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We have established the zero-field freezing temperature and Tf(H, co) lines associated with a con-
stant relaxation time over a large frequency range (10 —10 Hz) in Eup4Srp 6S. The choice of the
experimental criterion and the demagnetizing field effects are analyzed in some detail in order to es-

tablish the validity and the limits of our analysis. Two different scalings are tested as suggested by
Binder and Young: T, =O, 1n(r/ro)=T ' f(H/T ); and T,&0, r/ro (T T,——)—
g((T —T, ) (IIJT)). Both are found to work satisfactorily with the following sets of parameters:
for T, =O K, zv=8, 6=10.5, and v.p-10 ' s; for T, =1.50 K, zv=7, 6=2, and ~p-10 s. The
latter value of wp appears to be more consistent with previous relaxation data than the former.

Hence, our fitting procedure suggests that T,&0 K (equal to —1.50 K) for Eup 4Srp 6S.

I. INTRODUCTION

Static critical behavior has been extensively investigated
in various spin-glasses. ' Susceptibility data appear to
exhibit universal scaling, as can be expected in the vicinity
of the phase-transition temperature. However, no alterna-
tive model has been considered and shown to be incon-
sistent with the experimental results. It has been recently
suggested by Binder and Young that "freezing in spin-
glasses can be understood as a consequence of anomalous
critical slowing down associated with a zero-temperature
phase transition. " They write a dynamic scaling within
the assumptions of their model. We shall compare in this
paper an analysis of our experimental results on the insu-
lating spin-glass Euo 4Sro 6S using their T=O scaling with
dynamic scaling that would be expected in the case of
"normal" critical slowing down in the vicinity of a transi-
tion at finite temperature.

We rely on dynamic susceptibility data obtained by
joining measurements from two experimental procedures
and apparatuses, covering a large frequency range on the
same sample, in order to test the ability of the two con-
tradictory scaling models to discriminate between the lim-
its of T, =0 or T, finite. We shall show that both scaling
models can provide satisfactory fits to the data. However,
the characteristic time scale and the critical transition
temperature derived on the assumption of a finite T, yield
values more consistent with previous data on Euo 4Sro 6S.

We describe briefly in Sec. II the scaling theories for
the relaxation time, as suggested by Binder and Young
and Binder for the two cases T, =0 and T,&0. We then
discuss the actual measurements of the complex suscepti-
bility in Sec. III. %'e show in Sec. IIIA which criterion
seems the most appropriate in order to establish a con-
stant relaxation-time contour in the H-T plane. %'e sug-
gest a new definition of the zero-field freezing tempera-
ture associated with a given experimental time scale.

The experimental conditions are specified in Sec. III 8.

In Sec. III C we raise and discuss a particular difficulty
connected with the high susceptibility and peculiar shape
of our sample: the problem of determining the demagne-
tizing field and its related consequences. We also discuss
how we connected the high-frequency measurements per-
formed at the Ecole Superieure de Physique et de Chimie
Industrielles (ESPCI) using the Faraday rotation method
with the low-frequency measurements performed at the
University of California, Los Angeles (UCLA) using a su-
perconducting quantum interference device (SQUID)
magnetometer.

Finally, we present in Sec. IV the two scalings of the
experimental data, first in zero field, then in the presence
of a magnetic field We d.erive the characteristic times
and the critical exponents. Our concluding remarks are
presented in Sec. V.

II. SCALING THEORIES FOR
THE RELAXATION TIMES

A. T, =0

We briefly review in this section the assumptions which
appear to be relevant to the model of logarithmic scaling
for the case of T, =O. ' In this analysis, T, is chosen to
be zero because the lower critical dimension for spin-
glasses is taken to be d =4 for short-range interactions.
Near the transition, it is assumed moreover that "fluctua-
tions relating the various locally ordered states in aniso-
tropic systems are 'walls'; nucleating these walls requires
thermal activation . . . [and) one assumes that g'EA (the
Edwards-Anderson correlation length) also controls the
heights of typical free-energy barriers. " It follows that

in(r/ro) ~ AF((E~)/T cc T 'P '/'~ T

This defines a zero-field freezing temperature Tf associat-
ed with a response time ~:

TI 0: [ ln(rlro)]

30 6514 1984 The American Physical Society



30 DYNAMIC SCALING IN THE Eup 4Srp 6S SPIN-GLASS 6515

For a given experimental frequency co, taking cow= const
(see our analysis in Sec. III A),

ln(co/cop) ~ [Tf(co)] (2)

in(r/rp) cc T ' f(H/T ), T, =0. (4)

Keeping r constant defines a relationship between T
and H which we call Tf(H, r} or Tf(H, co); i.e., a
constant-relaxation-time contour. Equations (1) and (4)
imply that Tf (H, co )/Tf (O, co) is only a function of
H I [Tf(H, co)] I, so that all Tf(H, co} lines are expected
to collapse onto a single line when plotted according to
this scaled form.

The numerical values tentatively suggested by Binder
and Young are zv=4 and 5=7. These values are claimed
to be consistent with experimental data available for
Eu04Sro 6S. ' We shall argue that this data, besides ex-
hibiting more scatter than the data reported here, should
not be used as a check of the model. We claim that the
manner by which Tf(co) and Tf(H, co) have been estab-
lished in Refs. 7 and 8 is inconsistent within the model it-
self;

B. T,&0.

We now describe the scaling relations that may be ex-
pected for the case of "standard" critical slowing down.
As one approaches the transition temperature T, from
above, the response time is assumed to diverge as

r/~p ~ gE~ ~ [(T T, )/T, ]—
Equation (5) defines a zero-field freezing temperature as-
sociated with the frequency co taking r- I/co:

co/cop~ [(T T, )/T, ]". —

Upon application of an external static magnetic field, the
dependence of the correlation length on field should there-
fore be

gE~( T,H ) cc [(T T, ) /T~]—
Xg((H/T)[(T T, )/T, ] ~), —-(7)

which yields the field dependence of the relaxation time,

r/wp~ [(T T, )/T, ] ' g((H/—T)[(T T, )/T, ] ~} . —
(8)

Setting r equal to a constant, Tf =Tf (0,co ), and
T= Tf (H, co) to simplify notation,

[(Tf T, ) /T, ] '"= [(T T, ) /T—,]-
Xg((HIT)[(T—T, )/T, ] ), (9)

so that the ratio (T T, )/(Tf T, ) is onl—y a functio—n of

Equation (2) is the first relation which must be checked
experimentally.

Static scaling generates a field dependence for )~A.

gp~(T, H) ~ T g(H/T ) .

This yields immediately the field dependence of the relax-
ation time using Eq. (1):

(T T—, )(H/T) '~ . Thus all Tf(H, co) lines should col-
lapse if plotted in this scaled form. The ratio H/T has
been considered rather than H/T, in order to enlarge the
critical region.

The above analysis holds for the case of a given relaxa-
tion time ~. However, spin-glasses do not exhibit a single
relaxation time but rather a broad spectrum, even above a
"static" transition temperature. ' Mackenzie and Young
have shown" that this spectrum of relaxation times,
within the Sherrington-Kirkpatrick model, diverges below
T, . Similarly, Binder and Young have argued that the
spectrum of relaxation times diverges as T~0 for a
zero-temperature phase transition. In both treatments, all
times appear to scale in the same way. We shall assume
that the same situation is relevant for the distribution of
response times in the Euo 4Sro 6S spin-glass; that is, that
any relaxation time ~ picked out of the spectrum should
follow Eq. (4) or (8), with its own prefactor depending on
the model. We shall discuss next which time is actually
extracted using our approach, and how this depends upon
the choice of the criterion which defines Tf (H, co).

III. EXPERIMENTAL DERIVATION
OF CONSTANT-RELAXATION- TIME LINES

X'=X,/( I +~'2),
X"=Xpcor/(I+co'r ) .

(10)

Though these relations are certainly incorrect for the
magnetization (or susceptibility) of a spin-glass, they ex-
hibit the features which lead to our choice of an appropri-
ate criterion for the determination of the Tf(H, co) lines.
The susceptibilities 7' and X" depend upon Xo and ~, and
both of the latter depend on H and T. Therefore, such a
widely used criterion as the maximum of X' to define
Tf (co) does not actually determine the correct relationship
between H and T because of the dual dependence of
(Xp, ~) on T and H. We must use an'analysis which gen-
erates an H-T line for a specific response time r. The
maximum of 7' criterion certainly generates an 0-T line,
but ~ is not necessarily constant along that line. Similar-
ly, choosing the inflection point exhibited by X"(co,T,H)
as a criterion to establish Tf (H, co) lines is also not correct
if these lines are to be associated with a constant relaxa-
tion time: d X"ldT =0 does not imply that r(H, T) is
constant. Yet another criterion, namely, X"(co, T,H )
= const, has been used by two of the present authors to
derive (H, T) lines in a limited range of frequency. ' This
is again incorrect for the reasons quoted above. Therefore
we do not believe that one may rely on previous data on
Eup4Srp6S (Refs. 7, 8, and 12) to check the scaling
theories. One must use an analysis which generates an

A. Discussion of a proper criterion

In this section, we show how we derive a constant-
relaxation-time contour from measurements of the real
and imaginary part X' and X" of the susceptibility. We
also try to make clear which time will be extracted. It is
well known that in the simple case of an exponential de-
cay
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H-T line at a specific response time ~.
We now discuss what we propose to be an appropriate

criterion. It is obvious that in the simple case described

by the Eq. (10) the quantity of interest is

tan /=X" /7'=cor .

Thus, setting tan P-P to a constant value does define a
set of Tf(O, co) values and Tf(H, co) lines for which r is
indeed a constant. Of course, Eq. (11) is very restrictive,
but in fact any expressions for X' and X" for which the ra-
tio is only a function of cor will yield the same conclusion.

We must examine now how this statement may be gen-
eralized to the case of a distribution of relaxation times.
For a spin-glass, in the paramagnetic regime, following
Ref. 9 we write

HA(oe)

200

100

1.6

-0.

(deg)

1 6 1.l 1.8

1.8 T (K)

g"=(I/hp) f m(r)g(r)cow(1+co r ) 'd

P'=(1/hp) f m(r)g(i)(1+co2r2)-'dr,

(12)

(13)

where g(r) is the distribution of relaxation times r (which
may depend upon the magnetic moment m so that, in
turn, m may depend on r as written).

We now make the following (trivial) remark. The ratio
tang=+"/P' is, to within a multiplying factor co, merely
the center of gravity r of the distribution m(r)g(r) of the
magnetic moments weighted by the "cut-off" function
(1+ 2 2) —t.

tan P=cor . (14)

The quantity r therefore has the dimension of a time, but
it is not entirely characteristic of the system since it de-

pends upon m. However, for co~ && I for the exphcit form
of Eqs. (12) and (13), r will not depend on co. This condi-
tion (co~ && 1) will be realized at high enough temperature.

We can specify the regime ~~ && 1 operationally be-
cause it implies that

X'=(1/hp) f m(r)g(r)dr .

Therefore, when. X'(co) departs from the static value Xp

(e.g. , typically, when it goes through its maximum), the
condition co~ && 1 is no longer fulfilled. It has been widely
observed ' that the maximum of g' corresponds to the
inflection point of X" in zero field. We therefore adopt
the following empirical definition for the range of validity
of the assumption cow«1: The phase angle P must
remain small compared to its value at the inflection point
which we denote as P». When this is achieved, then
ctp= co% extracts-a characteristic time Y. of the system. We
obtain, therefore, the zero-field freezing temperature

Tf(O, co), as well as the constant-relaxation-time contours
Tf(H, co), by setting P to a constant value. This value can
be arbitrary, but must remain small compared to the value
at the inflection point, P».

We now show that this criterion works; i.e., it is con-
sistent with the experimental results. We first choose,
from two set of measurements performed at two different
frequencies (10 and 10 Hz), two Tf(H, co) lines. We ad-
just the chosen values of p(co) for the two frequencies in
such a way that Tf(0, 10 Hz)= Tf(0, 10 Hz). The inset
of Fig. 1, which illustrates this particular choice, also
shows that in both cases the chosen value of P is well

FIG. 1. Tg(H, u) lines reported for two different sets of fre-
quencies as a function of the applied field H~ {0,10 Hz; , 10'
Hz; 4„10 Hz) using for each set two different criteria in order
to define the same line. The inset shows first the choice of the
low-level criterion (see text) for 10 and 10 Hz to determine
Tf(H, co) from the measurement of the phase P =p"/p'; then
second, how to connect to this choice the high-level criterion for
10" and 10' Hz, respectively. The crosses locate the inflection
point.

below P». The two values are then expected to define the
same Tf(H, co) line. Figure 1 shows that this is indeed the
case. We now turn to another set of two frequencies (10
and 10 Hz) and again adjust the chosen values of P(co) in
order that Tf(0, 10 Hz)—:Tf(0, 10 Hz). The inset of
Fig. 1 shows that this condition is realized for a value of
P(10 Hz) which is now quite close to P (because of the
decrease of P with co), whereas the corresponding value
P(10 Hz) is still much smaller than P„. The choice of P
at 10 Hz is therefore expected to lead to an incorrect con-
clusion, whereas it should lead to a correct conclusion for
10 Hz. If this is true, then the two Tf(H, co) lines should
not coincide. Figure 1 shows that indeed they do not, but
rather that they depart from each other quite systemati-
cally. The experimental results are thus consistent with
our use of a constant value for P (P «P ). 'The data re-
ported in the subsequent sections proceed from this
analys18.

B. EXPERIMENTAL PROCEDURES

In order to cover the largest range of frequencies, we
have used two different techniques for measuring P" and

on a single sample. The high-frequency regime
(10—10 Hz) has been investigated at ESPCI by measur-
ing the magnetization (or susceptibility) using a Faraday
rotation method. ' The low-frequency regime
(10 2—10 Hz) has been investigated at UCLA using a
SQUID magnetometer. ' For purely technical reasons,
the zero-field experiments have been performed over a
larger frequency range (10 —10 Hz) than experiments
in the presence of a field (1—10 Hz). Faraday rotation
requires a platelet-shaped sample. Therefore, both sets of
experiments were performed with the same magnetic con-
figuration: ac and dc fields applied perpendicular to the
platelet. A set of low-frequency experiments (1—10 Hz)
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has also been performed using the SQUID with the ac and
dc fields applied parallel to the plane of the platelet in or-
der to probe the effects of platelet geometry.

Experiments were performed at 10 Hz with both tech-
niques to give an overlap measurement region.

C. Contribution of the demagnetizing field

If the demagnetizing field HD is non-negligible com-
pared to the applied field Hz, our experimental results
will be affected by the sample geometry. This appears to
be a major problem in our sample in three respects.

(1) Value of the internal field H.
(2) Homogeneity of the internal field because of finite

sample size.
(3) Value of the phase angle P.

%'e take each in order.

«itical exponents. All of the scalings to be described in
Sec. IV have been obtained at the mean and extreme
values of the internal field. As indicated above, the effect
of the statistical error on the scaling exponents is at least
four times smaller than the systematic deviation intro-
duced by the uncertainty in the internal field. As we shall
show, while the scaling in zero field and the scaling for
finite T, are affected little, the exponent b, for field scal-
ing at T, =0 is significantly shifted when taking into ac-
count the variations in the internal field.

In summary, all static measurement values will
henceforward refer to the internal field, having taken into
account the mean correction quoted above. The error bars
that will be specified for the scaling exponents will not
correspond to a standard deviation derived from a best-fit
procedure, but rather to the systematic error introduced
by the computation of the internal field associated with a
given applied field.

I. Value of internal field

We first approximate our platelet-shaped sample by an
ellipsoid of revolution. We can then write

(15)

where Nz is the demagnetizing factor when Hz is applied
perpendicular to the platelet, and M is the platelet mag-
netization. Because M is temperature dependent in the
temperature range that we investigate, the internal field H
will also depend on temperature at constant applied field.
This effect is quite noticeable in our case.

By measuring the magnetization of our sample in the
plane of the platelet and perpendicular to the platelet, we
have obtained a fairly accurate (though empirical) esti-
mate of Nq (assuming 2N,

~
+Nz ——4m ). We find

Ni ——( 2.4+0.04)~.
In order to obtain a quantitative value of the internal

field, we also need the absolute value per unit volume of
the magnetization (or susceptibility) in low field. We
measured gj =(0.13+0.03) cgs units per cm at 1.8 K.
The importance of the demagnetizing field may be exem-
plified by the following estimates, which rely on the
values for Nq and Xz quoted above.

First, we calculate the internal field H at 1.8 K using
Eq. (15). We find

H =(3+')X 10-'H

which means that the absolute value of the internal field
H is not accurately known. However, the absolute value
will not turn out to be relevant for the determination of
the critical exponents (see below).

Second, we calculate the relative change of the internal
field when the temperature is lowered from 2 to 1.55 K.
%'e find

H(1.55 K)/H(2 K)=0.32 O'i7

These error limits are very serious because the relative 1o-
cation of the low temperature [i.e., low-frequency
Tf (H, co) linesj may not be correctly determined. This in-
troduces a systematic error for the determination of the

2. Homogeneity of internal field

Such a 1arge sensitivity of the internal field to the value
of Xz raises another question. Is the internal field homo-
geneous over a sample whose shape is not quite an ellip-
soid of revolution? We explain below how we deal with
this question.

Referring to the literature on nonellipsoidal bodies, ' we
can obtain the variation of the internal field introduced by
a spatial variation of the demagnetizing factor. The vari-
ation of Xz along the axis of the platelet may be neglect-
ed. Defining the mean radius of the platelet as ro, we can
estimate from Ref. 14 the spatial variation of Nj along
the radius r. As long as r/ro &0.7, Nz(r) is reasonably
constant. However, for r/ro)0. 7, Nq(r) drops rapidly
and reaches, for example, N~(0. 9ro) =0.88N~(0). This
induces a large increase of the internal field from the
center to the edge. A rough estimate yields
H(0. 9ro)/H(0) =7.4.

Therefore, a measurement which averages the magneti-
zation response to an applied field over the whole sample
is associated with a large inhomogeneity in the internal
field. This is the case for the measurements performed
with the SQUID. However, when measuring the Faraday
rotation, we do not probe the sample's magnetization in
the edges. The light beam is focused so as to illuminate
only the central part of the sample (r &0.8ro) where the
internal field is roughly constant. The comparison of the
experimental curves P(T, to, H) is consistent with this in-
terpretation. In zero field, the curves obtained by the op-
tical measurement map onto SQUID data quite satisfac-
torily. In the presence of the same external magnetic
field, the curves are quite different. The SQUID data
should be associated with a larger internal field because
the edges of the sample represent a non-negligible volume
and experience a smaller demagnetizing field, i.e., a larger
internal field.

More quantitatively, we have attempted to reconstruct
the SQUID results by choosing an internal field distribu-
tion appropriate to the geometry of our sample, using the
Faraday' rotation P(T, co,H) curves for specific internal
fields. We selected five delta functions corresponding to
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five selected values of Nz decreasing gradually from 0.6
(r (0.825ro) to 0.48 (r=ro). These delta functions were
weighted in a manner so as to represent reasonably well
the spatial variation of N~ according to Ref. 14. We then
used the curves for P( T, to,H ) as measured by the Faraday
rotation at these five values of field, and generated the
P(T,co,H) curve one would have "expected" to have seen
from the SQUID measurements. The resulting curve was
quite close to that actually measured with the SQUID at
an external field of 13 Oe. The external Faraday rotation
fields, when weighted according to the above prescription,
averaged to 36 Oe. Therefore, in order to compare the
SQUID data with the Faraday rotation data, one should
multiply the field applied to the SQUID by a factor of 36
Oe/13 Oe=2. 8. We have found that such a field "recali-
bration" actually works quite well. For example, the
Tf(H, to) lines derived from both sets of experiments fall
on top of one another with this field scaling. - We shall
henceforward rely on the optical (Faraday rotation) mea-
surement to define the proper internal fields. The 1- and
10-Hz SQUID experiments in the presence of an external
field will therefore be calibrated with respect to the 10-Hz
optical measurements.

dM +M=X(H~ —NqcV) .
dt

Solving Eq. (16) yields immediately

/=d'or/(1+NOIX) =tor(1 NtX~) =t—or* .

(16)

(17)

Our analysis therefore actually generates an apparent re-
laxation time z', which is the product of an intrinsic time
~, multiplied by 1 —XzXq, a geometry- and temperature-
dependent factor. We expect, therefore, when measuring
P in two different geometries (P~~ with H~ and AH&
parallel to the plane of the platelet, and Pt with H~ and
AH& perpendicular to the plane), the ratio

3. Value of the phase angle

We show now that the geometry also modifies the
response of our system. One can visualize the effect of
the demagnetizing field on the measurement of P by writ-
ing the equation of motion for M including the demagnet-
izing field:

The following are the conclusions of this section. A de-
fensible criterion has been defined and discussed which
provides Tf(H, co) lines associated with specific response
times. Demagnetizing field effects have been fully taken
into account. They introduce a systematic error into the
data analysis when a field is present which will be evaluat-
ed in the next section. They make necessary a calibration
of the SQUID measurements as compared to the Faraday
rotation measurements, and they require a further correc-
tion for the phase angle P. This will also be evaluated for
the data presented in the next section. In particular, once
the apparent values estimated for the characteristic times
have been derived from the best fits, intrinsic values are
deduced by multiplying (at 1.6 K) the apparent values by
1 —%gag-2X 10

IV. EXPERIMENTAL SCALINGS

A. Check in zero field

Following the analysis that we have described in detail
in the previous section, we report in Table I freezing tem-
peratures as determined using two different values for P
criteria. We plot Tf '"(co) as a function of log~~ in Fig.
2 and look for the value of zv which gives rise to two
parallel straight lines. We find zv=8+0. 5. This is twice
the value suggested by Binder and Young. " Using Eq. (1),
we have also determined the microscopic time ~p.

zp-10 s, T, =0 .

Referring to the model of Binder and Young, one can ar-
gue that in the expression ln( rlro)-bF(g EA) /Tthe po-
tential barriers AI' may be distributed, but that ~p has a
unique value which is the shortest response time available
to the system. We then note that in Ref. 15 a decay time
as short as 10 s (an apparent time of 25 ns) has been ob-
served. A measured response time shorter than ~p, ob-
tained for the T, =0 model, is a serious inconsistency.

For the alternate scaling assumption, T,&0, Tf T,is-
plotted versus co in Fig. 3 on a log-log scale. Two parallel
straight lines are obtained by choosing T, = 1.50+0.02 K,
very close to the observed temperature for the maximum
of the d.c. magnetization. Using Eq. (6), the exponent zv
1s

zv=7. 2+0.5 .
(18)

1 NtXt Xt— We can also determine a characteristic time ~p in this
case. We find

TABLE I. Zero-field freezing temperatures defined by two
different criteria P1 ——0.08 deg, Pz ——0.04 deg (P„&0.15 deg).
The error bar for T, is estimated to be -0.01 K.

v (Hz)

10
104

10
10
10
1

10

2.0
1.86
1.76
1.695
1.645
1.605
1.550

2.065
1.890
1.780
1.705
1.655
1.612
1.560

In fact, Eq. (18) is remarkably well satisfied experimental-
ly both in zero-field and in applied magnetic field mea-
surements.

Following the procedures outlined in Sec. III A [setting
Pt to a constant value in order to define Tf(H, cu) J, we de-
fine a line associated with a constant r*=r(1 NqXt). —
The value of Pt must therefore be corrected by taking into
account the multiplicative factor (1—NzXz) in order to
restore a constant intrinsic relaxation-time contour. This
introduces some additional uncertainty on the Tf(H, co)
lines, which may be viewed as another systematic error on
the value of H. This error has been estimated and is
smaller than the major error discussed above associated
with the computation of the internal field.
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[Tf (K)]

[H (Oe)] / [T(K)]

Qx10

10
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l I I I

10 10
FIG. 2. Check of the frequency dependence of the zero-field

freezing temperature Tf in the model T, =O. The best fit is
achieved for Tf vs log~~. The two straight lines correspond
to the two criteria: ~, P =0.08 deg; o, P =0.04 deg. I

0.9

~ 010 Hz
~ 010,
VV 10
EEI EI10
6

B. Scalings of Tf(H, co) lines

We now report the scalings analysis appropriate to both
values of T, in the presence of a field. In each case, the
only adjustable parameter is h. Figures 4 and 5 display
the best fits, with parameters

5=10.5+2.5, T, =O K;
6=2+0.2, T, =1.5 K .

As already stressed, the exponent 5 associated with
T, =0 is more sensitive to the magnitude of the internal

ro-2X 10 s, T&0 .
I

This is still a large value compared to k~ T, /A, but is two
orders of magnitude smaller than for T, =0, and it is now
shorter than the relaxation time found in Ref. 15.

The zero-field scalings thus provide critical exponents
for both values of T, . The value of the exponents, as can
be seen through the error bars, are not very sensitive to
the geometric corrections on P.

FIG. 4. Scaling of field-temperature Tf(H, co) lines for the
case T, =O. The inset shows the low-field points with an ex-
tended scale. A typical experimental error bar is indicated on a
few points.

field. However, the value of 6 extracted by Binder and
Young (-7) may be ruled out. Also, the residual scatter-
ing of the points in both cases is entirely consistent with
the experimental errors. The value for 5 obtained under
the assumption of a finite T„2+0.2, is outside the error
bars from the value of —, expected for the de
Almeida —Thouless (AT) line. ' It is conceivable that this
difference derives from the fact that Euo4SrosS is a
short-range spin-glass, and that the value 6= —,

' has been
derived for an infinite-range model. '

This conclusion (b, =2+0.2) differs from that presented
in Ref. 12 using the same raw data (though for a more re-
stricted frequency range: 10 —10 Hz). As we have al-
ready remarked in Sec. IIIA, Ref. 12 utilized a different
criterion (g"= const) than that adopted in this paper.

Tf-Tc /Tg T-Tc 1

Tf -Tc

0.5 Tc -1.5K
~ =2
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2X 10
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FIG. 3. Check of the frequency dependence of the zero-field
freezing temperature Tf for a T, . A best fit to two parallel
straight lines corresponding to the two criteria: ~, / =0.08 deg,
and O, / =0.04 deg, is achieved for T, = 1.5 K.

0 Cl lo Hz
~ 0 10'
Y %10
EEIEI1oe 1

FIG. 5. Scaling of the field-temperature Tf(H, co) lines for
the case T, =1.S K. Typical experimental error bars are indi-
cated on a few points.
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Simply speaking, the method of Ref. 12 did not ensure
that ~ was constant along the (H, T) line.

Another question arises when one considers the finite-
T, case. The order-parameter susceptibility diverges in
the infinite-range Sherrington-Kirkpatrick spin-glass
model along the de Almeida —Thouless line. ' This would
imply the divergence of the response time as one ap-
proached the transition line. This means that, as co~0
(or r~ ao ) and Tf~T„ the field should remain finite.
The universal function, defined by the experimental points
in Fig. 5, should therefore exhibit asymptotic behavior for
a given value of (T 1, )/(H—/T, )

' . Unfortunately,
too few experimental points are available to draw any de-
finitive conclusion. This will be the subject of a future in-
vestigation.

The relevance of the AT solution to Euo zSro 6S, in the
face of an isotropic exchange interaction where one would
normally expect a Gabay- Toulouse transition, ' derives
from the large (0.4 K) local anisotropy energy in this
spin-glass. As stated by Campbell et a/. ,

' ".. .Kotliar
and Sompolinsky [to be published]. . .predict Ising-like
behavior (with an AT-like irreversibility temperature
dropping as H ~

) below a threshold field related to the
anisotropy strength, and a Heisenberg-like behavior (with
a GT-like irreversibility temperature) above the threshold

field. " All of our measurements have been in very small
field (=10 Oe) relative to the local anisotropy field
(=2500 Oe). Hence, our reference to the AT transition
line should be relevant to Euo. 4Sro, 6S

V. CONCLUSION

We have shown that on the basis of scaling, our experi-
mental data for (1) zero-field freezing temperature and (2)
Tf(H, co) lines are consistent with both the logarithmic
scaling suggested for r, =0, and for the more standard
scaling expected for finite T, . We note that both the
minimum relaxation time ro, and the comparability of our
T, extracted from the Tf(H, co) lines (T, =1.5 K) with
what is already known for the Euc &Sro &S system, suggests
that T,&0 may be more applicable.
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