
PHYSICAL REVIEW B VOLUME 30, NUMBER 11

Multiple exchange in He and in the Wigner solid
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We use a multidimensional WKB calculation to determine the leading terms of a high-density
series expansion for the multiple-exchange frequencies in solid He. We also calculate, within the
same formulation, the first terms of a low-density series expansion for exchange in the two-

dimensional Wigner solid of electrons. The hierarchy between the exchange frequencies is dominat-
ed by the geometry of the lattice. Triple exchange is preponderant in the two-dimensional triangular
lattice. This result holds for potentials as different as the (cr/r)' (solid 'He) and the Coulomb po-
tential (Wigner solid). Three-particle exchange also dominates in the hcp lattice. We find for a hy-

pothetical high-density bcc He solid the same hierarchy as that deduced from the experimental re-

sults at physical densities: The planar four-particle exchange Kp and the triple exchange J, dom-

inate, the folded four-particle exchange K+ is much lower. For both Kz and J, the lengths of the
exchange paths and the tunneling barrier heights are practically the same. We expect these results
to be qualitatively valid at physical densities and understand why K& and J, depend similarly on the
molar volume.

I. INTRODUCTION

It is now well established that three- and four-particle
exchange processes play an essential role in hard-sphere
quantum solids. ' Most of the striking magnetic properties
of bcc solid He (phase diagram, high-temperature series
expansions of the thermodynamical quantities, spin-wave
spectrum, etc) have been interpreted with a multiple-
exchange Hamiltonian including only planar cyclic four-
spin exchange Kz and three-spin exchange J, . ' There is
also evidence for multiple exchange in other quantum
solids: For example, three-molecule exchange can explain
the motional narrowing of the resonance line observed for
HD impurities in hcp para-hydrogen. .

Calculation of the multiple-exchange frequencies from
first principles is a large task. It requires an accurate
evaluation of the wave function in low-probability re-
gions. Simple approximations based on products of one-
particle wave functions and Jastrow functions are unable
to describe the behavior of the exact wave function in
these low-probability regions. ' Consequently, early cal-
culations using these products ' are irrelevant. Reason-
able approximations of the wave function, taking the
hard-core correlations correctly into account, have been
proposed by Delrieu et al. ' They lead to the conclusion
that three-particle exchange dominates in triangular
geometry (two-dimensional triangular lattice or three-
dimensional hcp lattice), whereas, two-, three-, and four-
particle exchange are of the same order of magnitude in
the bcc solid. In bcc He these approximations are, how-
ever, too rough to determine the hierarchy between the
two kinds of four-particle —exchange cycles involving first
neighbors: planar (Kz) and folded (KF). (The experimen-
tal results can be explained only if

~

Kp
~
) Ap

~

. )'
Exchange calculations become much easier if we re-

strict our ambition to the high-derisity limit. For He at
high density, the kinetic energy of the atoms (of the order
of R /2ma, a representing the interatomic spacing) be-

comes smaller than the potential energy [repulsive part of
the Lennard-Jones potential, increasing as (o/a)' ]. We
can apply a multidimensional WKB (quasiclassical) ap-
proximation and determine, for each exchange frequency,
the leading terms within a high-density series expansion in
a/o. . We have published the main lines of this calcula-
tion in Ref. 7. The multidimensional WKB approxima-
tion was also used in a paper published at the same time

by Avilov and Iordansky.
The purpose of this paper is to present the details of

this calculation and to apply it to various lattices. All
kinds of two-, three-, and four-particle exchanges are in-

vestigated and compared for the two-dimensional triangu-
lar lattice and the three-dimensional hcp and bcc lattices
(keeping in mind that for He this approximation is more
appropriate to the triangular and hcp lattice than to the
bcc solid, which is not stable under high pressure). We
also perform. the same WKB approximation with other in-

teracting potentials. In particular, we investigate two-,
three-, and four-particle exchange in a two-dimensional
Wigner solid of electrons.

For the Coulomb potential, the quasiclassical approxi-
mation applies at low densities when the kinetic energy, of
the order of A /2ma, becomes much smaller than the po-
tential energy, decreasing in l/a; we determine the leading
terms of a low-density series expansion in 1/a. The fol-
lowing results are obtained: In a two-dimensional tri-
angular lattice three-particle exchange dominates; the
hierarchy between two- and three-particle exchange is the
same with interactions as different as the 1/r and the
1/r potentials; it seems to be essentially determined by
the geometry of the lattice. Three-particle exchange also
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dominates in the hcp lattice.
In the bcc lattice with 1/r' potential, the leading terms

of our high-density series expansion give the following
hierarchy: Ep (planar four-particle exchange)
(three-particle exchange) & JNN (two-particle exchange)
& St+ (six-particle exchange) & EF (folded four-particle
exchange). (NN denotes nearest neighbor. ) This calcula-
tion is the first which predicts a precise hierarchy between
various exchange frequencies in bcc He. This hierarchy
is strikingly the same as that assumed in the phenomeno-
logical model which fits the data, in particular, folded
four-spin exchange appears to be negligible with respect to
planar four-spin exchange.

As shown in the triangular lattice, the hierarchy be-
tween the exchange frequencies depends essentially on the
lattice geometry and not on the precise shape of the poten-
tial. We expect that the results found in the high-density
limit are still valid at larger molar volumes where the
kinetic-energy effects can be included to some extent in an
effective potential (see Sec. V). For the dominant ex-
changes, Kp, J„and JNN the lengths of the exchange
paths are practically equal and the heights of the potential
barriers comparable; we expect this result to be still ap-
proximately valid at lower densities and understand the
reason why, according to the experimental data, J, and
Kz must vary according to similar laws in terms of the
density. ' We thus remove the last objections raised
against the multiple-exchange model.

This paper is presented according to the following
scheme: The main hypotheses which led to the concept of
a multiple-exchange Hamiltonian are recalled in Sec. II.
The calculation of the exchange frequencies is presented
in Sec. III using the imaginary-time version of the Feyn-
man path-integral formalism. The multidimensional
WKB series expansion is derived in Sec. IV, and is applied
to the two-dimensional triangular lattice with various po-
tentials [(o/r)', full Lennard-Jones potential, Coulomb
potential] and to the three-dimensional hcp and bcc lat-
tices.

In Sec. V we discuss the extrapolation of our calcula-
tion to He at physical densities, briefly review earlier
(crude) approximations which have been proposed for the
low densities of the bcc phase, and discuss the variations
of the exchange parameters with the molar volume.

II. GENERALITIES
ON THE MULTIPLE-EXCHANGE

HAMILTONIAN

In He the Hamiltonian does not depend explicitly on
the spins, and hence the Schrodinger equation only deter-
mines the orbital part of the wave function. The spin
dependence appears by writing the antisymmetry condi-
tion for the total wave function.

Since the Hamiltonian is invariant by any permutation
of the coordinates, its eigenvalues and eigenvectors are
classified according to the irreducible representations of
the permutation group. Each of these representations can
be associated with a Young diagram. ' The total antisym-
metric wave function g can be written as a bilinear prod-
uct of orbital wave functions P&"' and spin-wave functions

(o)
V

(2.1)
p)v

The 1(& have the symmetry corresponding to a given rep-
(r)

resentation of the permutation group (associated with a
given Young diagram) and the g'„' belong to the represen-
tation associated with the complementary Young diagram
(obtained by exchanging the lines and columns).

The energy levels can be determined by first considering
the orbital part of the wave function and solving the
Schrodinger equation in the 3X-dimensional space
representing the coordinates of X distinguishable parti-
cles. We take a localized picture of the solid. The atoms
spend most of the time at positions around the lattice sites
and exchange occurs rarely (in bcc He the exchange fre-
quency is 10 smaller than the Debye frequency). Fol-
lowing Thouless, ' we call the regions of the 3X-
dimensional configuration space corresponding to the
highest probability for the wave function "cavities" (each
particle is around a given lattice site).

There are X! cavities Qp corresponding to the X! per-
mutations P of X distinguishable particles on X labeled
sites. If there were no exchange, each cavity would be iso-
lated and the ground state would be N! times degenerate.

If the exchange effects are small, but finite, the degen-
erate ground state splits into a band which can be reason-
ably described by a hopping Hamiltonian between isolated
pairs of cavities,

(2.2)

P" represents the- permutation operator acting on the
coordinates. Jz corresponds to the energy splitting for
tunneling between two isolated cavities A,z and Az. The
summation is extended to the N! permutations P of X
particles.

From relation (2.1) and related remarks, A,„[relation
(2.2)] can be expressed as well in terms of the permutation
operators P' ' acting on the spin variables,

(2.3)

The factor ( —1)t' (p, parity of the permutation) comes
from the relation

PqT P(r)P(o )qT ( 1 PqT

(For more details about the derivation of the exchange
Hamiltonian, see Refs. 1 and 14.)

As first shown by Thouless, ' even and odd permuta-
tions lead respectively, to ferromagnetism and antifer-
romagnetism. Consequently, all constants Jz in relation
(2.3) have the same positive sign. Note that here we take
the opposite-sign convention of that of Ref. 1, in the defi-
nition of the Jp s. We adopt this choice because it will be
more convenient in the following to deal with positive fre-
quencies.

III. CALCULATION OF THE EXCHANGE
FREQUENCIES

In this section we choose an approach based on the
imaginary-time version of the Feynman path-integral



6434 30

method. ' We suggest a simple scheme to compare the
exchange frequencies, using a Monte Carlo integration
(this is certainly the most efficient method for future ex-
change calculations at low densities). The quasiclassical
approximation is then derived from this approach in a
straightforward way.

A. Exchange via path-integral methods

2I dx&= f d9 — + V[X(9)] (3.2')

and T plays the role of an inverse temperature.
If IE„,

~ P„)I represents a complete set of eigenstates
of the Hamiltonian, the left-hand side of (3.1') can be ex-
panded,

The probability amplitude for going from the initial
configuration XI at time —t/2 to the final position Xp at
time t/2 is expressed as (see Ref. 15)

( Xp
~

e ' ' "'
~
Xt ) =C f [dX]e

where H is the Hamiltonian, So is the action
'2

(3.1)

s,=f „ m dX
2

—V[X(r)] (3.2)

and [dX] means the integration over all paths X(r) obey-
ing the boundary condition

X(r= —t/2) =Xt, X(r=+t/2) =Xp .

(3.3)

At large T, T &&trt/Eo (Eo is the ground-state energy), the
leading terms in (3.3) come from the lowest-energy modes
of the two coupled cavities Qt and Qp:

~ g ) with energy
E =ED —Jp and

~

g") with energy E =Eo+J„.
In the small exchange limit the amplitudes of the wave

functions
~ g ) and

~ g ") at the cavity centers are practi-
cally the same and are equal to the amplitude yo of the
wave function for two isolated cavities,

C is a normalization constant.
For our exchange problem, XI and Xp represent,

respectively, the centers of the two cavities Al and Ap.
XI. 3X-particle configuration, a particle number i be-

ing at site R;,

r1 ——R1,

r2 ——R2,

With these conditions, relation (3.3) leads to

(Xp e Hr'"~Xt)=2cpo2e ' sinh

If we choose T such that

A/Eo « T «A/Jp,
we obtain, from (3.1)—(3.5),

(3.4)

(3.5)

r =R, ,

Eo T/R

J = f [dX]
2T+o

(3.6)

1~=R~

Xp.. configuration deduced from XI by the permuta-
tion P of v particles,

We first need an accurate determination of the ground-
state energy Eo and of the wave function yo for two iso-
lated cavities in order to apply (3.6).

However, the ratio between two exchange frequencies
could be more easily evaluated in the following way. Let
us consider Bl and two permuted cavities: Qp corre-
sponding to the permutation P of v particles and Ap cor-
responding to another permutation P' of v' particles. The

Fo T/A
factors yo and e cancel if we evaluate directly the ra-
tio between the corresponding exchange frequencies Jp
and Jp,

r =R„

v+1 v+1 ~

&p /Jp ——f [dX]pe ~" f [dX]pe (3.7)

where [dX]p and [dX]p denote the integration over the
paths starting from the center of O,z at 0= —T/2 and
ending, respectively, at the center of Ap and the center of
Qp at 9=+T/2 [remember that T must obey the condi-
tion (3.5)]. The path integrals in (3.7) could be performed
by the usual Monte Carlo techniques. ' We suggest this
scheme as a good starting point for future exact calcula-
tions of the exchange frequencies at all densities. It is in-

teresting to investigate first the hierarchy between various
multiple-exchange frequencies in the simple quasiclassical
limit.

r~ ——R~ .

S is the Euclidean action,

[where n PJ(j)].
The parametrization of the paths X(r) by an imaginary

time (r= t'9) leads—to the imaginary-time version of the
path-integral equations,

C f [dX]e r(31)—
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B. Quasiclassical limit l. 8'ith the Lennard- Jones pair-interaction potential

md X,i
g2

= V V(X,i) (3.8)

If A' /m, is small, the integrals in (3.6) and (3.7) are
dominated by the path along which the action S is sta-
tionary, 5S=O. The condition 5S=O applied to (3.2')
leads to

g2 N

2
Ag( p)+4e gma ij =1

a. Expression of the true function. In reduced units,
p =(r, /a, r2/a, . . . , r&/a) (a is the distance between
first neighbors), the Schrodinger equation is written as

12

Ip Jf

( V' represents the gradient), which is the equation for the
classical trajectory X,~(8) of a particle moving under a po-
tential —V (the origin of the sign inversion comes from
the parametrization with imaginary time).

Through the integration of (3.8) we obtain
2

dX,]
2 I dO

—V(Xd) =const= Eo . — (3.9)

Xp
=EOT+ f dx[2m(V Eo)]'~—

where dx denotes the are length along the line X,]. From
(3.6) we obtain the leading terms for the exchange,

Xp
Jt —exp —— dx [2m( V—Eo)]'~ (3.10)

where the integral is taken over the classical path for a
particle moving from Xl to Xp with energy —Eo under a
potential —V. In the literature, this exchange path has
been called the "most probable escape path" (MPEP). ' '

This relation defines the energy Eo. Using (3.2') and
(3.9), the classical action can be expressed as

2
Tn dX)S(X)= f d8 m +Eo—T/2 dL9

6

Ip;, I

In the WKB formalism, the wave function is written as

Q( p) =A exp —W( p) (4.3)

=Eg( p) . (4.1)

We take the usual 12-6 Lennard-Jones pair-interaction po-
tential (e= —10.22 K and o.=2.556 A for He). The
quasiclassical calculation is valid when the ratio of the ki-
netic energy to the potential energy is small. For rare
gases heavier than He we keep the full 12-6 Lennard-
Jones potential and choose the ratio A'/v'm as the small
parameter for the WKB series expansion.

In solid He, the quasiclassical limit is considered at
very high densities when the leading term (repulsive part)
of the Lennard-Jones potential, increasing as (o/a)', be-
comes larger than the kinetic-energy term in A' /a . The
appropriate parameter for the WKB series expansion is
the square root of the ratio of the kinetic energy to the
repulsive part of the Lennard-Jones potential,

5
a

(4.2)
(8mo. e)'~

IV. EXCHANGE IN THE QUASICLASSICAL LIMIT
FOR VARIOUS LATTICES

AND INTERACTING POTENTIALS

In this section we investigate the quasiclassical limit for
various lattices and interacting potentials. In solid He we
determine the first terms of a high-density series expan-
sion in o /a for the two-dimensional triangular lattice and
for the hcp and bcc lattice with interacting potential
V=4e(o/r)' (repulsive . part of the Lennard-Jones poten-
tial). For the heavier rare gases we keep the full
Lennard- Jones potential

V=4e[(o/r )
' (o /r ) ]. —

and perform the expansion in A'/v'm. We also consider
the two-dimensional Wigner solid of electrons with 1/r
Coulomb potential and calculate the first terms of a low-
density series expansion.

A. Formulations

The quasiclassical limit has been derived in the preced-
ing section from path integrals. However, for the reader
who is more familiar with the WKB formalism we shall
describe here this strictly equivalent approach. '

We assume that W( p ) can be expanded in a power series
of a/o or n=g'

W( p)=WO+aW~( p)+ . +ct"W„(p), (4.4)

with W~( p) independent of a.
We substitute (4.4) and (4.3) into the Schrodinger equa-

tion (4.1).
(i) At lowest order in g, we obtain

[VW.( p)]'+[V"( p)-E.]=o (4.5)

V' ( p) is the repulsive part of the Lennard-Jones poten-
tial,

N

)= X lp

Exchange corresponds to classically forbidden regions
with V' & Eo, and fYO is purely imaginary. The quantity
8'o' ———i8'o obeys the Hamilton-Jacobi equation for a
classical particle moving under a potential —V' with en-
ergy —Eo,' hence,

W;( p)= f ' [V"(p(O)) —E,]'"dO, (4.6)
Pp
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where the integral is taken along the classical trajectory
W(9) which makes the action 8'p stationary and 0 is
chosen as the arc length along the line W.

(ii) The next orders in n are W'5 and W6. the substitu-
tion of (4.3) and (4.4) into (4.1) leads to W1 ——8'z
=8'3 ——8 4

——0 and

IV* = Wp (0)+ —, $ g, q, W,"(0)+
(4.11a)

(4.11b)

V"—Ep = Vp(0)+ g g; V1(0)+ —,
' g g;ri, V2(9)+ .

—ib, Wp( p)+2V W'5( p) V Wp( p)=E5,

2V Wp(p) VW, (p)—

(4.7) (The linear term in W* vanishes' because the classical
path corresponds to a minimum of the action. )

The relations between the 8'z and V'„V2 are obtained
by inserting (4.11b) into (4.3) and substituting the result
into the Schrodinger equation (4.1).

At zeroth order in g; we again obtain the equation (4.6),

W5 leads in the phase factor of 1tj [relation (4.3)] to a term
independent of g. The term 8 6 coming directly from the
attractive part of the Lennard-Jones potential leads to a
term in a or g' in the phase of 1'.

b. Exchange frequency. In terms of the wave func-
tions, the exchange frequency Jp is expressed as a flux in-
tegral'

Wp(9)= f (Vp)'i (s)ds .

At first and second order with respect to the g s, the full
equations taking into account the curvature of the path
are intricate (cf. Ref. 17). As a rough approximation we
will assume that the curvature of the path can be neglect-
ed in the neighborhood of the median hyperplane X. In
this case we obtain

EA Es f,[y"(V q') q'(—V q")]dS
4m f I /san I

dU k

(4.9)

through the (3N —1)-dimensional median hyperplane X
equidistant from the configurations XI and Xp. U is the
half-space limited by X; g and 1'" represent, respectively,
the even and odd modes of the two coupled cavities Ol
and Ap.

The flux integral (4.9) can be rewritten in terms of the
function $1 ——

2 (g +1t ) localized in the cavity Al and

the function 1J'jz
———,(g —p") obtained from g1 by reflec-

tion with respect to the median hyperplane X,

The coordinate system ( 0, n; ) can always be chosen such
that the tensor V2 is diagonal; in this case the preceding
equation leads to

W2 ——0 for i~j

At the middle of the path, 0=1. (intersection XM of the
path with the median hyperplane X), (d/dO) Wp cancels;
hence 8'z is simply equal to the square root of Vz/2,

g2 f,[e (V1e2) —(V2)(V41)]dS
2m f y', d,

(4.10) IV2'-( V" )' /v'2 . (4.12)

We take into account that around the center of Q,l,
, and hence

Inserting (4.12) into (4.3) and substituting into (4.10) we
obtain

g dU ]dU
( Vo)'~'(I-)

Jp=c
2m g

exp ——f ( Vp)' (9)dO
g 0

Note that in relation (4.10) the functions $1 and 1t~2 do not
need to be normalized.

(i) Lowest order in g: We consider the classical path
(MPEP) W(0) joining the centers of the two cavities Al
and Qe. In the exchange configurations (V E&0) the-
wave function is maximum along W(0) and decreases ex-
ponentially in the directions perpendicular to the path.
As done in Refs. 17 and 18 it is convenient to introduce a
curvilinear coordinate system related to the MPEP. At
each point M of the path we define the local coordinate
system by the unit vector 0 along the tangent. to W(0)
and 3N —1 orthogonal unit vectors n; in the subspace
orthogonal to 0. We expand V —E0 and 8'* in a power
series of the coordinates ri; in the (3N —1)-dimensional
subspace orthogonal to 9. ' We write

(4.13)

where

X —]. f dr); exp
i=1

[ Vii (I )]1/2
9l f q'dv

(4.14)

represents the effective area of the section of the wave
function by the (3N —1)-dimensional hyperplane X.

The main contribution to the integral in the denomina-
tor comes from the regions close to the equilibrium con-
figuration XI. One can consider a reference frame
(0 ',f,' ) parallel to (0,$;) and centered at XI. In this
frame, a crude approximation of P is
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N —1

P—4(0) Q exp
l =1

[ Vii
( P) ]1/2

Il

g=(1/v'2)(aii/a)' ' . (4.19)

potential-energy terms (i.e., the ratio of the Bohr radius
aB —f—i 4~so/me to the lattice spacing a ),

where V'2" (0) represents the second derivative of V at
the cavity center XI(0=0),

g2 @12
V2'(0) =

(3'g '
p =x

At lowest order in g we obtain the same relation (4.13) of
the preceding paragraph with g given by (4.19) and V'
being replaced by V'= g, p;, l

f @ (0)d0.

Apart from a multiplicative factor

V"(P)

V2 (L)

Integrating the Gaussian factors we find

N —1 Vi2'(0)
CX =

V2'(L)
(4.15)

(4.16)

B. Determination of the exchange path (MPEP)

For a realistic comparison of two-, three-, four-, etc. ,
spin-exchange frequencies we need to consider the
v=2, 3,4, . . . , exchanging particles and a reasonable
number of their neighbors which move away to favor the
exchange. We take in each case about N =16 particles.
The problem of finding a classical path in a (3 X 16=48)-
dimensional space is not straightforward. We proceed by
successive approximations in the following way.

we are led to a one-dimensional problem of tunneling
along a curved path W(0) with potential Vo(0).

The factor az is independent of g (within this rough ap-
proximation) and Jp is dominated by the exponential fac-
tor

1. "Elementary" approximation

a. Sinusoidal potentia/ The po. tential V(t) along the
exchange path is approximated to its first Fourier com-
ponent,

exp ——f ( Vo )'~ (0)d 0
g 0

V(t) Eo ———,
' V—M[1 —cos(7rt/L)] . (4.20)

xp= exp ——f ( VD)' (0)d0
g xl

[(1—x)' ] " =10 ' —10 (4.17)

(ii) Higher orders in g: the next orders in g [see Sec.
IV A 2, Eqs. (4.7) and (4.8)] lead to a constant and a term
in g

' in the exponent of Jp.

(we use the symmetry of the path with respect to the
median hyperplane X to write the second member). We
find again the result expressed in Sec. III, relation (3.10).
We have not searched to evaluate o.z exactly, but we can
estimate its order of magnitude.

As we shall see in the following, in the critical exchange
configurations, the distances between the particles are re-
duced by no more than x=10—15%, and the total num-
ber of coordinates for which the available space is appre-
ciably reduced is of the order of n„=6—10; hence, nz
might be of the order of

t is chosen as the one-dimensional variable measuring the
length along the path with t=0 at XI and t=I. at X~
(2L represents the total length of the exchange path).
VM ——V(XM ) is the value of the potential at X~.

Within this simple approximation, the action

S= f [2m( V E)]' dt—
is straightforwardly calculated:

S= (2/~)( VM )' L .

As seen in the preceding paragraph, apart from a factor
representing an effective area for the section of the

wave function by the (3X—1)-dimensional median hyper-
plane X, the exchange frequency is that corresponding to
one-dimensional tunneling along a path W(t) with poten-
tial V(t) The solu.tions of the Schrodinger equation with
a sinusoidal potential V(t) are Matthieu functions (see, for
example, Ref. 20). Using the asymptotical relation
(20.2.31) of Ref. 20 (valid in the small exchange limit), we
write

2. With the 1/r Coulomb potential

In reduced coordinates p the Schrodinger equation is

2

, ~f(io)+4 2 li;, I

'=EN(C».
2ma 4~@0 a

Jp —AJ 4+2
$2

2m(La )

Q exp
7T g

(V )' L
3/2

(4.21)

(4.18)

Here, the quasiclassical limit applies at large interatomic
distances when the kinetic energy decreasing in 1/a be-
comes smaller than the potential energy decreasing in 1/a.
We also choose as a parameter in the WKB series expan-
sion the square root of the ratio of the kinetic-energy to

N
L= g (5p;) (4.22)

[ai is roughly estimated by the relation (4.16)].
b. Approximation of the path length The length L is.

approximated to the length of the straight line joining XI
to XM in the 3X-dimensional configuration space,

1/2
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g (r; —R;) = g (r; —R„) =0, n; =P(i) (4.23)

which simply means that XM ——( r, , . . . , r z ) on X is

equidistant from the configurations XI and Xz defined in
Sec. III. This relation can be expressed in a simpler way:

gr; (R; —R„)=0. (4.24)

where 6 p; represents the displacement of the ith particle.
c. Search for the optimum path. We have to search on

X for the configuration X~ which minimizes the action
S=(2/~)(VM)' 'L.

The median hyperplane X is defined by the equation

(we recall that the Xk's are vectors in 3X-dimensional
configuration space).

We apply the steepest descent method with 3Am vari-
ables to find the minimum of S. With m =5 and %=16
(240 variables), the minimization takes about one hour of
CPU (central processing unit) time.

As we shall see in the following, for two-particle ex-
change this exact calculation leads to an improvement of
the order of 10% in the value of S when compared to the
"elementary" approximation (1). For higher-order (more
symmetrical) exchanges, the two methods give the same S
within less than 2%', therefore the elementary approxima-
tion can be considered as sufficient.

We are led to find the minimum of a function S of 3X
variables (r&, . . . , r~) submitted to the condition (4.24).
We use a "steepest descent" method, proceeding in the
following way:

(i) We start with a small number of moving particles
(only the exchanging particles) and find an optimum con-
figuration.

(ii) We successively add the nearest neighbors of the
moving atoms in the critical exchange configuration X~
obtained at the preceding step and run the minimization
process again. We iterate the process, adding more parti-
cles each time.

(iii) We stop when taking new moving neighbors does
not change appreciably the minimum of S. We generally
end with %=16particles (i.e., -48 variables).

Z. Exact calculation

We cut the exchange path into n segments and evaluate
the action S through a straightforward trapezoidal in-
tegration formula. We apply the same steepest descent
method for minimization.

We consider n equidistant (3X—1)-dimensional hyper-
planes Xk defined by

(4.25)

where d represents the distance between Xt and Xp (Xo
corresponds to the median hyperplane 2, and X„ to the
hyperplane parallel to 2 and p'assing through XI ).

We take one configuration Xk on each hyperplane Xk.
The exchange path is approximated by the jagged line
XIX„& . . X&X~, and the action is evaluated through
the trapezoidal formula

n

S= 2 2 I[&V(Xk))'"+[|'V(Xk+i))'"I
l
XkXk+i

l

k=0

(4.26)

C. Results with various potentials
in the two-dimensional triangular lattice

We begin with the simplest two-dimensional case (tri-
angular lattice) and compare two-, three-, and four-
particle exchange with three different potentials: (i),
1/r' potential; (ii), full I.ennard-Jones potential; (iii), 1/r
Coulomb interaction. In all cases, three-particle exchange
dominates; this feature seems to be a characteristic of the
lattice geometry.

p'ith the repulsiue part of the Lennard Jones poten-tial:
V =4e(o /r)'

We use the high-density series expansion in a /o.
described in Sec. IVA. This calculation applies for a
two-dimensional adsorbed layer of He at high coverage.

a. Results within the sinusoidal appvoxivnation are
presented as follows.

(i) Exchange frequencies for a small number of particles
( v (6). The results of the sinusoidal approximation
described in Sec. III 8 1 are compared in Figs. 1(a), 1(b),
1(c), 1(d), and 1(e), respectively, for v=3, 4, 6, 2, and 12
particles (we adopt a classification corresponding to the
hierarchy obtained between various exchange frequencies).
These figures show the particle positions in the critical ex-
change configuration X~ on X. The particle displace-
ments are given numerically (in units of a), within the
(X, Y).frame at the upper part of each figure. We also in-
dicate the symmetry elements of each figure.

At the lower part of each figure we give the number X
of moving atoms, the maximum V= VM of the potential
on the median hyperplane X, the square of the path length

L =g(5p;)

and the product ~VL. Within our reduced units all
these quantities are dimensionless. The exchange frequen-
cy is, according to (4.21),

with X„=Xt and 5 V(Xk ) = V(Xk ) —V(Xt ) [we take
Eo=V(X;)].

~
XkXk+~

~

denotes the distance between Xk
and X)t„-+).

We start from the configuration obtained within the
straight-line approximation (1) with Xo =XM, and

Jp-ctr exp( —Sp /g),
with

4 a
Sp ———V'V L and g=

'ir (8mo e)'i

'5
(4.27)

Xk ——XM+k(XI XM)/n— In Fig. 2 we show for v=3 exchanging particles the
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FIG. 1. Multiple-exchange processes in the pD lattice with (1/
I p I

)" potential. The exchange processes are classified (a)—(e) b&

decreasing order of 111agnitude. The open circles represent the equilibrium positions. The atom positions in the critical exchange con-
figuration (on the median hyperplane X between the two permuted equilibrium configurations) are represented by cross-hatched (ex-
changing atoms) and solid circles (neighboring atoms). The symmetry elements of the figures are indicated at the upper part with the
displacements of the particles in the orthonormal X, Y frame, in units of a (interatomic spacing). Below each figure we give the num-
ber v of excha'nging particles, the number X of moving atoms, the height V= V~ of the potential barrier, the square of the exchange
path halflength L, and the product ~V L which determines the exponent in Ji. The unit for L is a, and V =+,,(a/

I p 1 I

)' is di-

mensionless.
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FIG. 2. Exponent V VL for three-particle exchange as a
function of 1/X (X represents the number of moving atoms).
At least 12 atoms are needed to obtain a reliable value.

evolution of v V L =(m/4)S& in terms of the number X
of moving atoms. It proves that a number of %=12—18
moving particles at least is required to obtain Sp. The
same conclusion holds for each v (the details are not re-
ported).

Three-particle exchange clearly dominates with
S3 ——8.57. Afterwards come cyclic four- and six-particle
exchanges with about the same action (S4-9.67 and
S6-9.72); the length of the exchange path is shorter for
four-particle exchange L =1.13 (compared to 1.28 for
v=6), but the potential is higher, V=44. 9 for v=4 (com-
pared to V=35.9 for v=6). Close behind follows two-
particle exchange with Sz ——10.50; two-particle exchange
involves a large displacement of the surrounding particles,
leading ta a length L =1.14 practically equal to that cor-
responding to the four-particle exchange process. The
critical configuration. is not symmetric with respect to the
Y axis. Instead of a symmetrical block rotation of the
pair, the system prefers the "vacancy-interstitial ' configu-
ration of Fig. 1(d), which increases the length L but
lowers the potential barrier. Owing to this disymmetry,
the number of equivalent exchange paths is s=4 com-

4

pared to s = 1 for all other exchange processes
(v=3,4, 6, . . . ). This leads to a factor 4 in the expression
of the pair exchange frequency J2. However, at very high
density the exponential factor dominates and the hierar-
chy of the different exchange frequencies is unaffected by
s. In conclusion, the competition between the height V~
of the tunneling barrier and the length of the exchange
path L leads to the following hierarchy for the most com-
pact cyclic v-particle exchange frequencies J,

J3 & J4-J6 &J2 .
(ii) Behavior of the exchange frequency for large v. The

exchange model would be meaningless if we had no 3rgu-
ment that for large v, J decreases monotonically and rap-
idly. We have investigated the most symmetric 12-atom
exchange [Fig. 1(e)]. As for six-particle exchange, the
critical configuration corresponds to a block rotation of
the exchanging particles, The potential barrier is twice
that obtained for six-particle exchange. The square path
length L =3.08a corresponds practically to v(a /2) .
Hence, we expect, for highly symmetric exchanges with
6 & v ~ 12 particles, a potential barrier proportional to v, a
length L proportional to ~v, and a rapid decrease of J
as exp( —const&&v). For very large v (v&15 to 20), as
shown in the Appendix, exchange via the creation and
separation of a pair vacancy interstitial will become more
favorable. The potential barrier (representing the energy

. for the creation of a pair vacancy interstitial) will become
independent of v and exchange will decrease more slowly,
as exp( —const && &v).

b. Exact calculation. We have performed the calcula-
tion described in Sec. IVB2 with m =5 for two- and
three-particle exchange. The configurations correspond-
ing to the five points Xo to X4 are shown in Figs. 3(a) and
3(b), respectively, for two- and three-particle exchange.
On Figs. 4(a) and 4(b) the lengths of the successive seg-
ments XkXk+& of the exchange path have been represent-
ed in the following schematic way: the equidistant hyper-
planes Xk are represented by parallel vertical lines. The
part of the exchange path between two hyperplanes Xk

TWO ~

~ ~ t ~ ~
0% ~ ~

~ 4 ~ ~
~ 0 ~

~ ~ ~ ~
(,a) 0

~ ~
~ ~ t ~ 0 ~ ~ g ~ ~O ~ ~ y ~ ~
~ p ~ ~ ~ z ~ ~t+0 ~ t ~ ~
0 ~ 0 ~ 0 ~ 0 ~

~ ~ I ~ ~ ~ ~ t ~ ~
0 ~ ~ ~ 0 ~
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~ 0 0 ~ 0 0 0 ~
~ ~

X3 X2

000'00 ~ ~ 0 ~ ~ ~ ~ 0 ~ ~ ~ ~ ~ ~ ~ 0 ' ~ ~ 000'~ '~ '~ ~ ~ ~ ~ ~ ~ ~ 0 ~ ~ t ~ 01~ ~ t ~ ~ 0 ~ ~ ~ 0
' ~ 00&~ede0~ie ~Pe(~eb +eiieb +~,
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tographic" vie of Ca) two- and (b) three-particle exchange. Five configurations corresponding to five points X
g pat situated o five equidistant hyperplanes XA: are shown. The convention for the representation of the particles is

the same as in Fig. 1.
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1

[Y(t)-E]2
(dimensionless) 8

TABLE I. Multiple exchange in the two-dimensional triangu-
lar lattice with full Lennard-Jones potential V =4e[(o/r)'
—(o/r)6] with r/cr=2'~6. Comparison of barrier height V,
path length L, and action Sr-V V L for v=3, 6, 4, and 2
exchanging particles.

0.2 0.4
I

t/a

Three particle
Six particle
Four particle
Two particle

19.96
16.67
22.45
23.57

1.15
1.64
1.32
1.43

4.79
5.23
5.44
5.80

[V(t)-E,] 2
8-

(dim en s i onless)

l I j

Our elementary approximation underestimates Sp
within 8% for two-particle exchange. It is particularly
accurate for three-particle exchange and gives Sz within
1%. We expect from this method the same accuracy for
higher-order exchange frequencies. We shall consider it
as sufficient for v~ 2 exchanging particles.

0.2 ' 0.4

FIG. 4. Square root [ V(t) —E]'~ of the potential along the
exchange path (solid curve) is compared with the sinusoidal ap-
proximation (dotted line): (a) for pair exchange; (b) for three-
particle exchange. The sinusoidal approximation is remarkably
good in the second case.

and Xk+t is figured by a segment of length ~XkXk+i ~.
In Figs. 5(a) and 5(b) we compare the values of the poten-
tial at Xk with the sinusoidal approximation.

For two-spin exchange this improved method leads to
Sz ——11.26 and L =1.15 (compare to St =10.50 and
L = 1.14 within the elementary approximation). For
three-spin exchange we obtain St ——8.65 and L = 1.07 (in-
stead of St ——8.57 and L = 1.05 in the elementary approx-
imation).

2. Results with the full Lennord Jones poten-tial:
V =4@go /r) 2 (cr/r)6j—

In this subsection the mass is assumed to be large and
the &KB series is written with expansion parameter
irt/Vm. The interatomic spacing a is chosen to corre-
spond to the minimum of the Lennard-Jones potential,
a=au ——2' o. Note that for rare gases heavier than He,
the density of a complete monolayer adsorbed on a sub-
strate corresponds practically to a =oo (see, for example,
Ref. 21).

The position of the atoms in the critical exchange con-
figuration are practically those of Fig. 1 with slightly
larger displacements. Table I shows the values of Vst,L, and v VL for v=2, 3, 4, and 6 exchanging particles.
The lengths are still expressed in reduced units with
respect to ao. V~ is dimensionless and the exchange fre-
quency is

I I

z) z,
Xl

hg (b)
Z, Z2

exact caRutation

straight line

approximation

straight line

approxim.

2 = 1/Fz

T. EXCHANGE

x,

~4

~0

d/2 = ht2
~+

I

~ THREE-PART EXCHANGE

XI

0 0.2 0.4 06 &ia
Xl

0

I

0.2
I I I I

0.4 0.6
I

0.5 d(a

FIG. 5. Image of the exchange path. Five equidistant hyperplanes Xk are represented by vertical lines. Distance between the
centers of the two cavities is d; distance between two consecutive hyperplanes Xk and Xk+& is d/(2)&5). The segment LkXk+]
represents the length of the exchange path between two consecutive hyperplanes. The dotted line represents the length of the ex-
change path within the straight-line approximation (L =[+,. , (5p;)2]'~ ). (a) represents two-particle exchange; (b) represents three-
particle exchange.
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P(Z) =Vm erfc(Z)/Z, (4.32)J„-exp

The hierarchy obtained is practically the same as in Sec.
IV C 1 with dominant three-spin exchange; then come six-
and four-particle exchanges with the same order of mag-
nitude. Pair exchange is still smaller.

where erfc(Z) denotes the complementary error function,
oo

erfc(Z) = e " du .
V7r

We write:

3. Exchange with the Coulomb interaction potential
(signer solid)

fr RI
g P(

I

G
I
/2e) exp(iG r)

(4.33)
As explained in Sec. IVA2, we determine the first

terms of a low-density series expansion in 1/a. We use
the same methods as in the preceding subsections, IV C 1

and IVC2, with some complications due to the diver-
gence of the 1/r sums.

(i) The interaction energy El(r ) of one electron at posi-
tion r with all other electrons fixed at the lattice sites Ri
(l&0) is determined with the aid of the usual Ewald
transformation. We use the integral representation

The interaction energy

E,(r)=g 1/I r —R,
I

l~o
is obtained by subtracting 1/

I
r

I
from the preceding rela-

tion, (4.33):

E,(r)= gy( I
Gf/2e)exp(iG. r)

Sg

2 ~ —~2~ ~ —RI )

dQ e (4.29) +
7r ieo

g exp(iG r) exp
$Q

G
4Q

(4.30)

s =a V 3/2 is the area of the unit cell and the sum g-G
is extended to all vectors G of the reciprocal lattice.

We use the usual separation of the Ewald method,

and the Ewald generalized 8-function transformation in
two dimensions,

+exp( —u
I
r —Ri

I
)

I

(4.34)+ —P(~f r I) —-
77

We note that (4.33) and (4.34) contain one divergent term,
(1/I G

I
)-

It is easily proved that the last term in the large
parentheses tends to a constant 2e/V'n wh—en

I

r
I

~0.
If we are only interested in calculating energy differences,
AEI(r)=EI(r) EI(0), the —divergent term in 1/

I
G

I

disappears:

r —Ri
I

=2 +exp(iG r)
5

G

1
X exp

o u 4u

&EI(r)= g P( I
G

I
/2e)[cos(G r) —1]$6'

G@0

+ —2 I:4«l r « I
) —0«—

I
RI

I )]
7T )~0

+ —P(~f r I)— +
7r fr

I

vw
(4.35)

(4.31)

the right-hand side of (4.31) being independent of e. With
obvious variable changes both integrals in (4.31) can be
expressed in terms of the function

Following Ref. 23 we take the separation e=(vr/s)'
which symmetrizes the roles of the sums over G and R&
in relation (4.35). Using the fact that the reciprocal lattice
is obtained from the direct triangular lattice by a rotation
of ~/2 followed by the similarity of ratio 2~/s, we write

KEI(r)=s ' Q cos (Ri"rs+Rfr") —2
l~o s

1/2

Rls

1/2

+p fr —Rif

1/2

s —I/2. y s
fr

f
+2.— (4.36)

where Rl and r are the components of Rl and r in the
orthonormal (x,y) frame related to the direct lattice.

(ii) For % moving atoms, the energy difference b V be-

'I

tween the equilibrium position (r; =R;) and a given con-
figuration (r,' =R;+dr;) is obtained from (4.36) by the
following sum over the K displaced atoms:
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b, V= g EEI(hr;)

jv

g ( [ r,' —r J f

'+-
/
R; —R,

/

—
/
r,' —Rq /

' —
/
R; —r ~.

/

') . (4.37)

(iii) From the relations (4.36) and (4.37), the search for
the exchange path and the exchange calculation are per-
formed according to the method described in Sec. IV B.

From (4.13) and (4.21) we have

J„=a,4v 2
2m(La )2

( V. )1/2L

where

4 ( V )1/2L
X exp

77 g
(4.38)

a&
1/2 2& 4~&o

Qg =
me

is dimensionless; the length unit for L is a.
Three-particle exchange still clearly dominates with

(VM)' L =0.68. Then come two- and four-electron ex-
change with the same exponent, (VM)'/ L=0.76. There
are significant differences in the critical exchange config-
urations, compared with the results obtained with the

is the Bohr radius.
The particle configurations at the middle of the ex-

change path and the corresponding values of V= V~ and
L are given in Fig. 6 for v=2, 3, and 4 exchanging elec-
trons:

VM —g a/~ r; —r

1/r ' and the full Lennard-Jones potential.
(i) The displacements of the neighboring particles are

reduced, and the lengths L, of the exchange paths are
smaller and increase monotonically with the number v of
exchanging electrons: L =0.85, 0.95, and 1.05 for v=2,
3, and 4, respectively.

(ii) The critical exchange configuration for pair ex-
change is symmetric with respect to the X and Y axes.
[For a 1/r' potential, the repulsion is stronger; conse-
quently, the action Sz-(VM)' L is decreased by putting
the exchanging particles in a dlsyrnmetrical configuration
for which the length L is larger but the potential barrier
VM is much smaller. ]

With dominant three-particle exchange, the two-
dimensional Wigner solid will be ferromagnetic at least at
low densities. This answers a question raised a long time
ago. Herring was the first author to point out that
multiple-exchange effects could be important in the
%'igner solid as well as in solid He.

The two-dimensional signer solid has been observed
for electrons on bulk liquid He or on He films adsorbed
on solid neon. The highest densities reached are —10 on
liquid He (Ref. 25) and —10' on thin He films adsorbed
on neon (Ref. 26). The two-dimensional electron fluid is
obtained at much higher densities in semiconductor inver-
sion layers.

It is interesting to illustrate (4.38) with some numerical
values. The Bohr radius is a&-0.53 A. Let us take
a =50 A —100a~ corresponding to a density of
4.6&& 10' e/cm . The parameter g=0.073 is sufficiently
small, and we expect our quasiclassical limit to be still
valid. For three-spin exchange in a free-electron surface,
we obtain

J3/k~ ——2901m~ exp( —11.86) K=0.02nz K

(az is of the order of 10 ' to 10 ). Unfortunately, the
electron densities now obtained at the surfaces of liquid
He on neon are too low compared to the density we took

V L' QL
2 0.79 0.73 0.76

"I c0
I
I

V L' gL ~ V L' /EL
3 0.51 0.91 0.68 4 0.52 1.11 0.76

A
—~ —— ~ ——~

X

~ Q ~

~ ) 0

~ ~A

~ ~

~ ~ ~ ~ ~ ~

A(0.5;0.300) B(0;0,l 50 )

C ( 0;0.030)
A(0. 5;O. ~ 95) e ( 0;0.«0)

Q (0.025; 0,014 j
A (0.1 l2; 0.490)
B (0.065 ~ 0.036)

FIG. 6. Multiple exchange in the two-dimensional electron Wigner solid. The open and solid circles represent, respectively, the
equilibrium and critical configurations for the electrons. The particle displacements are indicated (in the X, Y frame) below the figure.
On the top we compare the potential barrier V (dimensionless), the square length of the path (units of a ), and the action ~V L.
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in this example, and exchange effects are not measurable.
Much higher electron densities are obtained in semicon-

ductor inversion layers. Let us give some data for sil-
icon. The effective mass is I =0.2m and the dielectric
constant is e =Seo. Consequently, in the preceding formu-
la the Bohr radius is replaced by

g~ —40a~ —21.2 A
0

Let us take a=.2000 A corresponding to a density of
2.9&& 10 e/cm; we have g=0;073 and

J3 /k~ -9ctt exp( —1 1.86) K-ct&6.4 X 10 ' K

The usual minimum densities now obtained in silicon de-
vices are of the order of 10' e/cm . For such densities
the ratio g of the kinetic-energy to potential-energy
terms is of order 1 and the quantum fluctuations destroy
the Wigner solid. Intermediate densities are needed to test
our predictions.

4. Conclusion

JT
JT
K,q

J2
JT
Kp
Ep
J2

53.7
60
57
79
76
67
69
70

1.00
1.00
1.14
0.935
1.02
1.20
1.27
1.30

7.33
7.75
8.09
8.60
8.83
9.00
9.38
9.54

six kinds of four-particle exchange cycles. Two are pla-
nar: one forms a square (IC,'q) and the other a parallelo-
gram (it&), and four are folded.

TABLE II. Comparison of barrier height V, path length 1.,
and action Sp —V'V L for the most important kinds of two-,
three-, and four-particle exchange in hcp He. The exchange
constants are classified by decreasing order. The primes refer to
exchange cycles out of the basal plane.

In the two-dimensional triangular lattice we have found
dominant three-particle exchange with various potentials.
It seems that this property is essentially related to the lat-
tice geometry and does not depend on the precise potential
shape, provided it is repulsive.

D. Exchange in hcp solid He

We now investigate the three-dimensional hcp lattice in
the high-density limit with the 1/r' potential. Even if
we restrict our calculation to permutations involving only
first neighbors, there are a lot of two-, three-, and four-
particle exchange cycles in the hcp lattice.

Exchange &n the basal planes

The arrangement of the atoms in. a basal plane is tri-
angular. First, we have to consider two-, three-, four-,
and six-particle exchange in that plane. There are two
kinds of three-particle exchange cycles, depending on the
position of the nearest atoms in the upper and lower
neighboring planes. We have

(The striped circles represent the exchanging atoms; the
open circles represent the atoms of the neighboring

planes. )

It is obvious that the atoms of the neighboring planes
leave more free space for exchange in the first case, and
we expect JT ~ JT. There is only one kind of two-particle
exchange, J2, and one kind of four-particle exchange„Ãz.
We also consider the most symmetric six-particle ex-
change, Sl&.

2. Exchange cycles out of the basal p/ane
i

We have one kind of two-particle exchange, J2, and one
kind of three-particle equilateral triangles, JT. There are

3. Results

We have investigated all these kinds of cycles. The re-
sults are summarized. in Table II, in which the exchange
frequencies are classified by decreasing order of magni-

Ail folded four-particle exchanges and six-particle
exchange are negligible [with ( Vst )'/ I. ~ 9.75]; the details
are not reported.

Figures 7 and 8 represent the critical exchange configu-
rations for the four-dominating processes. Three-particle
exchange still dominates; triple exchange in the basal
plane (JT) is larger than out of the basal plane (JT); next
comes square four-particle exchange (K,'q) and pair ex-
change (J2 ) out of the basal plane.

It is interesting to estimate an order of magnitude of
JT /JT for the lowest densities of the hcp phase. In the
high-density limit the exponents SJ and Sq differ byT J

)vo!I 0~$ ' I~~c
~~%~o

O~o
)0

~ projection
in the basal
plane of the
atoms of the

nea rest planes

N V L2 ~VL

3 32 53.7 1.OO 7.33

A (- O.O66;0.538;O)

8 (0; -0.1 91; 0 )
C(0.058~ —0.QQ5;0)

D (0;—0,015;+0.014)
E(o; o; -0.0«)

FIG. 7. Three-particle exchange JT in the basal plane of the

hcp lattice. The figure is invariant by rotation of 2~/3 around
the axis perpendicular to the basal plane and passing through 0.
The open circles are the equilibrium positions. The exchanging
atoms are the cross-hatched circles, and their neighbors in the
basal plane are denoted by the solid circles. The starred circles
represent the projection of the atoms of the upper and lower

neighboring planes. The displacements of the atoms in an
orthogonal X, Y,Z frame are indicated with respective units

a, a, c; and c =a V 8/3 is the height of the elementary cell.
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A (-0.066;0.237; 0.280)
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C (-0.435;-0.052;-0.220)

0 ( 0;0.073;-0.06 9 )

E (0150;0.010;0.057)
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A(0. 5; 0.009; 0 070 )

B (0.152;-0.289;-0.25)

C (0.040; 0.061;-0.028)

0 {0; 0.052; 0.06 2 )

E {0; 0.044; 0.001 )

F{0; 0.050;0.000)

0---4 ~Q
I ) ~ I

Qi

aa Oa w ~ ~ ~ ~ ~ a ~ e i ~

'P N V L2 +V L

16 & 9 0.935 8.60

A (-0.460; -0.1 97; 0.244)

B(-0.115;0.031;-0.054)

C {-0.077;0.072; -0.048)

FIG. 8. (a} Three-, (b) square four-, and (c) two-particle exchange of the basal plane in the hcp lattice. The exchanging atoms are
represented by solid circles. The open circles stand for the equilibrium configurations. The neighboring atoms in the critical configu-
ration are striped circles; horizontal- and vertical-striped circles represent, respectively, atoms of successive planes parallel to a basa
plane. (a) is invariant by symmetry with respect to the plane perpendicular to AB and passing through 0. (b) is invariant by symme-
try with respect to the center 0 of the square and with respect to the plane perpendicular to AB and passing through 0. (c) is invariant
by symmetry with respect to 0. For each exchange process, we compare the potential barrier p; the path length L (unit is the intera-
tomic distance ai and the product V V L. The numbers in parentheses indicate the particie dispiacements in the orthogonai ~ y, Z
frame with respect units a, a, c =a v 8/3.

about 5.6%. Let us assume that this relative difference
remains of the same order at lower densities. For
V=19.5 cm /mol, the exchange frequency in hcp He,
obtained from nuclear magnetic resonance, is of the order
of 2)&10 mK. The Debye temperature is OD —30 K.

The order of magnitude of 5 is given by

JT/k~ —8D exp( —g) .

The preceding values lead to



6446 M. RQQER 30

S= ln(kgOD /JT)=14 .

%'e conclude that

S, —SJ -&&X5.6X10-'-0.g
2

limit. As we have shown, in the two-dimensional lattice
the hierarchy between the multiple-exchange constants is
essentially related to the lattice geometry; we expect that
the hierarchy found in bcc He, in this theoretical high-
density limit, remains unchanged at lower densities. We
take as pair interaction V, the attractive part of the
Lennard- Jones potential, (cr/r )

'

replacing the transposition operators H,J by their expres-
sions in terms of the Pauli matrices,

H;~ = —,'(1+o.; o.i),
and adding the inverse permutation, we obtain

ijk+(~ijk) 2(+i +j++j +k+~k +i)++ '

This relation proves that triple exchange leads to a
Heisenberg Harniltonian with nearest-neighbor interac-
tions.

Now, we have to distinguish pairs of first neighbors in
the basal plane from pairs out of the basal plane. Let us
take a pair in the basal plane: it contributes to one cycle
in the basal plane (JT) and two distinct cycles out of the
basal plane (Jr). Now, a pair out of the basal plane con-
tributes to four distinct cycles Jl-.

The effective Harniltonian is

(4.39a)

where the sums g and g ' extend, respectively, to pairs.
in the basal plane and out of the basal plane, and

(4.39b)

and with Jr /Jr-2 we have J, /J'& -1. Hence the aniso-

tropy will be small at the lowest densities. It will increase
with the density. This system has a positive Curie-gneiss
temperature,

8=3(J&+J'~ ) =3(JT+6J&) . (4.40)

Note that we have neglected square four-particle ex-

change K,'q. Although it is smaller than triple exchange,
it introduces some "frustration" and could lead to exotic
ordered phases.

E. Results in a bcc lattice

At physical densities the kinetic energy of bcc He is of
the same order of magnitude as the potential energy, and
the %'KB expansion limited to the first terms is certainly
unrealistic. However, it is interesting, from a theoretica
point of view, to determine in this geometry the first
terms of the high-density series expansion in a/o. and to
compare various exchange frequencies in this hypothetical

The same reasoning leads to JT /K,'& —'4 and Jz- /Jz —10.
Hence, triple-exchange processes dominate.

A three-Spin permutatiOn H,'Jk' Can be expreSSed aS a
product of two transpositions,

(o) 0. o

"Elementary" approx&ma(ion

The results are compared in Figs. 9—1 l for two-, three-,
and four-particle exchanges; we also consider the most
symmetric six-particle exchange (Fig. 12). Planar four-
particle exchange (Kp) dominates with the minimum ac-
tion, Sk ———(4/w) v' V L =8.47, and path length L
=1.07. We recall that the length unit is the distance be-
tween first neighbors a,

V= g (a/ r'i
~

)'

is dimensionless and the exchange frequency is

with g given by relation (4.2). Next comes three-particle
exchange (J, ) with S3 ——9.27 and L =1.06. For both tri-
ple and planar four-spin exchange the exchanging atoms
remain in the (110) plane, in the critical configuration
[see Figs. 9(a) and 10]. Next comes two-particle exchange
(JNN) with action S2 ——9.78 and length L=1.05. It is

important to note that since the critical exchange configu-
ration (see Fig. 11) is less symmetric than for other ex-
change processes, the number of equivalent paths is
larger. There are six configurations equivalent to that of
Fig. 11, obtained by rotation of 2'/3 around the (111)
axis and symmetry with respect to 0; we can also inter-
change the labels of the two exchanging particles in the
critical configuration. This leads to a factor of 12 for pair
exchange instead of 1 for all other exchanges that we con-
sider. Although we have not calculated carefully the pre-
factors o.T for J, and JNN, we think that they are both of
the same order because the potential barriers are similar.
Consequently, the symmetry factor might favor pair ex-
change at physical densities. The Monte Carlo calculation
suggested in Sec. III would be the best way to determine
the hierarchy between J, and JN& at low densities. After
pair exchange comes six-particle exchange (Sik ) with ac-
tion 56 ——$0. 13 and path length L =1.26. Last comes
folded four-particle exchange (AF) with action
Sz ——10.58 and path length I = l. 14. Folded four-

particle exchange is thus negligible compared to planar
four-particle exchange. The reason is essentially
geometric and can be seen easily by comparing Figs. 9(a)
and 9(b). In the critical exchange configuration the num-
ber of pairs of atoms whose distance is appreciably re-
duced (a'=0.9a) is eight for planar four-particle ex-
change and 12 for folded four-particle exchange. The
length of the exchange path is also larger in folded
geometry.
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P fa nar f our-part icie exchange N=16 V=36.6 L=1 15 lN L 6.65
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gP~
C
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r
I I

I

Atoms in the (11Q) piene

A(0.222;0.222;-0.383 ) B(-0.021;-Q.P21;0.075) C(-0.003;0.004;O,OQ2)

Folded four-particle exchang e M=20 V=53.5 L2=&. 29 PVL=8.31

Projection in the ( 100) pi»e

f
I
f
I
f

I

A(0 250'-p 124'0 3eQ) B(-0.036;0.026;0.085) C(-0.020;0.020;0 016 )

FIG. 9. Comparison of the two kinds of four-particle exchange in the bcc lattice: (a) planar four-particle exchange. Open circles
represent the equilibrium configurations. The' exchanging atoms are denoted by the cross-hatched circles, they remain in the (110)
plane, their neighbors in the same plane are represented by solid circles. The atoms in the neighboring parallel planes are simply
striped circles. On the right-hand side we only represent the (1TO) plane and the atoms that it contains. The figure is symmetric with
respect to the (110) plane and the (100) plane passing through 0. The atom displacements in an orthonormal X, F,Z frame are indi-
cated below the figure; the unit is the side a=2a/V3 of the conventional unit cube. ib) Folded four-particle exchange. Atoms in
successive planes parallel to the (100) plane and corresponding to the abscissa X = —0.5, 0, 0.5, and 1 are, respectively, represented by
solid, horizontal striped, vertical striped, and solid circles. The exchanging atoms (cross-hatched circles) are in a plane of abscissa
X =0.25 parallel to the other planes. The figure on the right-hand side is a projection in the (100) plane. The (100) and (001) planes
passing through 0 are symmetry planes. The figure is also invariant by a rotation of m/2 around the (100) axis passing through 0,
followed by a symmetry with respect to 0. It is clear from these figures (see in particular the projections) that the number of pairs of
atoms whose distance in the critical configuration is appreciably reduced (a =0.85 —0.9a ) is eight for planar four-particle exchange
and 12 for folded four-particle exchange. Hence, the reason why planar four-particle exchange dominates is clearly geometric.
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Three-part icle exchange: N =16 V=46.7 L'=1.13 ItV L= 7.28

Atoms in the (110) plane

J

riAw
g M%V I

I

I1w
I

rr~~- t&hL& M ~

j rg

(. /

LF- -r

L

A(0 199;0199;—0390} B(0163i0163;0 5) C (0182;0182;0) D ( —QQ21; —0021;P P88 )
E (0.053;0.053; 0.075) F(0.011;—0 054; 0 ) G(0;028;0.028;0022) H( —0036; 0 003; P PP8 )

L

FIG. 10. Three-particle exchange in the bcc lattice. The open circles represent the equilibrium configurations. The exchanging
atoms are denoted by the cross-hatched circles, their neighbors in the same (1TO) plane are denoted by the solid circles. The atoms in

the neighboring parallel planes are represented by starred circles. On the right-hand side of the figure we have represented the atoms
in the (110) plane. The figure is symmetric with respect to the (110) plane and the (001) plane passing through C. The particle dis-

placements (units of a) in the orthonormal X, Y,Z frame are indicated below the figure. Above the figure we give the number of mov-

ing particles X, the potential barrier V, and the square of the path length I. .

Two-particle exchange V= 53,4 L= 1,10 QV L= 7.68

A (0.604;0.360;0.097 }
8 (-O 028;-0.1 29;0.141)

C (-0.123;0.036;-0.035)

D (-0.005;0.035;0.018 }

E (0.040;-0.026;0.025}

F (-Q,051;-0.038;0.037)

G (-0.021;0.022;0.022}

FIG. 11. Two-particle exchange in the bcc lattice. The bcc lattice is divided into two imbricated simple-cubic lattices. The atoms

of these two sublattices are represented by, respectively vertical- and horizontal striped circles The exchanging atoms are denoted by
the cross-hatched circles. The figure is lnvarlant by symmetry with respect to the (101)Plane passing through 0 We can obtain three

equivalent configurations by rotation of 2~/3 around the (111)axis, and, again, three other equivalent configurations by symmetry

with resPect to 0.- Taking into account that we can also interchange the two particles in the critical configuration, we have 12

equivalent paths in 3X-dimensional configuration space. For all other exchange processes that we consider ln the bcc lattice, there is

only use path. At physical densities, this factor of 12 might favor pair exchange with respect to triple exchange (although the action
&p-~V I is smaller for three-particle exchange).
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Six-particle exchange N=18 V= 40 L2=1.58 QVL=7. 98
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D(-0.009;-0.008;0.042)

FIG. 12. Six-particle exchange in the bcc lattice. The particles are represented with the same conventions as in Fig. 11. The figure
is invariant with respect to the rotation of m. /3 around the (111)axis passing through 0. Compared to folded four-particle exchange
the length L is larger but the barrier height Vis smaller and the product +V L is also smaller, favoring six-particle exchange.

2. Exact path determination

3. Conclusion

The hierarchy between various exchange frequencies
given by the first terms of a high-density series expansion
in a/o is thus

JxN Slx &&a . (4.41)

This hierarchy corresponds strikingly to our assumptions
in the model Hamiltonian used to fit the experimental
data. ' (We proposed a two-parameter Hamiltonian in-
cluding only Kp and J, with J,=Kp/3. ) This is not
surprising because we believe that the hierarchy given by
(4.41) is essentially related to the lattice geometry and is
not restricted to the theoretical high-density limit.

We note that this hierarchy does not correspond to that
predicted by Avilov and Iordansky: JNN )Kz )&J,. We
want to point out that the number of moving neighbors
that Avilov and Iordansky consider around the exchang-

In order to improve our comparison between triple and
pair exchange we have performed the calculation
described in Sec. IVB2. The new results are S2 ——10.2 for
pair exchange with path length Lz ——1.076 and S3 ——9.09
for triple exchange with path length L3 ——1.10. This cal-
culation leads to a change of + 4' in the exponent S2
and of 2% in S—3., it increases the ratio J, /JNN. Hence,
JNN is definitely smaller than J, in the high-density limit.
For more symmetric exchange (as four- and six-particle
exchanges) we expect that the elementary approximation
is sufficient and gives an accuracy better than 2% in the
evaluation of the action Sp.

t

ing particles is too small to obtain a realistic comparison
of the various exchange frequencies. In particular, for tri-
ple exchange they only consider one moving neighbor
(atom C in Fig. 10); if we follow the same assumption in
our calculation we obtain S3 ——12.08, instead of S3 ——9.27
with N=16 moving atoms; this represents an overesti-
mate of 30% of the exponent in the exponential. Their
calculation of Kz is more reliable because they consider
eight moving atoms; consequently, they dramatically dis-
favor three-particle exchange with respect to four-particle
exchange.

It is also interesting to note that in our high-density cal-
culation the lengths of the exchange paths are practically
the same (of the order of l. la) for planar four-, three-,
and two-particle exchange. This property is also essential-
ly related to the lattice geometry and it will certainly
remain true at physical densities for bcc He.

If planar four-, three-, and two-particle exchanges have
a comparable tunneling barrier height V, and the same
path lengths L, we expect that they vary according to
practically the same law in terms of the molar volume.
We can thus understand the recent experimental results-on
the variation of the thermodynamic quantities in bcc solid
He. ' This last point will be discussed in more detail

in the following section.
It is interesting to given an order of magnitude of the

ratios between Kz,J„JNN, . . . , at physical densities
(v=23 —24 cm /mol), assuming that the relative differ-
ences of the exponents Sz remain of the same order as in
the high-density limit:

(Sg SI;P)/SJ;P —10%, (SJ —S—g )/SJ =12% .
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At V—24.2 cm /mol, Kz is of the order of 0.4 mK; the
Debye temperature is 20 K.

The exponent Sx- in the exponential (ICp —ODe, ) is
P

of the order of 1n(5&&10 ) —11. Hence, the ratio betweer.
EI and J, or between J, and J~~ would be of the order
of e " ' —3—4. We have not taken into account the
prefactors o.'z- which might differ by order 1 from one ex-
change constant to the other. In addition, we have not
taken into account the symmetry factor (12) of JNN.

Hence we conclude that the ratio between EI and J,
would be of order of 3 to 4 and, due to the symmetry fac-
tor, JNz might be of the same order as J, or Kz. Only
the Monte Carlo calculation suggested in Sec. III could
determine the exact ratio between Jz& and J, . If Jzz is
of the same order as J„the experimental data could be in-
terpreted with a three-parameter model. This model
would lead to a better fit of the critical field between the
uudd and pf phases (see Ref. 1, Sec. XI 8).

V. EXCHANGE AT PHYSICAL DENSITIES
IN SOLID He

In the preceding sections we have determined the first
terms of a high-density series expansion for the exchange
frequencies. It is now important to discuss to what
volume range this calculation applies. We will also
present crude approximations for lower densities where an
expansion in cr/a limited to the first terms is certainly un-
realistic. We will discuss the variation of the exchange
constants with the molar volume and compare the experi-
mental results.

A. In what density range can we trust the &KB calculation
for exchange in hcp He7

Comparison with the experimental data for hcp He
and for the two dimensional triangular lattice

Since, in the critical configuration, the distances a be-
tween the exchanging particles are appreciably reduced
(a =0.8a —0.9o), the quasiclassical limit is certainly more
appropriate for exchange calculations than for the deter-
mination of physical properties involving mainly the
equilibnum configurations. The WKB calculation is cer-
tainly realistic at least up to a-cr/0 8=3.2 A (o.-. 2.556
A for helium).

To get a more precise idea of the applicability range of
the quasiclassical approximation, it seemed interesting to
us to investigate the variations of the energy, pressure,
and compressibility in terms of the molar volume for the
highest densities experimentally attained. In the classical
limit, the energy of the solid reduces to the potential ener-

gy

(repulsive part of the Lennard-Jones potential). The ener-

gy per atom is
12

n g5' =—4e
2 a

The pressure is

24@ v

(3v ~ 0

—5

(5.1)

and the compressibility is

1 c)U 0 UK= ——
U BI' 120 0-3

(5.2)

IIloth pressure and inverse compressibility vary in U

Our first idea was to plot P(u) and E '(v) in logarithmic
coordinates and find the density at which a deviation
from the v . law is observed. We took the data from
beefs. 28—30 and were surprised to obtain a linear depen-
.dence of lnP and lnE in terms of lnv with slopes practical-
ly equal to —5 and + 5 in a wide volume range proceed-
ing from the highest measured densities in hcp He to the
lowest densities of the bcc phase [see Fig. 13(a)).

Moreover, relations (5.1) and (5.2) can be fitted with
@=10.22 K and o.=o' —2.65 A, the latter a value which
is only 3.5% higher than the usual Lennard-Jones diame-
ter, o=2.56 A. (Similar results are found in hcp He [see
Fig. 13(b)]; however, a deviation with respect to the v5

law is observed at v ) 17 cm /mol. ) Such power laws
have been noticed previously in the literature for the elas-
tic constants Cz which vary in U (Ref. 31) and the De-
bye temperature 8D varying as U

~ (see Fig. 14, p. 646
of Ref. 32). However, to our knowledge, this universal
variation law has received, up to now, no theoretical inter-
pretation. This might partly be the result of an accidental
cancellation between the kinetic energy and the attractive
part of the Lennard-Jones potential, both of which are
neglected in the high-density limit. This last remark is
based on the results given in Table III. We compare, for
hcp He, the kinetic energy of a hard-sphere solid calcu-
lated by Monte Carlo processes to the attractive part of
the Lennard-Jones potential [the hard-core diameter abc
is chosen as the scattering length corresponding to the
Lennard-Jones potential one ——0.8368o (Ref. 33)]. In a
wide volume range from v=11.8 to 24. 14 cm /mol, the
kinetic energy and the attractive part of' the Lennard-
Jones potential cancel almost exactly (with an accuracy
better than 2.5%).

The interaction energy 8'(r) of one atom at position
r =-(x,y, z) with all its neighbors, supposedly fixed at the
equilibrium positions (lattice sites), is a very flat function
8'(x,y, z) in a wide domain around r =0, with a weak

maximum at the central position r=0. In this wide re-

gion, 8'(r) is practically constant and equal to the value
8'o of the interaction potential at r =0. At the edges of
this domain, 8'(r) is dominated by the hard-core repul-
sion and it rises very abruptly. As a consequence it makes
sense to approximate the energy, measured from 8'0, by
the energy of the hard-core solid, 8'&c,

(n =-12 is the number of first neighbors and a is their dis-
tance).

In terms of the atomic volume U =a /&2 (we take the
hcp lattice), we have

8"=6e(o'/U )
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(This approximation was first suggested by London. )

Applying (5.3) and taking into account the fortuitous
cancellation between the hard-core kinetic energy and the
attractive part of the Lennard-Jones potential, we obtain

12

8'=8' =—4e
n o
2 0

This justifies the U law for the pressure variations
beyond the quasiclassical limit. For He we obtain a par-
tial but not exact cancellation.

This discussion on the ground-state energy of solid He
leads us to the following conclusion about exchange: Ow-
ing to this fortuitous cancellation, the next-order terms in

g and g' in the WKB expansion, which take, respec-
tively, into account the kinetic energy and the attractive
part of the Lennard-Jones potential [see Sec. IVA1 and
relations (4.7) and (4.8)], might also partly cancel. In this
case, our calculation could be reasonably extrapolated at
lower densities.

Let us apply this calculation to exchange in the hcp lat-
tice and compare our results to the experimental results.
As shown in Sec. IV, triple exchange JT (in the basal
plane) and triple exchange JT (out of the basal plane) are
dominant. Using (4.21), we write

$2
Jr ——ag4&2

2m(La)

( V ) I/2L
I

exp ——S3

with
(5.4)

I

100
1 1 1 I I

TABLE III Comparison of the kinetic and potential energy
in hcp He. The kinetic energy 8'Hc estimated as the energy for
a hard-sphere solid with hard-core diameter 0.8368o. (third
column) cancels almost exactly with the attractive part of the
Lennard-Jones potential (fourth column). The sum of 8'Hc and
the Lennard-Jones potential reduces practically to the repulsive
part of the Lennard-Jones potential varying in (o./a)' (fifth
column) (e= —10.22 K and o.=2.556 A are the parameters of
the Lennard-Jones potential; n =12 is the number of first neigh-
bors) ~

&HC ' 12

(cm ) a /o. (K) n o—4g
2 a

n o—4e
2 a

21.81
19.64
14.74
11.77

1.453
1.403
1.275
1.183

26.5
32.15
55.7
90.3

—26.0
—32.15
—57.1

—89.3

2.8
4.2

13.3
32.5

1000 p

(bury

)
FIG. 13. Variation of the pressure and compressibility of

solid He in terms of the molar volume. {a} He: Experimental
points are from Dugdale and Franck (Ref. 28) {~ ) for hcp He
at high densities, and from Straty and Adams (Ref. 30) (0, hcp
phase; X, bcc phase). (b) He: Experimental points are from
Dugdale and Franck (Ref. 28) (), and from Edward and Pan-
dorf (Ref. 29} ( X ).

a =(0 85 ) (0.85' ) (0.92' ) =10 (5.5)

5

g= . . . —,S,=—(V ) L.
(8mo. e)'~ o.

From Table II we have (V~)' L =7.33 and L =1.00 for
JT, and ( VM)' L=7.75 and L=1.00 for JT. We take
for the Lennard-Jones parameter o. the effective value
o =o.*=2.65 A, which fits, respectively, the U and U

laws for the experimental pressure and compressibility
curves [see relations (5.1) and (5.2)].

A rough evaluation of the prefactor o.z has been pro-
posed in Sec. IV [relations (4.16) and (4.17)]. An order of
magnitude of o;z for JT is estimated from Fig. 7 in the
following way. -

In the critical exchange configuration the atoms for
which the available space is appreciably reduced are the
three exchanging atoms (atoms of type A on the figure)
and their three nearest neighbors (type-B atoms). For the
three exchanging atoms the available space is reduced
only in one direction (that of the closest atoms in the basal
plane). The distance to the next neighbors is about 0.85a.

For the three type-B atoms the free space is mainly re-
duced in one direction, that of the closest exchanging
atoms (the distance is -0.85a). The available place is
more slightly reduced in the direction perpendicular to the
basal plane (the distance to the closest atoms being-0.92a ).

From relations (4.16) and (4.17), we estimate that
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19/2

J /k =18.7
a

5

exp —55.8
0 K,

Jg/kg —19.7
a

19/2 5

exp —59.0 0
a

K.

'
Assuming the same order of magnitude of az for JT, we
obtain

is estimated in the same way as for the exchange in the
basal plane of the hcp lattice.

From Fig. 1(a) the distances between the exchanging
particles and their nearest neighbors are reduced to
-0.87a. The free space is reduced essentially in one di-
mension for the three exchanging particles and their
closest neighbors. Hence,

a =(0.87'") i =5&&10

In Fig. 14 we compare effective mean values of the pair
interaction J,rf deduced from nuclear-magnetic-resonance
(NMR) measurement to the theoretical curve

We deduce
19/2

0,JT/k~=73
a

5

exp —51.7 0

J.rr= =
2 (JT+6Jr)

[see relation (4.40)] obtained from (5.6). The agreement is
good. [Note that we are essentially interested in compar-
ing the slopes of these curves (8lnO/ulna) because the
exponents S3 and S3 of the exponentials have been calcu-
lated accurately. Only the orders of magnitude of ar and
u'T have been estimated. In addition, the %MR does not
measure 0, but instead further complicates functions of
JT and JT.]

Let us now consider the two-dimensional triangular lat-
tice. Triple exchange is given by relation (5.4) with
S3 —8.65 and L = 1 .07 (see Sec. IV C 1 b). The prefactor

(we again choose cr =o."=2.65 A).
The curve obtained is compared in Fig. 15 to the exper-

imental results of Richards. We again emphasize that
we must essentially compare the slopes BlnJ, /Ba of the
theoretical and experimental curves because (i), a~ is only
roughly estimated, and (ii) the experimental values are de-
duced from relaxation-time measurements, and the exact
relations between these times and JT are not known. The
agreement is satisfying.
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FIG. 14. Comparison of the experimental values of exchange

frequencies in hcp solid He with the extrapolated high-density
theory. The experimental points are effective values of pair spin
interaction J,~f deduced from NMR measurements and taken
from Fig. 31 of the review paper by Guyer et al. (Ref. 35). We
compare these values to the theoretical curve,
J ff(a ) —(O/6}(a ) = p (J&+6JT ). We recall that the prefactors

uT and aT in JT and JT are only roughly estimated and that we
must essentially compare the slope 0 lnJ,g/0 lna to that deduced
from the experimental points.

I I I

3.l
I

3.6
I

3(i a{A)
FIG. 15. Comparison of the experimental values of exchange

in two dimensions, deduced from nuclear magnetic resonance, to
the theoretical predictions. Both sets of points (0 and ~) are
from Richards (Ref. 36). They are deduced from different re-
laxation times. They represent JT within an unknown multipli-
cative factor of order l. The solid curve represents the extrapo-
lation to intermediate densities of our high-density series expan-
sion limited to the first terms. The dotted line represents the
crude approximation described in Sec. 8 using the "London
model. " We must essentially compare the slopes of these curves
(the preexponential factors have been crudely estimated}.
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B. Crude approximation for low densit1es

At physical densities for bcc 'He (20 & u & 24.2
cm /mol the application of a high-density series expan-
sion limited to the first terms is suspect. For these low
densities, crude approximations for exchange calculations
have been proposed earlier. '

The leading idea of all these approximations is to
reduce the 3X variable problem to a one-dimensional
Schrodinger equation,

$2
b p(r)+ V(r)p(&) =F-p(t),

2tP2
(5.7)

where t is the one-dimensional variable representing the
curvilinear coordinate along a path g (r) joining the
centers of the two cavities Al and II@. V(t) is an effective
potential which represents essentially the energy in the
(3jV —1)-dimensional space orthogonal to the tangent at t
to the path W(r).

Various approximations have been suggested to esti-
mate V(t). The crudest but simplest was proposed by
Delrieu and Sullivan in Ref. 2. Using a crude elastic
model of deformation around the exchanging particles,
they estimated the effective potential barrier from the ex-
perimental data on pressure P and compressibility K. As
both P and K ' vary in u (see Sec. VA), this model
leads to a variation of V in (o.*/a)' and gives exchange
constants in exp[ —Az(a*/a) ]; this is the same function-
al form as that obtained in the high-density limit. This
model correctly fits the experimental data for both the
hcp and bcc phases of solid He (cf. Fig. 4 of Ref. 2). The
optimization of the exchange path has not been treated
completely in Ref. 2; however, it could be done in the
same way as for the high-density limit [i.e., find the clas-
sical path W(t) for a yarticle moving under the action of
an effective potential V(r); see Refs. 1 and 37].

More recently, Avilov and Iordansky proposed a
model in which the experimental data on the elastic prop-
erties of bcc He are also used to build up an effective in-
teraction potential between He atoms. They apply the
quasiclassical approximation to determine the exchange
path. The use of the experimental elastic constants which
vary according to a universal law [P—(o. /u )',
K —(u/o ), and OD —(u/o )

~ ] also leads to an effec-
tive potential in (o./a) and a functional form in
exp[ —A~(o. /a ) ] for the exchange frequencies. The main
criticism that we address to their model is the following:
The number of moving particles that they consider is too
small to give a realistic estimation. of the classical path
and of the action S along the path (cf. Sec. IVE3). Just
like the calculation presented in this paper, this model ap-
plies essentially in the high-density limit.

In earlier papers Delrieu et al. proposed an estimation
of the effective potential V(t) using the simple London
model. Again, in Ref. 6 the path has not been optimized
completely. Here, we would like to improve this model
with a simple but realistic optimization of the exchange
path and compare the experimental results.

Let us first review the approximation of the ground-
state energy of He proposed by London. The energy of
He is estimated as the sum of the kinetic energy 8'Hc of a

hard-sphere gas and of the Lennard-Jones interaction po-
tential 8 p for the equilibrium position. [This approxima-
tion has been justified in Sec. VA, see Eq. (5.3).] The ki-
netic energy per particle is estimated as the energy of a
point mass in a sphere of radius 6, 5 being the maximum
possible excursion of the particle when its neighbors are
fixed. at the lattice sites. In three dimensions,

8'L =a /35

It is remarkable to note that for hcp He this crude estima-
tion. gives good results compared to the exact Monte Carlo
calculation.

To justify this crude estimation it is interesting to con-
sider the results of exactly soluble models which are not
so far from our problem (at least for the calculation of the
ground-state energy).

(i) The problem of a one-dimensional hard-sphere fer-
rnion gas can be solved exactly. The ground-state energy
Is

'HC= '

(Note that the London approximation gives ~ /45 .)

(ii) In three dimensions the energy for independent rows
of hard-cube fermions submitted to the conditions [for all
i j,k (ij,k label the lattice sites)],

(xi +],j, k x'i', j,k) &o )

(J;,, +i, k
—3;,jk) &~

(Zi j k+1 —zi j,k ) & &

is deduced easily by

&Hc=3[~/(3& )]=~ /6

where 5=a —0 (a represents the distance between first
neighbors).

This value is certainly a good approximation for the
ground-state energy of a simple-cubic hard-cube solid.
We also expect this approximation to be realistic for a
compact hard-sphere lattice. We note that in three di-
mensions the London value 8'I is fortuitously identical to
this approximation 8'Hc. In two dirnen. sions, the London
value (4 j ——0.59'~ /6 ) is lower with respect to
8'Hc ——2~ /35; in. one dimension KL ———,8'Hc. In the
following we shall take 8'Hc (rather than 8'I. ) as an es-
timation for the hard-core solid energy. We shall restrict
our calculation to the two-dimensional lattice.

We apply the elementary approximation described in
Sec. IVI31 to the effective potential V(t) in Eq. (5.7).
Thus, we have to estimate the barrier height

2~M= ~z —~0 ~o=&o+ &Hc is taken as the ground-
state energy calculated by the method described above.
V~ represents the energy in the critical exchange configu-
ration. The kinetic energy in the critical exchange config-
uration is estimated through the following process: For
each particle we take

2

6;j=
~ r;j

~

—O .
j=f ij

The sum is extended to the n nearest neighbors (by nearest
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neighbors in the critical exchange we mean particles
whose distance is smaller than a fixed value R„)a). We
write

n n

,
Vx=g@'x-+ g VL'J

the second term representing the Lennard-Jones interac-
tion in the critical exchange configuration. According to
the method described in Sec. IV 81, the critical exchange
configuration is obtained by minimizing the action
Sp ———(4/rr)( V~ )

'/ L. We have essentially used this
method to determine the variations of triple exchange JT
with the molar volume in the triangular lattice.

We take as hard-core diameter the scattering length for
particles interacting via the (cr/r) ' potential,
[crHc ——0.8368o.=2. 139 A (see Ref. 33)]. On Fig. 16 we

show the particles positions in the critical exchange con-
figuration and give further details on the way we estimate
the kinetic energy. Table IV gives the values of L and

S3 =v'VL for various interatomic spacing. In Fig. 15
we compare the curve

JT—4V'2 (S3 ) exp ——S33/2 4

2m (La) 7T

FIG. 16. "London" approximation. We have represented the
particle positions in the critical configuration for a =1.59o.Hc
(the scale for the hard-core diameter is respected on the figure).
The kinetic energy per particle is estimated as the mean value

(1/n)g, .
3 (rr /o; ), where the 6; are the distances shown by the

arrows; n is the number of neighbors which are taken into ac-
count. For the exchanging particles (cross-hatched circles) this
sum reduces practically to 5 &( 3 (~ /5 ) where 6 is the common

distance to the three closest particles; we think that this estimate
is reasonable because, due to the geometry of the figure, the lo-
calization of these particles is practically one dimensional (the
free space between particles is appreciably reduced only in one

direction); in strictly one dimension we would obtain 3 (m /5 ).

thus obtained with the high-density limit and with the
NMR measurements of Richards. The agreement with
the experimental results and with the extrapolation of the
high-density limit is satisfying. We are content to be in-

terested in the exponent S3 and its variations with molar
volume (i.e., to the slope 8 lnJT /Ba; our approximation is
too rough to give accurate values of Jz-). '

C. Variations of the exchange constants
with molar volume in bcc He

The experimental data on bcc He cannot be interpreted
with only one dominant exchange process (see Ref. 1), we
need at least planar four-particle exchange Kp and triple
exchange J, (perhaps pair exchange JNN also). The recent
experiments on the variation of some thermodynamic
quantities with molar volume can be understood only if

TABLE IV. Path length L, . action (exponent) S3, and triple-
exchange frequency JT versus interatomic distance a within the
crude "London approximation. "

all exchange frequencies vary according to similar laws in
terms of the molar volume ' ' i.e.,

0 lnJ, 0 lnLp 8 lnJNN

Bv Bv BU

We are now able to give a theoretical interpretation of this
experimental observation.

We have seen that in the high-density limit, planar
four-particle exchange, triple exchange, and pair exchange
lead to close values for the action S~ &SJ &SJ, and

also to practically the same length for the exchange path
L=1.1. As emphasized in Sec. IVC, we believe that this
property depends essentially on the lattice geometry and
not on the exact shape of the effective potential barrier.
We expect that this property remains true at all densities
and leads to similar variations of J„Kp, and J&z with
the molar volume.

The models based on the universal U variation law of
the experimental elastic constants suggest that the func-
tional form

Jp SDexp[ —f (a)], f(a) =Sp(rr/a )

(A)

3.8
3.7
3.6
3.5
3.4
3.3
3.2

L2
(units of a )

1.29
1.28
1.27
1.26
1.25
1.25
1.245

.S3

10.31
11.11
12.14
13.25
14.65
16.56
18.69

JT
{mK)

1.61~ 10—'

6.90 X 10-'
2.26 & 10
6.69 X 10-'
1.40 @10-'
1.58 ~ 10—'
1.33 g 10-'

obtained in the high-density limit extrapolates at low den-
sities, up to the bcc phase near melting. These models are
crude and their validity is questionable. However, we
must emphasize that this functional form gives remark-
able agreement for the last experimental results ' con-
cerning the Gruneisen constant 8 lnJp/8 ln V. We have

BlnJp 1 BlnJp 5 5 OD=—f(a)=—ln
alnV 3 ulna 3 3

Jr =4+2 (S3 ) exp ——S3
2ma L 7T

We have seen that the exponents f ( u) for Kp and J, only
differ by about 10%. At 24 cm /mol, f ( a)
=ln(OD/J)-11. Hence, within 10%,
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lnKp 3 lnI, =—, &11=18 .
8 lnU 3 lnU

A mare careful an, alysis of the recent experimental results
is given in Ref. 12.

VL CONCLUSION

We have determined the first terms of a high-density
series expansion for the exchange frequencies in solid 3He
and the lowest-order term of a low-density series expan-
sion for exchange in the two-dimensional %'igner solid of
electrons. The hierarchy between various multiple-
exchange processes depends essentially on the geometry of
the lattice. In the two-dimensional triangular lattice,
three-particle exchange dominates. The same hierarchy is
also found with the (o/r)' potential ( He atoms adsorbed
on a substrate for high coverage) and with the Coulomb
potential (Wigner solid of electrons at low densities). Tri-
ple exchange also dominates in the hcp lattice. The
theoretical high-density limit, in the bcc phase, gives the
following hierarchy: Kp (planar four-particle exchange)
& J, (triple exchange) )J~~ (pair exchange) )Sl~ (six-
particle exchange) ~ KF (folded four-particle exchange).
We think this hierarchy is essentially related to the
geometry and is unchanged at lower densities. This
hierarchy is precisely that which was inferred from the
experimental data. ' Moreover, we find that the lengths L
of the exchange paths are practically the same for planar
four-particle exchange Kp, triple exchange J„and pair
exchange JNN, and that the actions

S~ —( VM)

only differ by about 10%. We have shown that these
properties are essentially related to the lattice geometry
and do not depend on the detailed structure of the poten-
tial. Hence, we expect that these results remain approxi-
mately valid at lower densities. At the densities af the bcc
phase, Sp is of the order of 10 and relative differences of
10% in the S~'s lead to factors of the order of exp(1)=3
between various exchange frequencies (Kp, JT, and JNN).
%'e clearly understand why several exchange processes
(KF, J„and perhaps JNN ) play an essential role in the ex-
perimental magnetic properties of solid bcc He.

As the path lengths L are practically the same for Kp,
J„and JNN, and the potential barriers are comparable, we
also expect that these three frequencies vary according to
very similar law in terms of the molar volume. This re-
moves the last objections raised against the multiple-
exchange model.

As three-particle exchange leads to ferromagnetism we
predict a positive Curie-Weiss constant 8 in hcp He and
in a monolayer of a He atom adsorbed on a substrate.
We encourage experimentalists to measure 0 in these sys-
tems; this could provide an excellent test of the theory,
especially at high density.

Further theoretical calculations at physical densities for
bcc He could be performed from a path-integral formula-
tion using Monte Carlo integration. In particular, the ra-
tios between various exchange constants cooM be calculat-
ed exactly. We think this method is worth investigating
in the near future.
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APPENDIX: LARGER-ORDER
CYCLIC v PARTICLE EXCHANGE

(TWO DIMENSIONS)

Here, we give a rough estimate of the decrease of the
exchange frequency X with increasing v for symmetric
cyclic exchange with a large number v of partic1es in the
two-dimensional case.

Figure 1(e) in Sec. IV shows the critical configuration
for a block rotation of 12 particles. It is obvious that such
a block rotation leads to a barrier height V~ increasing
roughly proportionally to the number n of exchanging
particles. For large v it will be energetically more favor-
able to create a pair vacancy interstitial and exchange will
occur through the separation of this pair vacancy intersti-
tial. In order to give a rough order of magnitude of the
exchange frequency corresponding to this process, we con-
sider the following schematic model.

We consider v particles on a circle (Fig. 17); we
represent the effect of' the surrounding particles by a
sinusoidal potential

V= —,UM sin(vrt/a ),
where t is the arc length on the circle. The value of U~ is
estimated through Fig. 1(e). In the critical configuration
represented on this figure, the barrier height is V~ =65.7
(in reduced units). Fart of this barrier comes from the
reduction in the distance between the exchanging parti-
cles,

6 V, =-12[(0.936) ' —1]=14.5 .

The remainder, V~ —AV~ ——51.2, is due to the compres-
sion of surrounding particles. We deduce U~ —51.2/
I2=4.3. The particles and the potential are represented

FKy. 17. Effective potential V(t)=(UM/2)sinw;~/a )t, due to
the neighboring atoms.
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VACANCY

(b)

2. Exchange via the separation
of the pair vacancy interstitial

Suppose that the number v of exchanging particles is
large compared to 10 (v=20 —30). Once the pair vacancy
interstitial has been created, we can translate the intersti-
tial (increase the distance between the vacancy and the in-
terstitial) without appreciable energy change. The ex-
change will occur through this translation. The barrier
will be practically flat. The configuration XM on the
median hyperplane X is obtained when the position of the
vacancy and the interstitial are opposite on the exchange
circle. The exchange barrier is represented in Fig. 19. We
approximate the first part by a sinusoid. The action is

1/2

S =—(V" )'i L "+— (L") + —L"
x x

[c) (A4)

FIG. 18. Creation and separation of a pair vacancy intersti-

tial. The interstitial is schematized by a uniform compression of
the chain along a distance vx with x =a(v —1)/v. A transla-

tion of the interstitial does not change the energy. S =13.7 ——1.16
v
2

—0.71 (A5)

with the numerical value given in subsection 1 of this Ap-
pendix we find

1/2

on a linear axis t with periodic boundary conditions in
Fig. 18(a).

l. Energy for the formation of a pair vacancy interstitial

We take the following crude model for the pair vacancy
interstitial. We assume that one particle is displaced of
one interatomic distance a and that the chain is uniformly
compressed over a distance ( n —1)a; the number n of par-
ticles involved in this process is optimized to give the
lowest-energy barrier.

There are n pairs of atoms whose distance is reduced at
the value x =(n —1)a/n. The potential increase due to
this uniform compression is

b, V, =n I [n/(n —1)]' —l I .

If n is large, the potential increase due to the compression
of the neighboring atoms [sinusoidal potential of relation
(A 1)] is practically

3. Behavior of the exchange frequency J„with S„
for large order symmetric cyclic exchange (v & 6)

The relation (A5) shows that for very large v (v»10)
the exchange frequency J decreases as

J =exp( —9.7~v) . (A6)

On the other hand, for 6&v&12 we have seen that a
block rotation of the particles is more favorable than ex-
change via the creation of a pair vacancy interstitial [see
Figs. 1(c) and 1(e)].

For a block rotation [see the numerical results of Figs.
1(c) and l(e)], the potential barrier is roughly proportional

+1/2 UM . 77
n 1 —sin —t =nuM/2 .—1/2 2 a

The total barrier height is

VM
—n [ [n /(n —1)]"+uM/2 —1], (A2)

t(L') + (0-n )/21" a

=1.96a .

with UM ——4.3; the minimum of VM is obtained with
n =10 particles with a barrier height of VM —47.

The total length in the configuration space correspond-
ing to the particle displacements is

2 1/2

L"=a (A3)
ni=0

FIC)'. 19. Potential barrier for exchange through the creation
of a pair vacancy interstitial. Part I corresponds to the creation
of a pair vacancy interstitial. II is the interstitial moving apart;
the intersection with X~ corresponds to opposite positions on
the circle for the vacancy and the interstitial. III corresponds to
the destruction of the pair vacancy interstitial.
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to the number of exchanging particles,

V~—5.5v,
L"=a

v—1 V—l

i=0 n

2 1/2

and the total displacement L in the configuration space is
proportional to V v,

L =va /4,

The action is

S„=—(VM) L"
'jr

The critical value of v for which S"„becomes smaller than
1.5v [cf. relation (A7)] is

J„-exp( —1.5v) . (A7) v, =14 particles .
It is important to estimate the number v for which the
change of regime occurs (i.e., the critical number v for
which exchange through the creation of a pair vacancy in-
terstitial becomes more favorable). With the crude model
described in subsection 1 (uniform compression), the po-
tential barrier for a pair vacancy interstitial involving the
uniform compression of v particles is [relation (A2)]

V~ =vI [v/(v —1)]'2+UM/2 —1I .

The half-length of the corresponding exchange path ts

Hence, for 6 & v& 14 particles the exchange frequency de-

creases rapidly, as exp( —1.5v); for v»14 the decrease
will be slower [in exp( —9.7V v) for v) 30].

This estimation of v, is rough because our model is
very crude. We have assumed a uniform compression,
whereas the actual displacements are much more intricate.
However, our complete minimization of V V L on the ex-

change surface XM (Sec. IV) for 12 particles leads to a
block rotation (although the creation of a pair vacancy in-

terstitial is allowed in the 60-variable minimization pro-
cess). Hence, v, &12.
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