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The hydrodynamical problem of the onset of convection in a He- He mixture near the snperAuid

transition is reduced to a fifth-order dynamical system by a Lorenz-like truncation. The truncated

system is shown to reproduce the hydrodynamical results regarding the convection thresholds and

the effect of periodic modulation on the stability pattern. The reduced dynamical system is expected

to facilitate the study of nonlinear effects. Preliminary results near the convection threshold are

presented.

I. INTRODUCTIGN

The onset of convection in He- He mixtures near the k
point T~ is an interesting problem both theoretically and
experimentally because of the unique versatility of the sys-
tem. Convection in a binary mixture (a double-diffusive
convection) is generally more versatile than in a single-
component system because of the possibility of having
both stationary and oscillatory instabilities' at the on-
set. Among the different binary mixtures the He- He
mixture near the superfluid transition is most striking in
its properties. The mass diffusion which is small com-
pared to the heat diffusion away from Ts, as in any other
binary fluid, increases strongly near Tt, and diverges as
the A, point is reached, while the thermal conductivity at
zero mass current remains finite. The important ratio
of the two diffusivities (of heat and mass) is thus inverted
as T~ is approached. Furthermore, unlike any other
binary fluid the thermodiffusion coefficient becomes of
order unity near T~ and thus the effect of a concentra-
tion gradient in producing a heat current can no longer be
ignored. Experiments on this exceptional system were
performed by Lee, Lucas, and Tyler. ' It turns out that
the qualitative features of their results can be adequately
understood"' from a linear-stability analysis of the hy-
drodynarnic equations under idealized boundary conch-
tions. It was recently pointed out" that a frequency
modulation of the temperature difference between the
plates in a Rayleigh-Benard geometry may have a particu-
larly strong effect on the onset of convection in the nearly
superfluid He- He system. The nonlinear convective ef-
fects in this system have not been studied as yet, theoreti-
cally or experimentally.

In this work we perform a low-order truncation of the
hydrodynamic equations for the above system in a manner
similar to the Lorenz truncation' ' for the single-
component system and truncation of Da Costa et al. ' for
the thermohaline system. The motivation behind the in-
troduction of the truncated system is to facilitate the han-
dling of the nonlinearities. In the I.orenz truncation for
the single-component system, the nonlinearities can be
treated without much difficulty, but the correspondence
with the true hydrodynamical system breaks down near

the onset of the time-dependent state when steady convec-
tion is destabilized. This is so because the Lorenz syste~
does not give a stable periodic state (limit cycle) when the
steady convection state is destabilized whereas the true
hydrodynamic system does so. In the thermohaline sys-
tern, however, the numerical solutions of the actual hydro-
dynamic equations by Huppert and Moore' bear a close
resemblance to the analysis of the truncated system by Da
Costa et al. ' Since our system is also double diffusive,
we expect the correspondence with the actual hydro-
dynamic system to be preserved. Here, we first carry out
a linear stability analysis to establish that our truncated
system yields results identical to the full hydrodynamic
equations. Effects of the nonlinearity near the convection
threshold are treated next. The control parameter in our
system is then modulated and the effect on the convection
threshold studied. Once again the results are found to be
similar to those obtained from the full hydrodynamic
equations establishing the faithfulness of the truncated
systems in the vicinity of the convection threshold. The
onset of turbulence in our truncated system is planned to
be treated in a subsequent paper.

Et is worth mentioning that the fifth-order dynamical
system that we obtain from the truncation is, similar to
the Lorenz system before it, an interesting subject of study
in its own right. It is the simplest generalization of the
Lorenz model which provides the possibility of a Hopf bi-
furcation at the onset of convective motion. It is simpler
than the thermohaline system because unhke the latter
this has only one control parameter. The existence of four
characteristic parameters (the Prandtl number o., the
solute Prandtl number o/s, the ihermodiffusion parame-
ter p, and k, the ratio of concentration and thermal Ray-
leigh numbers) here as opposed to one (Prandtl number) in
the Lorenz system gives it greater versatility. Thus,
charting out the different routes to chaos for this system
should be an interesting study.

In Sec. II we give the hydrodynamic equations and i.n-

troduce our truncated system of nonlinear ordinary dif-
ferential equations. In Sec. III the various features of the
linear stability analysis are discussed, while in Sec. IV the
effects of a periodic modulation are studied. Section V
provides a brief summary.
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II. DYNAMICAL SYSTEM The temperature and concentration fields can be written
as

8 T A 2 DkT 2+(v V)T= V T+ V C,
p X p

(2.1)

The hydrodynamic equations governing the flow of a
binary fluid have been obtained by Landau and Lifshitz'
as

T( r) =Ti+ [(T2—Ti )/d]z

+b(t)c os(m. x/a )sin(mz/d )

+c(t)sin(2rrz/d ), (2.11)

DkT

at
+(v V)C=DV C+ V T .

T
(2.2)

Here, v is the velocity of flow; T, the temperature field;
C, the concentration field denoting the mass fraction of
He; D, the isothermal mass-diffusion coefficient; A, the

thermal conductivity in the absence of temperature gra-
dient; kT, the thermodiffusion; Cz, the specific heat at
constant pressure and concentration; and 7, the iso-
thermal susceptibility (BC/Bp)T, where p stands for the
chemical potential. The velocity follows the usual
Navier-Stokes equation

+(v V)v= ——Vp+g+vV v,
Bt p

(2.3)

p being the density; p, the pressure field; g, the accelera-
tion due to gravity; and v, the kinematic viscosity. The
fluid is assumed to be incompressible,

C(r)=Ci+[(C2 —Ci)/d]z

+d(t)cos(m. x /a )sin(m.z/d )

+e ( t)sin(2mz/d ) . (2.12)

The terms of the form cos(mx/a)sin(mz/d) in T(r) and

C(r ) indicate the distribution for a roll (as for the veloci-

ty field) while the sin(2vrz/d ) terms give the net heat flow
and mass flow due to convection. We now introduce the
above Fourier-series expansions in Eqs. (2.1)—(2.3) and
equate coefficients of like terms to obtain equations for
a(t), b(t), c(t), d(t), and e(t). The procedure for the
single-component fluid has been discussed in detail by
Mclaughlin and Martin' and for the thermohaline prob-
lem by Da Costa et al. ' Our system differs from the
thermohaline system in the existence of the two cross
terms in Eqs. (2.1) and (2.2) and the imposition of the
condition of Eq. (2.8). Straightforward algebra similar to
Refs. 14 and 15 leads to

V.v=0 (2.4)

and the equation of state is

p=p [1—a(T T)—P(C——C~)], (2.5)

where p~, T, and C are the mean density, temperature,
and concentration, respectively. The expansion coefficient

1 Bp

pm
(2.6)

aC
AT T

(2.8)

In the Rayleigh-Benard geometry that we treat, we as-
sume the plates to be separated in the z direction and take
the axis of the convection rolls to be in the y direction.
The stream function will be an ellipse in the x-z plane
when convection sets in and we describe this fact in the
leading order by the choice

1 Bp (2.7)
pm

measures the change in density of the mixture with
change in He concentration. By our definition, Il)0.
We assume that all experiments will be carried out under
the condition of vanishing mass current (steady state) and
impose the restriction

X=o( —X+Y+U),
Y= —XZ+ rX —Y+sU,

Z =XY—bZ+sV,

U=XV —krX —sU+sp Y,
V= —XU —sbV+sp Z .

(2.13)

(2.14)

(2.15)

(2.16)

(2.17)

Here, X, Y,Z, U, V are scaled versions of a, b, c,d, e, respec-
tively, o.=vCp/A is the thermal Prandtl number,
S=DCI /A is the ratio of solute to thermal diffusivities,
k=13k&/aT, p=kT/XC~T, and

r = [a(b,T)gd CI /vA]/(27vr4/4)

is the thermal Rayleigh number, while b is a constant
corning from geometrical considerations and is equal to
3 Note that while o., s, p, and k are constants of the

fluid (they depend on the mean temperature), the quantity
r is the control parameter. Unlike the thermohaline prob-
lem, here we have only one control parameter because of
the constraint imposed by Eq. (2.8). Equations
(2.13)—(2.17) constitute our model for the onset of convec-
tion in He- He mixtures near the superfluid transition.
In the next section we provide the linear-stability analysis
and study the effect of the nonlinear terms on the onset of
convection.

P(x,z, t) =a(t)sin(~x/a )sin(mz/d) (2.9) III. THRESHOLD AND ITS VICINITY

(2.10)

of the Fourier terms. The velocity components are ob-
tained from the. stream function using

aq a@~a= ~
uz=-

Bz Bx
0

We note that X= Y =Z = U = V =0 is a fixed point of
Eqs. (2.13)—(2.17). This is the steady conduction state.
There is no velocity field (X =0) and the temperature and
concentration profiles are linear as is characteristic of the
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X=o( —X+ Y+ U),

Y =rX —F+sU,
U= —krX+sp Y —sU .

We try the solutions

(X, Y, U) =(Ao~Bo, Co)

(3.1)

(3.2)

(3.3)

conduction state [see Eqs. (2.11) and (2.12)]. As long as
this state is stable, the fluid is at rest; when this state is
destabilized convection begins. We shall carry out a
linear-stability analysis to determine at what value of r
the conduction state is destabilized. To do so, we assume
X, Y; Z, U, and V are very close to zero and linearize
Eqs. (2.13)—(2.17) to obtain

quency of oscillations is

coo ——o.(1+s)+s(1 sp—) or—o(1. —k) . (3.7)

&=&o+&zX2 (3.8)

and obtain rz by solving Eqs. (2.13)—(2.17) to O(X ) for
X=P=Z= U= V=0. Straightforward algebra yields

If r p & rp, then stationary convection sets in and if r p & rp,
then the system shows oscillatory convection as the con-
trol parameter is varied. The above results are identical
with those obtained from the full hydrodynamic equa-
tions.

To study the nature of the bifurcation for steady con-
vection (i.e., ro & ro), we set

Inserting this solution in Eqs. (3.1)—(3.3) and demanding
that Ap, Bp, and Cp be consistently determined leads to
the condition

Zo(1+p ) —Vo(1+s ')
I'2 =

1+p —k(1+s ')

where

(3.9)

det

A, +o. —a —o.

—r A+I —s

kr —sp A+s
(3A)

b(ro+s)+ro —1
ZQ

(1+s)(b ps )— (3.10)

This leads to a cubic in A, with all three roots having nega-
tive real parts for r =0. We now have two possibilities as
p' Is Increased.

(i) The real part of at least one root becomes zero with
the imaginary part zero at the same time.

(ii) A pair of complex roots crosses the imaginary axis,
so that these roots are purely imaginary at a certain value
of r. If (i) holds then we have steady convection, while in
case {ii) we have a Hopf bifurcation and oscillatory con-
vection sets in.

To find the threshold value of r for steady convection,
we set A, =0 in Eq. (3.4) and obtain

1 —sfp= (3.5)
1+p —k [1+(1/s) ]

For the oscillatory convection, we require a pair of roots
to have the form +icuo at r = ro and this yields

1+(I/o. i)+(p /O. i)[1+(1/o ) —(p /o i)]
(3.6)

1 —k[1+(1/o. ) —(p /o ))]

where o.~=v/D is the solute Prandtl number. The fre-

and

p(ro+s, )s+b(ro —1)
Vp ——

s(1+s)(b ps )— (3.1 1)

Depending upon the parameters p, rp, s, and k, which are
fixed for a given experiment but can be varied by chang-
ing the mean temperature, the bifurcation can be subcriti-
cal (rz & 0) or supercritical (rz & 0).

For the oscillatory convection, we similarly set

F=Fp+ FpX (3.12)

l'Capt
The amplitudes now have the time dependence e and
r& is found to be

Zo[icoo+s(1+p )]—Vo(icoo+1+s)
r2 ——Re (3.13)

s(1 —p ) —k(1+s)+irido(1 —k)

where

rr(ro+ s )bs+. (ro —1 )os+i cuo(bs + r po s)—
o(italo+ I+s)[b s sp coo+—i&i)o(1+—s)b]

(3.14)

{ro+s)harp s+ab(ro 1)+~o~{1+cr+b) coo+—i coo{a—ro+s p ob orb)—.— —
o(icoo+1+s)[b s sp ioo+icuo(—1+s)b—]

(3.15)

For ran &0, the Hopf bifurcation is subcritical while for
r2&0, the Hopf bifurcation is supercritical. From Eq.
(3.13), one can compute the parameter values at which the
bifurcation changes from supercritical to subcritical. If r
is raised beyond the threshold of Hopf bifurcation, the
overstable state becomes a steady state as rp is ap-
proached. The steady state develops for r & rp as the bi-
furcation at rp is subcritical.

IV. EFFECT OF CONTROL
PARAMETER MODULATION

In this section we study an oscillating drive on the con-
trol parameter r. We replace r by r[1+ecos(cot)] and
study the effect on the threshold for onset of stationary or
oscillatory convection. Here, we restrict ourselves to
e && I and apply perturbation theory. Near the onset, one
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can linearize Eqs. (2.13)—(2.17) in X, Y, Z, U, and Vand
write the modulated system equations as

(4.1)X=o(—X+Y+ U),
Y=r [1+icos(cot)]X Y—+sU,
U= —kr[1+ecos(cot)]X sU+—sp Y.

(4.2) L/g)=/h) (4.9)

(4.3) which must be solved under the constraint

Eqs. (4.6), (4.7), etc., fixes-the critical values of r &, r2, . . .,
etc., and thus determines the critical value of r as an ex-
pansion in e. The solvability criterion can be formulated
by considering the inhomogeneous equation

For small e we expand

X—Xp+eX)+e X2+
Y= Yp+eY)+e Y2+

U= Up+eU&+e U2+

r =rp+6r~+'E r2+

(4.4}

Li f)=0.
One can construct the vector (f& ~

with the property

&ft IL=o
and then it follows from Eq. (4.9},

&ft lh) =&fI IL
I
g) =0

(4.10)

(4.11)

(4.12)

Xp

L Yp =0,
Up

(4.5)

X)

Ui

0
rpXpcos(cot)+r&Xp

—kr~Xp —krpXpcos(cot)

(4.6)

Inserting the above expansion in Eqs. (4.1)—(4.3) and
equating similar powers of e, we arrive at

r~ ——0 ~ (4.13)

We can now solve Eq. (4.6), X', Y~, and U~ and obtain

The orthogonality of the vectors
~ ft) and ~h) is there-

quired solvability condition.
To implement the above, we first apply the solvability

criterion on Eq. (4.6). In this case Xp, Yp, Up are time in-
dependent and hence (fI ~

=(apb pep), where ap, bp and
cp are constants. The vanishing of the scalar product
(which is a time average over one period of the modula-
tion) of Eq. (4.12) now leads to

X2

L Y2

U2

0
r ~Xpcos(cot)+r pX~cos(cot)+r&X'+r2Xp

—kr &Xpcos(cot) —kr pXicos(cot) —kr ]Xi —kr2Xp

i COG)+ 62
Xy =rpXpRe

1+l 2

where

Li ——so(1 —sp ) orps —1+p —k 1+—2 2 1

s

—co'(1+o+s),

(4.14)

(4.15)

(4.7)
Lz ———co+co[(1+s)cr+s(1—sp )+orp(k —.1)], (4.16)2

where L is the operator

8 +o —o
Bt

aL= —rp +1 —s
at

(4.8)

Gi ——o(1—k),

G2 ——os(1+p ) —k 1+—
s

(4.17}

(4.18)

krp —sp +s
Bt

We now study separately the stationary and oscillatory in-
stabilities.

(i) Stationary instability: To find r, in the presence of
modulation, we determine that value of

r=rp+E'ri+6 r2+ ' ' '2

at which the state X=Y=U=O is destabilized. At the
leading order in e, the answer is obtained from Eq. (4.5)
and is the same as that obtained in Sec. III. At this point,
the destabilization of X=Y= U=O now implies that Eqs.
(4.6) and (4.7) must be solvable for X~, Y~, U~,' X2, Yz,
U2,' etc. , under the condition that Eq. (4.5) is satisfied
with nonzero values of Xp Yp Zp. The solvability of

Using Eqs. (4.13) and (4.14) in the right-hand side of Eq.
(4.7) and applying the solvability criterion, we now obtain

rp (GpL~ coG~L2)—
r2= L2+L2

The correction can be of either sign depending on the fre-
quency and the parameters s,k, o,p. By a proper choice
of the parameters we can obtain a stabilization or a desta-
bilization and also control the magnitude of the effect. "

(ii) Oscillatory instability: In this case the system has a
natural frequency cop and the response of the system de-
pends very strongly on the frequency of the modulation.
As is usual in such cases, parametric resonance occurs at
frequencies 2copfn, where n =1,2, . . .-, etc. The response
is strongest for n = 1 ~ This is manifested by the fact that
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kr—pXpccos (copt )cos(2copt )

—kriXpc cos (copt )]=0
~ (4.20)

leading to

r~ ———
2

(4.21)

For frequencies co&2cop or more precisely outside a band
of O(@cop) about 2cop, the correction r& vanishes. In gen-
eral, for a frequency co= 2cotyr n, the first correction occurs
at O(e"). Note that at co =2cop and for e« 1, the effect is

there is a correction to rp at 0(e) when the modulating
frequency is co=2cop. The correction can be worked out
by applying the solvability criterion. The form of the vec-
tor (ft

~

is (abc)e ' and we obtain

1 ' — 2dt[rpXpb cos copt cos(2copt)+r~Xpb cos (copt)
0

always one of destabilization, i.e., the Hopf bifurcation
should set in before the threshold for the unmodulated
case is reached. Hopf bifurcation in the Lorenz system
under a modulation shows a similar behavior for small
amplitudes e.'

V. SUMMARY

To study the onset of convection and turbulence in a
He- He mixture near the superfluid transition, we have

reduced the nonlinear partial differential equations of hy-
drodynamics to a fifth-order dynamical system of coupled
nonlinear ordinary differential equations (2.13)—(2.17).
Linear stability analysis for convection thresholds of this
dynamical system and the effects of a periodic modulation
of the control parameter yield results identical with those
for the true hydrodynamic system. The truncated set al-
lows for the exploration of nonlinear effects. In Sec. III
we have studied the effect near the convection threshold
and in a subsequent publication we plan to report on the
effect near the onset of turbulence.
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