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Devil s staircase in a one-dimensional model
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A one-dimensional model of a chain of canted arrows in an external field is proposed to describe

some quasi-one-dimensional systems, e.g., spin-, charge-, and mass-density-wave systems, and heli-

cal polymers. The chain has a natural cantedness measured by an angle a, and is also subject to an

externally applied ahgning field of strength y. At T=0, the n-y phase diagram has an infinite

number of commensurate phases, and the variation with a of the mean angle between nearest-

neighbor arrows has the form of a devil s staircase for all y. The transfer-integral technique is used

to calculate the Helmholtz free energy and the order parameter of the system as functions of tem-

perature. No sharp transitions occur at T & 0, but some of the features of the T=0 phase diagram
persist at low temperatures. Transitions occur from one phase to another when the energy required
to create a kink in one phase becomes zero. The equations determining the minimum-energy config-
urations are rewritten so as to define a two-dimensional area-preserving mapping; fixed points and
invariant curves are found for this mapping. Invariant curves are either smooth and continuous or
chaotic. The relation of the nature of the invariant curves to the question of the completeness of the
devil's staircase is discussed.

I. INTRODUCTION

A great deal of attention has been focused in recent
years on certain materials which show incommensurate-
commensurate (I C) phase trans-itions and elaborate phase
diagrams. Such I-C phase transitions have been observed
in some spin-density-wave (SDW) systems, e.g., cerium
antimonide, ' and charge-density-wave (CDW) systems,
e.g., tetrathiofulvalene tetracyano-p-quinodimethane
(TTF-TCNQ) and K2Pt(CN)4Bro 30'3HpO (KCP).
Another interesting material that exhibits such I-C transi-
tions is the crystalline polymer polytetrafluoro-
ethylene (PTFE), ' which consists of linear sequences of
CF2 units. At atmospheric pressure the stable configura-
tion of the chains has the CF2 units arranged on a helix.
As the temperature and pressure are varied, the material
undergoes phase transitions between phases in which the
pitch of the helix is commensurate with the axial distance
between successive CF2 units and phases in which the two
lengths are incommensurate.

A variety of phenomenological models have been pro-
posed to describe such systems. ' These models show
some of the interesting behavior of the real experimental
systems as well as some other fascinating features. One of
the most widely studied of these model systems is a model
first proposed by Kontorova and Frenkel' to describe de-
fects in solids. This model, known variously as the
Frenkel-Kontorova model, the Frank and van der Merwe
model, '" and the discrete sine-Gordon model, has been
studied by a number of authors and applied to a wide
variety of physical problems. This and most other models
belong to a general class of models which has recently
been studied by Aubry. ~ In this paper we present a
new model which can be applied to a variety of systems
such as helical ferromagnets, certain ferroelectrics, and to
some helical polymers, e.g., PTFE. This model in its

most general form does not satisfy all the conditions re-
quired of the class of systems studied by Aubry. In par-
ticular, the near-neighbor potential in this model is not
convex everywhere, as is required of Aubry's class of
models. In this paper, however, we confine our attention
to the convex region of the potential and investigate the
behavior of the model subject to this constraint. The de-
viation from convexity introduces the possibility of in-

teresting new consequences and we hope to investigate
these later.

We present the results of our studies in three main
parts. Section II contains a description of the model and
the properties of the ground state of the system at zero
temperature. A discussion of the behavior of the system
at finite temperatures and of the role of kinks in deter-
mining phase transitions is presented in Sec. III. Finally,
in Sec. IV we reformulate the equations for a minimum-
energy solution in the form of a two-dimensional mapping
and study the invariant curves of this mapping. We
demonstrate the existence of smooth invariant curves
which undergo transitions to chaotic sets of points and
discuss the relevance of this behavior to the completeness
of the devil's staircase.

II. MODEL

The model that we have studied may be visualized as a
linear array of canted "arrows" or "spins" of equal size,
each free to rotate in a plane perpendicular to the line
joining the arrows as shown in Fig. 1. The angle that the
jth arrow makes with a certain fixed direction, defined as
the z direction, is Pi. Each arrow interacts with its
nearest neighbors with a potential energy of the form
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V(PJ ) = —y cos(2' ) . (2)

Here, y is a measure of the strength of the external field
relative to that of the nearest-neighbor interaction. Under
the influence of this external field alone, i.e., with no
nearest-neighbor interaction, the ground-state configura-
tion would have all the arrows aligned parallel or anti-
parallel to the z direction.

Ignoring kinetic-energy terms, we may express the total
Hamiltonian for the array of arrows as

H= g W(P„+(—P„)+V(P„)

= —g [cos(P„+~—P„—a)+ycos(2$„)] .

This potential is not convex everywhere; its mixed second
derivative is not negative definite, as is required of the
class of systems studied by Aubry. However, while
the nonconvexity of the potential may well introduce new
possibilities, it is not unreasonable to assume that the
low-energy configurations of the system do not stray far
outside the regions of convexity of the potential in Eq. (1).
It is clear that for y =0, any deviation into the nonconvex
regions of the nearest-neighbor potential results in an in-
crease in energy and cannot be preferred. This is also ex-
pected to hold for small values of y, and it appears un-
likely that for any value of y the configurations that lie
mostly in the nonconvex regions of the potential will be
ground-state configurations.

It is to be expected that different versions of the system
where the value of the parameter a differs by an integral
multiple of m. will show similar behavior. In order t'o in-

clude all such systems in this one discussion it is con-
venient to define, corresponding to the variable a, a modi-
fied variable,

0.=a —mm. ,

so that a H [—m /2, m /2].

(4)

III. ZERO- TEMPERATURE BEHAVIOR

%e may now proceed to determine what the configura-
tion of arrows is in the ground state for given values of a
and y. The ground-state configuration can be either corn-
mensurate or incommensurate. A configuration, or phase,
is said to be commensurate if for all integers i it is true
that

P;+p ——P;+me. ,

IV(4' +& 4' )=—cos(4'5+1 —4'n —a) .

Here, a is a measure of the degree of natural cantedness
of the system. In order to minimize this nearest-neighbor
energy, in the absence of other forces, the arrows form a
helix, and a is a measure of the pitch of that helix. This
potential, unlike other similar potentials which have been
studied in the past, ' is smoothly periodic in the vari-
ables of interest, i.e., in P„and P„+~.

The arrows are also subject to an external symmetry-
breaking field, and the potential energy of the jth arrow in
the presence of this field is given by

2

l 4„4„~)
I

~i
I

I I

I

FIG. 1. Schematic drawing of the model system of arrows on
a string.

where m is an integer independent of i Th. e smallest pos-
itive integer p that satisfies Eq. (5) is called the order of
commensurability of the phase. Otherwise the configura-
tion is said to be incommensurate. At this time it is con-
venient to define an average angular separation between
nearest-neighbor arrows, c, as follows,

N
c= lim g (P„+,—P„)

N ~ 00 23$7T

For a commensurate configuration, c is a rational num-
ber, while for an incommensurate configuration it is an ir-
rational number.

It is obvious that for y=0, the ground-state configura-
tion is one in which c =a/m. , and the configuration is or
is not commensurate depending on whether a is or is not
a rational fraction of m. It is also obvious that for any
value of n, we will find that c =0 when y »1. This con-
figuration is conveniently visualized as one in which alter-
nate arrows are parallel and antiparallel to the z direction.
For nonzero a, as y is lowered, there must then be a tran-
sition from this configuration to one in which c =a/m. .
This transition may occur directly as a first-order transi-
tion or a continuous one, or ii may occur in a series of
steps with the system passing through several other stable
intermediate configurations.

The conditions for a ground-state configuration are
given by the infinite set of coupled equations:

sin(P„+ &

—P„—a) —sin(P„—{()„~—a) =2y sin(2$„) .

Solutions to Eq. (7) yield configurations for which the en-

ergy is a local extremum. Of these, a subset are
minimum-energy configurations and a further subset of
these are the ground-state configurations. Our objective is
to determine the nature and properties of the true
ground-state configurations.

That the infinite set of equations represented by Eq. (7)
forms a set of recursion relations for the P's can be seen
more clearly by rewriting them as

P„+&

——P„+a+ arcsin [sin(P„+ &

—P„—a ) +2y sin(2$„) ] .

The ambiguity in the interpretation of the inverse sine is
removed by our decision to remain within the convex re-
gion of the nearest-neighbor potential, which requires that
we restrict ourselves to the principal branch of the inverse
sine.

Two angles, e.g. , $0 and P&, still remain undetermined
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Q.5—

2/5

I/2
where P=(k~T) ', where k~ is Boltzmann's constant and
A,~ is the eigenvalue of largest modulus (
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for all i&M) .The distribution function n (P) for the an-
gle P is given by
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looked into this question very closely and have been un-
able to find any triple points. All commensurate phases
exist at all values of y. As y is increased, the phase dia-
gram is dominated by the first-order commensurate phase,
and all the higher-order phases are squeezed into a narrow
region around o."=—,'. A representative plot of c against
0. is shown in Fig. 4. It is evident that the curve is indeed
a devil's staircase.

IV. FINITE TEMPERATURES

I

Q

FICi. 4. Plot of c (=(P„+i—P„)/vr) against a' at @=0.10.
Only commensurate phases with orders less than or equal to S

have been considered.

( )
g(tt)Q(p) (14)

je(c)v(v)da
'

where gM and gM are the right and left eigenvectors asso-
ciated with X~, respectively.

Once again, an analytical solutioh of the integral equa-
tion has proved elusive and we have had to resort to nu-
merical solutions. In order to do this the integral eigen-
value equation must be converted to a matrix eigenvalue
equation with the variable P being permitted to assume a
number, m, of equally spaced values in the range [ ~, m).—
This form of the model is usually referred to as the I-
state version of the model. We have used a 36-state ver-
sion of the model where P has been allowed to change in
steps of 10' in the range [—180', 170'].

Figure 5 shows graphs of the free energy against e' for
two values of y at P=100. The absence of any sharp
features and the lack of evidence for any sharp transitions
are obvious. The structure that is present in this graph
becomes clearer from Fig. 6 which shows the derivative of
the free energy with respect to e' plotted against n' for
the same values of y as in Fig. 5, again at P=100. The
solid triangles are the points obtained from numerical dif-
ferentiation of the data of Fig. 5. Evidence of some tran-
sitions can be seen. However, as expected, these transi-
tions are not sharp. At low temperatures it is reasonable
to assume that the derivative of the free energy, BF/Bo. ',
is essentially identical to the derivative of the energy,
BE/Ba . The solid lines in Fig. 6 are plots of the analyti-

As expected, there are no sharp phase transitions at
T )0 in this one-dimensional system. However, at suffi-
ciently low temperatures some . features of the zero-
temperature phase diagram do persist and the behavior of
the system at low temperatures provides useful informa-
tion about the nature of the transitions that occur at zero
temperature. In particular, the lower-order commensurate
phases tend most strongly to retain some order, and
quasiordered forms of these phases can be identified at
low temperatures. We have used the transfer-integral
technique ' in order to calculate the Helmholtz free en-

ergy of the system and the distribution of the angles P, as
functions of the temperature.

It can be shown ' that for a one-dimensional array of
arrows with nearest-neighbor interactions and a Hamil-
tonian of the form

II= g U(P„+i,P„),

—1.0

—1.2—

—1.2—

ggkkkkii

~LL i
&4ki

the free energy per arrow can be obtained in the thermo-
dynamic limit from a solution of the eigenvalue integral
equation,

AP(P) = J exp[ /3U(P, P')]P(P')dP—' .

The free energy F is given by

—1.4—

0.4
2Q

0.6 0.8 1.0

1F= ——ink~, (13) Flax. 5. Free energy as a function of o," at P=100 and {a)
@=0.30 and (b) y=0.60.
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FIG. 8. Plot of Ek (as obtained from Fig. 9).against o. in the
first-order commensurate phase at y =0.60.
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tween them and assume that the number of kinks is
governed by the Boltzmann distribution law,

nk;„1 0- exp( PEk ), —

cal expressions for M/t)a' in the commensurate phases of
orders 1 arid 2. The agreement between the points and the
solid lines over certain ranges of a is striking. It is evi-
dent that over these ranges at this low temperature the
disorder in the system is very small and the system is
essentially in the commensurate phase that is the ground
state at zero temperature.

In the first-order commensurate phase, P„ is either 0 or
A simple kink in such a system represents a smooth

transition between the neighboring ground-state values of
0 and m. It is obvious that such a kink must pass over the
potential barrier at P=n/2 It is then .reasonable to as-
sume that at sufficiently low temperature the number of
arrows with P=rr/2 is proportional to the number of
kinks. ' We may also assume that the density of kinks
is sufficiently low that we may neglect any interaction be-

I 25

IOO—

a=0

a =0.2

2Q

FIG. 6. BF/Ba' (solid triangles) at P=100 and plots of
BE/Ba' (solid lines) for commensurate phases of orders 1 (I) and
2 (II) as function of a' at (a) y =0.30 and (b) y =0.60.

where Ek is the energy required to create an isolated kink.
Consequently, one expects that for large values of P, i.e.,
for low temperatures, a plot of —ln[n(vr/2)] against p
will be a straight line with slope equal to Ek. At higher
temperatures the system becomes increasingly disordered
and a discussion in terms of kinks is no longer meaning-
ful.

Figure 7 shows plots of —1n[n (~/2)] against P for dif-
ferent values of a at y =0.60 in the range where the first-
order commensurate phase is the most stable. Figure 8
shows the slopes of the straight lines in Fig. 7, i.e., EI„
plotted against a. One can. see that the energy required to
create a kink in the first-order commensurate phase de-
creases as a is increased from zero and vanishes at the
value of a that marks the transition from the first-order
commensurate phase to some other phase. Close to this
point the interactions between kinks becomes increasingly
significant and the curve begins to deviate from its linear
behavior. A similar analysis for the second-order phase
yields essentially similar results. It is clear from this
analysis that the transition from one commensurate phase
to another commensurate phase (or to an incommensurate
one) occurs when the energy necessary for creating a kink
in the first phase vanishes.

V. MAPPINCi

50—

25—

0 0
I

IO

I

20

a ='0.4

i a = 0.6

a = 0.8

40

The equation determining the condition for a ground
state, Eq. (8), can be transformed into two sets of coupled
nonlinear difference equations involving only first differ-
ences by a procedure analogous to that used in deriving
the Taylor-Chirikov map from the equations governing
the discrete sine-Gordon system. In order to do.this we
define a new variable s„ through the equation

s„=sin(P„+&—P„—a) .

FIG. 7. Graphs of —ln[n(m/2)] against P for different
values of a at y =0.60.

Then Eq. (7) can be written in terms of P„and s„as
s„—s„ i ——2y sin(2$„) . (17)
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The variable P is defined mod7r and lies in the range
[0, n], while the variable s is restricted to lie in the range

[—1, +1) in order that the inverse sine be well defined.
With these restrictions, Eqs. (16) and (17), which we
rewrite here for convenience in the form

P„+,——P„+a+ arcsins„,

s„+,——s„+2y sin(2$„+ ~ ),
(18)

define a mapping of a part of the surface of a cylinder
onto itself. This mapping, G (P„,s„)~(P„+&,s„+&), can
be trivially shown to be area preserving. This map is in
many respects similar to the Taylor-Chirikov map, yet
significantly different from it.

Two-dimensional area-preserving mappings have been
studied in different contexts and attention has mainly
focused on the nature of the fixed points of the mapping
and the nature of the curves left invariant by the map-
ping. In this section we present two approaches to
investigating the nature of the invariant curves of the
mapping G. The first is an approximate analytical ap-
proach. The second is a numerical investigation which
utilizes the fact that Eqs. (18) define a recursion relation
in the pair of variables (P„,s„).

Broadly speaking, an invariant curve of any area-
preserving map may belong to one of the following
classes: (a) it may be composed of a finite number, m, of
discrete points (fixed point of G corresponding to a
commensurate configuration of order m), (b) it may be a
smooth, continuous curve, known as a Kolmogorov-
Arnold-Moser (KAM) curve (corresponding to an incom-
mensurate configuration), or (c) it may be a chaotic trajec-
tory, the points of which form a Cantor set. There are
fairly general theorems ' which say that under certain
circumstances (y greater than some y, in our model) each
KAM curve ceases to be smooth and continuous and
disintegrates into a chaotic set of points. Aubry has
speculated ' ' that the existence of KAM curves in the
mapping in some sense implies that the associated devil' s
staircase is incomplete and that when all of the KAM
curves have disintegrated into chaotic trajectories, the
devil's staircase becomes complete everywhere.

If s (P) is the equation of an invariant curve, after one
application of the transformation the point (P,s) on this
invariant curve is mapped into the point (P(P,s), s(P,s)).
This new point must satisfy the same equation as the orig-
inal point. This leads to a functional equation for s (P):

s(P)= g sk(P)y
k=0

(20)

In what follows, the inverse sine proves rather awkward to
handle. We have overcome this difficulty by using the
small-argument power-series expansion for the inverse
sine" and then successively retaining higher-order terms.
Substituting Eq. (20) into Eq. (19) and equating coeffi-

s (P)+2y sin2[P+a+arcsins(P)]=s[P+a+arcsins (P)] .

(19)

Assuming y to be small we may expand s as a power
series in y,

cients of equal powers of y on the two sides of the equa-
tion, we obtain, for the three lowest-order terms,

sp ——const,
—1

s
&
—— cos(2/+ 5),

sin5

z
s2 = cos(4/+4),

2sin 5sin25

(21a)

(21b)

(21c)

where

and

5=0!+afcsinsp (21d)

Z= sin y
dy y =so

(2 le)

The first-order term in Eq. (20) is small compared to the
zeroth-order term unless so lies in the "first-order
dangerous bands" which are bands of width —y'
around the lines sp ——+sina. Likewise, the term propor-
tional to y is small compared to the first-order term if sp
lies outside both the first-order dangerous bands and the
second-order dangerous bands, which are of width —y
around the lines sp ——+cosa, . The extension to higher-
order terms can be easily effected and higher-order
dangerous bands arise. For small y, most curves are
straight lines with a slight modulation.

In order to investigate the nature of the invariant curves
in the dangerous bands, we start with the simplest as-
sumption that

~

s
~

is small. Expanding both sides of Eq.
(19) in powers of s and y, we obtain, in the first approxi-
mation,

s (P)s'(P) =y sing, (22)

where the prime indicates differentiation with respect to
the argument. The solution to this equation is

—,'s =y(C —cosP), (23)

where C is a constant. For C ~ 1 the solution is a period-
ic curve, while for —1 & C & 1 the solution is a closed
curve which degenerates into a point at C= —1. This
point is also a fixed point of the mapping. The solution
with C = 1 represents a separatrix joining two fixed points
and separating regions of closed and open curves. This
solution corresponds physically to a single kink in the sys-
tem making a smooth transition between neighboring con-
figurations represented by the fixed points joined by the
separatrix. The results for the higher-order dangerous
bands are similar. In the second-order bands we again
have a system of closed and open periodic curves whose
period is half that of,the closed curves in the first-order
bands. The whole picture then consists of bands of closed
curves (bounded by separatrices) and periodic open curves,
with higher-order bands (of decreasing width as the order
increases) occupying the regions between the lower-order
bands.

These results are valid only to the degree to which the
power-series expansions are valid. Unfortunately, the
series in Eq. (20) is only an asymptotic series which does
not converge for any value of y, and exponential devia-
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FIG. 9. Invariant trajectories of the mapping G at a=0 and (a) y=0.0850, (b) y=0. 1400, (c) y=0. 1800, and (d) y=0. 19213. The
quantity P increases from 0 to 2m along the abscissa while s varies from —1 to + 1 along the ordinate.

tions from our results may be expected. Another draw-
back of this approach is that it seems to indicate that the
only fixed points of the transformation are fixed points of
orders 2", since fixed points of any other orders do not ap-
pear in this treatment. That fixed points of other orders
must exist is clear from the fact that commensurate
phases of orders m&2" exist, , and these corr'espond to
mth-order fixed points of the transformation. The ex-
istence of these other fixed points can also be seen clearly
from the numerical work which we discuss next.

A second method of generating curves invariant under
the mapping is to apply the mapping repeatedly to any
point in the rectangle. Under such successive applications
of the mapping, each point (P,s) traces out a trajectory in
the rectangle. Each such trajectory is, by the nature of its
construction, invariant under the mapping, i.e., the points
on each such trajectory map onto each other. This
method of generating invariant curves shows up a number
of different classes of invariant curves which cannot be
found by the method described in the preceding para-
graphs. In particular, interesting "chaotic" trajectories,
which play a very important role in the analysis of the
system, can be quite clearly seen.

Figure 9 shows sets of invariant curves obtained from
the' recursion relations represented by Eqs. (18). We have
set the parameter a=0 for all the curves (a nonzero value
of a does not change the nature of the trajectories in any

significant way) and all the figures have the same starting
points, while y increases as shown from 0.0850 in Fig.
9(a) to 0.19213 in Fig. 9(d). The general agreement be-
tween the predictions of the analytical and numerical cal-
culations is clear. One can plainly see the bands (some of
them quite distorted because y is not small) of closed
curves and the separatrices that separate them from the
open curves. The disintegration of what appear to be
smooth continuous curves into chaotic ones and the in-
crease in the region occupied by these chaotic curves can
also be seen. From these results we are led to believe that
KAM curves do indeed exist in this mapping for y ~ 0,
and that these KAM curves disintegrate into chaotic
curves above some value y, . This in turn implies that the
devil s staircase referred to in the preceding sections is in-
cornplete for y & y, and complete for y ~ y, . While it has
been possible ' in the case of the discrete sine-Gordon sys-
tem to determine the value of "the winding number" at
which the last of the KAM curves of the Taylor-Chirikov
map disintegrates into a chaotic trajectory, it has, unfor-
tunately, not yet been possible to do this for our map.

VI. DISCUSSION

We have presented here a phenomenological model that
might be useful in understanding the incommensurate-
commensurate phase transitions that occur in different
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types of materials, principally in SDW and CDW systems
and in certain helical macromolecular systems such as
PTFE. Although the study of the model is far from com-
plete and a large number of questions remain unanswered,
a great deal has been learned about this model. In our
study of the model at T =0, we have shown strong evi-
dence that the phase diagram of this model is composed
of an infinite number of commensurate phases. We have
also shown that the variation of the mean angle between
nearest-neighbor arrows with the degree of natural canted-
ness of the system is of the form of a devil's staircase. By
studying the behavior of the system at finite temperatures,
we have shown that kinks play an important role in shap-
ing the phase diagram of the system. Finally, we have
found an area-preserving map associated with this model
and have studied the invariant curves of this map using
analytical and numerical techniques. We have seen evi-
dence for the existence of KAM curves and that each
KAM curve disintegrates into a chaotic set of points at a
critical value of the parameter y. From this we have con-
cluded that the devil's staircase is incomplete below a cer-
tain critical value of y and is complete for all y ~ y, .

A number of interesting questions remain unanswered
about this model. We have restricted our attention to the
convex regions of the nearest-neighbor interaction poten-
tial, and have shown that in certain regions of the phase
diagram the ground state must remain in the convex re-
gions. We have not yet been able to make any such claim
about the entire o.-y plane, and it is possible that in cer-
tain regions of the phase diagram the nonconvex regions
of the potential may actually be preferred. It is conceiv-

able that the model might show unexpected and interest-
ing behavior if the nonconvex regions were accessible and
even preferable. This possibility should be explored. It
would, of course, be desirable to put many of our results
on a firmer mathematical footing by, for instance, obtain-
ing a rigorous proof that there is indeed a true devil' s
staircase associated with this model. A more thorough
and complete investigation into the completeness of the
devil's staircase is also important, as this has serious im-
plications for the nature of the experimentally observed
transitions. Another question that might profitably be ad-
dressed is the question of universality in the transitions
associated with the devil's staircase. There is a hint of
scale invariance in the nature of the devil's staircase,
where between any two commensurate phases there is an
infinite number of commensurate phases so that any part
of the staircase looks rather like the whole. Shenker and
Kadanoff, "' and recently Jensen, Bak, and Bohr, have
found that various features of the destruction of the
KAM curves in the Frenkel-Kontorova model seem to be
universal and show scale invariance. The destruction of
the KAM curves in our model should be carefully exam-
ined with a view to answering questions about scale in-
variance and universality.
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