined the effects of
step-step interactions on crystal shapes. We have found
that short-ranged interactions do not alter the
Pokrovsky-Talapov transition at facet edges. We now
amplify on this result by making a few comments regard-
ing the occurrence of first-order transitions (between
facets and curved surfaces) and tricritical points in global
crystal shapes. In our problem curved surfaces arising
from steps of orientation m (inaccessible to a description
by a TSK model defined around orientation n) might
have lower free energy (and thus be part of the ECS) than
the facet n or interfaces with orientation near n. This
will in general lead to a discontinuity in the slope. (This
situation could possibly explain observations on gold crys-
tals. ) If the step energy is too large, such a first-order
transition is likely since the crystal prefers to change
abruptly from facet to curved, rather than introduce cost-
ly steps. This suggests that impurities which tend to
reduce step energies might in fact help in obtaining con-
tinuous facet-curved transitions. However, such a global
mechanism is unlikely to lead to a tricritical point, though
it could produce critical end points. Our analysis (Secs.
III and IV) is limited in that it addresses the question of
how changes in the local form of the interfacial free ener-

gy around n can lead to first-order transitions and tricriti-
cal points. We have argued that when voids and
overhangs are neglected, short-range step-step interactions
do not provide the mechanism for a first-order transition.
Global mechanisms are not ruled out.

It is interesting to note that first-order transitions be-

tween a facet and a curved surface and between curved
surfaces (due to a global mechanism) occur in the zero-
temperature shape of a grain inclusion rotated with
respect to the solid matrix of the same material.

Long-ranged interactions varying as ga /x do contri-
bute to the s term in f(s) and the transition at facet
edges is no longer governed by purely entropic effects.
For g &0 a tricritical point probably appears, as noted in
Sec. III. The case of g & 0 is also of considerable physical
interest. Both cases warrant more detailed discussion.

Elastic interactions between steps of the same sign have
the form U(x)=ga /x, where, in order of magnitude'
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(for an isotropic crystal)

cr ag— E (18)

b+ 7T g
3

2 —PI o a

P E (19)

where E is Young's modulus, o is the surface tension, and
a is an interatomic distance. The coefficient of the s
term in Eq. (11) then becomes
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where c is a constant. It is'clear from Eq. (19) that at suf-
ficiently low T, elastic effects (as opposed to entropic ef-
fects) will dominate the transition at facet edges. Near
enough to a roughening transition, however, b does not
behave as shown in Eq. (19), but rather b-gz. Since
gz~oo as T~TR, we expect that entropic effects be-
come dominant near Tz.

For metals electrostatic interactions provide an addi-
tional source of long-ranged step interactions. There is
both experimental and theoretical evidence that elec-
tronic charge-density distortions in pure metals give rise
to line dipoles at steps. Furthermore, impurities cluster-
ing along steps will likely acquire dipole moments in the
same way as do impurities on flat surfaces. Let the di-
pole moment for a unit-cell length along the step be

p=p~~+pi, where p~~ is parallel to the surface contain-
ing the step and normal to the step direction, and where

pi is normal to both the step and the surface. Straight-
forward calculation produces an interaction -a /x, and
use of Eq. (10) produces a contribution to f given by

2 2
2m Px —P)( s

a3 (20)

This estimate neglects corrections of order unity due to
screening effects in the metal and any oscillatory effects
of the Friedel type. Note that fD can have either sign, de-

pending on the direction of p. If pi &p~~, dipolar effects
will add to the elastic effects in Eq. (19). Using the exper-
imental result

~ p ~

-0.1—1.0 Debye for bare steps, we
find that the dipolar effect may well be comparable to
elastic effects in metals. There will be an additional con-
tribution to this effect from the dipole moment of impuri-
ties which tend to accumulate at steps. If pi &p

~
~, and

fD dominates elastic effects at low T, a tricritical point
can occur at higher T when the entropic repulsion be-
comes sufficiently important, as in Eq. (12).

Finally, we note that the first-order edge appearing
below T, in Fig. 2(a) will be somewhat rounded in a real
crystal as a consequence of elastic effects.

While this work was being completed, we received a
copy of unpublished work from H. J. Schulz (Institut
Laue-Langevin, Grenoble) in which transfer-matrix
methods were used to treat a solid-on-solid model for
equilibrium crystal shapes. Phase diagrams similar to
those in Fig. 2 were obtained.

APPENDIX

For the benefit of the uninitiated reader, we provide a
brief description of the fermion correspondence. We use
techniques, outlined in Refs. 13 and 15, but we include ef-
fects of interactions. Consider a square lattice with M
rows and N columns. Steps between terraces are specified
by bonds on this lattice. A configuration is specified by a
state vector

~

x i, . . . , x„)k, where xj denotes the position
of the jth step in the kth row. The transfer matrix de-
scribes the propagation of the steps from row to row. The
nonvanishing matrix elements are as follows: One is re-
stricted to the subspace of fixed number of steps (steps do
not end at any row). The position of a step can only
change by 0,+ 1 units between rows. If, in going from row
k to row k + 1, the ordinates of p of the steps are un-

changed while the other (n —p) change by +1, then the

matrix element has a contribution e P"o P ' ' where
I is a kink creation energy and qo is the step energy. The
matrix element vanishes if x; =xj for i&j (walls do not
cross). If, in addition, there is a step-step interaction ener-

gy, one obtains a multiplicative contribution
exp( —P$, U(x; —xJ). A convenient operator repre-
sentation is obtained by associating a step creation opera-
tor aJ" for a step at xj in row k: azaj denotes a straight
step while aJ+~aj and aJaJ+& denote a kink to the right
and to the left, respectively. The a's are defined so that
( aj ) =0, which imposes the noncrossing condition.
Hence the transfer matrix can be written as

T—To T]T2

=exp —Priogajaj g [I+e ~"(a;a;+i+a;+ia;)]
J

X exp —P g U,J.n; n~

where n; =a; a; and we have associated the interaction en-
ergy of the kth row with the k —+k+1 transfer matrix.
We note in passing that A; =a; a;+~+a;+&a; is idempo-
tent, A; =A;, and A;+ &A; =A;A;+ &. This allows T ~ to
be rewritten as
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whence tanhPI~ =e ~, yielding the dual transformation.
Now let us take the continuum limit explicitly, following

Fradkin and Susskind. Let T=e '& with a~~0 and
let e ~, go, and U~O as a~. Expanding both sides to
order az we easily obtain

ktt Ta„H =bio g n; + g U jn; nt ——g (a; a;+, +a;+ ~a; ), ~

where t =e ~ /P is the hopping matrix element. This
Hamiltonian is displayed in the main part of this paper in
Eq. (3).
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