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Free energies for the discrete chain in a periodic potential and the dual Coulomb gas
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The partition function for a chain of particles connected by springs in a periodic potential is con-
sidered. This problem is dual to a one-dimensional Coulomb gas on a lattice. The free energies of
both problems can be calculated from the eigenvalue of a transfer matrix. High-temperature expan-
sions are obtained for free energies of both problems. The free energy of a system of alternating
charges on a lattice is calculated exactly. Continuum results for the Coulomb gas and the sine-
Gordon model are easily regained from the transfer-matrix approach. For the Villain potential the
partition function can be written directly in terms of the kinks in the chain. The kinks are on sites
of a lattice and interact through an exponential repulsion. The ground-state periodicity of this sys-
tem exhibits a complete devil's staircase as a function of mismatch. For a similar potential tke free
energy can be calculated at all temperatures as the eigenvalue of a differential equation. A ladder of
Josephson junctions is proposed as a new physical realization for this problem.

I. INTRODUCTION

In many physical systems there is a competition be-
tween some natural periodicity and the periodicity im-
posed by an underlying lattice. This competition results
in an intriguing sequence of commensurate and incom-
mensurate structures that have been extensively stud-
ied. ' ' Examples of such phenomena have been ob-
served in adsorbed layers, ' charge-density-wave conduc-
tors, and chain compounds such as Hg3 ~AsF6. To
study the atoms in the vicinity of a dislocation core
Frenkel and Kontorova introduced the problem of a
one-dimensional chain of particles connected by springs
and subject to a periodic substrate potential. The Hamil-
tonian for the system is

(u„+~
—u„—e) + cos(2vru„) . (1.1)

n

The natural period e of the chain competes with the sub-
strate periodicity which is taken to be unity. This system
has been studied by several authors. Since, in one dimen-
sion ordered phases occur only at zero temperature, the
focus of most of the work has been to obtain the ground
state of the chain by solving the force equations (Refs.
5 —16) BA /Bu„=O, i.e.,

P(u„+,—2u„+u„))=m &sin(2vru„) .

The incommensurability e does not appear in the force
equations. Therefore, the solution of Eq. (1.2) has to be
selected that minimizes the energy for a given e. Frank
and van der Merwe obtained the ground states in the con-
tinuum limit, where the difference on the left-hand side of
Eq. (1.2) is replaced by a second derivative. For
e &@,=2/vrlo [lo ——(P/2W)' ], the commensurate struc-
ture with all particles located in the potential minima has
the lowest energy. For e~e, the ground state is best
described as a series of equally spaced kinks. Each kink

(or soliton) is the boundary between roughly commensu-
rate domains. Since the kink separation varies continu-
ously with e this phase is generally incommensurate with
the underlying lattice and has a zero-frequency phonon
mode. In the discrete problem there is a Peierls energy '

—m2

(approximately 4' pe ') for pinning the kinks to the
substrate minima that gives rise to higher-order commen-
surate structures.

The discrete force equations (1.2) are equivalent to a
two-parameter mapping describing the time evolution of a
sinusoidally driven pendulum and have been studied in the
context of dynamical systems. ' " Typical trajectories for
this map are chaotic. However, Aubry' ' has demon-
strated that the trajectories that correspond to ground
states of Eq. (1.1) are either fixed cycles (commensurate
states), or smooth Kolmogorov-Arnold-Moser orbits.
Many other results for the discrete problem such as the
quasiperiodicity of the ground state are due to Aubry. ' '
Certain questions, such as the scaling properties near the
commensurate-incommensurate transitions, are still not
entirely resolved. ' A good review of these and other re-
lated problems can be found in the review article by
Pokrovsky, Talapov, and Bak. '

Another approach is to calculate the partition function
of the chain. ' ' The ground-state energy can then be
obtained as the zero-temperature limit of the free energy.
The partition function also contains information about
finite-temperature properties that are relevant to physical
systems. ' ' In this paper the relation between the
discrete chain and a number of other one-dimensional
problems is demonstrated by mappings of the partition
function. In Sec. II it is showri that the problem is dual to
a Coulomb gas on a one-dimensional lattice. Due to the
long-range nature of the Coulomb interaction this prob-
lem cannot be treated directly. However, by rewriting the
Hamiltonian in terms of electric fields the interactions be-
come local, and the partition function can be calculated
by a transfer-matrix method. At high temperatures suc-
cessive approximations can be made by truncating the size
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of the matrix, which is equivalent to restricting the possi-
ble values of the electric field. Thus in Sec. III we obtain
a high-temperature expansion for the chain free energy,
and also evaluate the free energy of the lattice Coulomb
gas. Schotte and Truong have demonstrated that for an
alternating sequence of charges in the continuum limit,
there is a phase transition if periodic boundary conditions
are imposed. The analog of this result in the lattice prob-
lem is easily obtained from the transfer-matrix formalism.
By letting the lattice spacing approach zero, results for
the continuum Coulomb gas (such as the pressure of a
many-component plasma '

) are obtained in Sec. IV.
The Coulomb-gas description is not particularly useful

for studying the discrete chain at zero temperature. How-
ever, in Sec. V it is shown that for the special case of the
Villain potential the Hamiltonian can be written directly
in terms of the kinks. The kinks are now pinned to the
lattice and are subject to an exponential repulsion. The
periodicity of the ground states exhibits a complete devil' s
staircase as a function of incommensuration. Finally a
ladder of Josephson junctions is proposed as a new physi-
cal system where the predictions of this paper can be test-
ed.

II. THE DUAL COULOMB GAS

The partition function for the chain is obtained from

Z= +du„exp g (u„~(—u„—e) +V(u„)
n=1 n

—e (u —u, )
2

2
(2.1)

where p=/3P=P/kT, and 8=0 (1) corresponds to an
open (closed) chain. A general periodic potential kTV(u)
is considered. Since V(u)= V(u+n) it is possible to
make a Fourier expansion

—V( u„) —V( m„)+2mvm„u„
e

Im„ I

(2.2)

After substituting (2.2) into (2.1) it is possible to do the
Gaussian integrals involving I u„ I, and

Z =Z~h g' exp —g[ V(m„) —2vrinm„e]
fm„j n

m2
gm„m(

2~ nI

nl~ 1 —e /n —l
[

cV

(2.3)
where Zph =(2~/p)N/2 is the contribution of phonons to
the partition function. The summation over Im„] is re-
stricted such that g„m„=0, and hence Eq. (2.3)
represents the partition function of an overall neutral gas
of charged particles on a lattice. An energy V(m) is asso-
ciated with creating a - charge of magnitude m
[V(m)=V( —m) for an even potential V(u)], and the
charges are subject to an imaginary electric field 2~i@. In
the presence of a mismatch e the Coulomb-gas Hamiltoni-

an is no longer Hermitian, although the positivity of the
partition function is assured. The Coulomb interaction in
one dimension is U(r)=

~

r
~

for charges on a line (open
chain, 8=0},and U(r) =

~

r
~

(1—
~

r
i

/N) for charges on
a circle of length N (closed chain, 8=1). In the ther-
modynamic limit ( N ~ oo } the two potentials are
equivalent, although there can be differences if only re-
stricted charge configurations are examined. The one-
dimensional lattice Coulomb gas is dual to the discrete
sine-Gordon chain in the sense that the high-temperature
properties of one problem are related to the low-
temperature properties of the other. Unfortunately there
is no obvious interpretation for the charges as excitations
in the original problem.

Due to the long-range nature of the Coulomb interac-
tion, it is not easy to evaluate the partition function, Eq.
(2.3), directly. However, it can be rewritten in terms of
electric fields (bond variables), instead of electric charges
(site variables). In one dimension since the number of
sites is equal to the number of bonds, either set of vari-
ables can be used in the partition function sum. The
charges m„are related to the fields e„on bonds by

mn =en —en —) ~ (2.4)

and the partition function takes the particularly simple
form

2

Z, = g exp —g V(e„—e„&) 2' ee„—+ e„
2~ 2

n , p
(2.5)

For the Coulomb gas on a line the boundary conditions
are eo ——e~ ——0, which ensure overall charge neutrality.
This condition in conjunction with Eq. (2.4) restricts le„]
to integer values. On a circle (2.4) automaticallg ensures
charge neutrality, while the extra condition g„&e„=0
must be satisfied (for the continuity of the electric poten-
tial). In this case Ie„ I are no longer restricted to integer
values, as will be demonstrated in the next section.

Since the interactions in Eq. (2.5) are nearest neighbor,
a transfer matrix T can be used to evaluate the partition
function. The elements of T,

(2.6)

decay exponentially with temperature, and this approach
is most useful at high temperatures. The partition func-
tion is calculated from Z, = (0

~

T
~

0)=A, ,„, where
A, ,„ is the largest eigenvalue of the transfer matrix. Al-
ternatively, the transfer matrix can be written in Fourier
space, where

T(q) =e '~'exp
z

—e
2p dq

and the eigenvalue equation becomes

exp e '~'y (q) =Ay(q +e) .1 d
2p dq

(2.7)

2& 2
2

(m
~

T n)=exp — V(m n)+ —m 2vriem—
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The eigenfunction y(q) has to be periodic in q. It is not
easy to deal with this nonlocal equation. The WKB ap-
proximation is applied to (2.7) in Appendix A, and the re-
sults of Frank and van der Merwe are rederived by this
method. For a potential composed of quadratic segments,
Eq. (2.7) can be reduced to a simple second-order differen-
tial equation as shown in Appendix B.

The differential equation in (2.7) can also be written as
an integral equation, using the identity

1 d d
exp —e I' (q)

2)M dq dq

1/2

I dq e pl2(q q ) v('q )y(q ) py(q)

(2.9)

This integral equation could have been obtained by apply-
ing the transfer-matrix method directly to the partition
function in Eq. (2.1), and provides a check on the validity
of previous transformations. Equation (2.9) has been used
in calculating free energies for the discrete chain. '

III. THE FINITE-FIELD APPROXIMATION

I (q q', e,p —')I'(q')dq' . (2.8)

The kernel IC(q —q', e,((2 ') satisfies the equation
BK/B(1/M ) = —,8 IC/Bq . Together with the boundary
condition K(q —q', e,0) =5(q —q' —e) this implies

1/2
(M(q —q' —e)

exp
2

Therefore, Eq. (2.7) is equivalent to the integral equation

A. The discrete chain

The elements of the transfer matrix (m T
~
n), Eq.

—{2' / )m2(2.6), decay as e ' "' for large m at finite tempera-
tures. Therefore, to a good approximation the infinite
matrix can be replaced by a finite-sized matrix. Succes-
sive approximations would correspond to increasing the
size of the matrix. To order of x (x =e ") it is suf-
ficient to consider a 3 & 3 matrix with m restricted to —1,
0, and + 1. The eigenvalue equation is

g3 —v(())[1+2 (2 )]g2+ [2(
—2v(0) —2v(1)) os(2 e)+x (e

—2~(0) e
—P( ))]g

2( —3v(0) v(0) —2v(2)+2 —2v(1)—v(2) 2e
—v(0) —2v(1)) (3.1)

Since this equation is valid to 0 (x ), the free energy —)(lf =ink, can also be expanded to this order as

pf = V(0)+—2xz)cos(2~e) —2x z1[1—z2 —cos (2~e)(2 —3z))]
—2x z)cos(2me)[3 —2z2 —Sz( —z2+Sz(z2 —2cos (2me)(2 —6z(+5z))]+0(x ) (3.2)

where zn =e '"'+ ' '. Note that the variation of free en-

ergy (and hence other thermodynamic quantities) with the
incommensuration e decays exponentially with tempera-
ture (as z(e ~"). By contrast for the con-
tinuum sine-Gordon chain a much slower decay ( as

[P V /(kT) ]) is expected. ' ' Thus the effect of
springs is masked much faster at high temperatures for a
discrete chain. The ratio of eigenvalues is related to the
correlation function, and the correlation length g goes to
zero as g=P, /(2m kT). The variation of the free energy
with e at zero temperatures is very complex (describing a
devil s-staircase structure). This complexity is washed out
at finite temperatures, and at high temperatures is re-
placed by cos(2~@.). In particular the amplitude for a

cos(2qrpe) variation goes to zero as e
The expansion in (3.2) is valid for any potential. For

the cosine potential V(u)= Wcos(2+u), an expansion in

powers of 8'yields

8Pf= [—,'+xcos(2~a—)+x cos(4~e)+x cos(6~e)]

I

The above expansion suggests that the complete coeffi-
cient of 8', to all orders in x, is

n 1 1 —x
—,+ —, g x "cos(2~ne) =-

n=1 4 1 —2x cos(2~e)+x

This is, in fact, correct and can be readily observed from
an expansion of the partition function in (2.3), since a pair
of charges + 1 separated a distance n contributes

2m 8'
Z1 exp — n+2mien ~ .x "cos(2mne)

p 2
I

(adding the two dipole directions) to the partition func-
tion. The charge configurations leading to Eq. (3.2) are
+ ' — + '''4' — + = . +, and their
charge conjugates.

B. The lattice Coulomb gas

The Hamiltonian for the one-dimensional lattice
Coulomb gas in the grand canonical ensemble is

16 [ —, +4x cos(2m')+x [2+3cos(4rre)]

+6x cos(6~e)I+0(IV, x ) . (3.3)

13e2 N

PA = gm;mJ. V( ~i —j ~

) —QPp(m, ), (3.4)I J
i,J i=1

where e characterizes the strength of the Coulomb in-

teraction U(r) =
~

r
~
[1—8(

~

r
~

/i1i')], and z„=e ~"("' is
the fugacity of a charge of n units. For a one-component
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pm(d) =——+[pe'(q„+d)'+ plM(q„—q„&)] . (3.5)

I.et us regard d as a variable. For any configuration Iq„]
the minimum of A (d) is obtained for

plasma only z& is nonzero. As demonstrated in Sec. II the
partition function for the Coulomb gas can be written in
terms of electric fields and evaluated by a transfer-matrix
method. Approximating the transfer matrix by finite-size
matrices corresponds to restricting the maximum value of
the electric field (or asserting that the system undergoes
electric breakdown for fields exceeding a critical value).
This is in fact a physically appropriate restriction.

It is necessary to examine the effects of boundary con-
ditions more carefully. For the Coulomb gas on a line
(6=0) the boundary conditions eo ——e~ ——0 together with
(2.4) restrict Ie„] to integer values. For the Coulomb gas
on a circle the nonlocal constraint g„&e„=Ohas to be
satisfied, and although the differences between the fields
are integral, the fields I e„ I are no longer restricted to in-
teger values. For any configuration of charges I m„] on
the circle, the fields can be written as e„=q„+d, where
q„are integers [m„=q„—q„~ from (2.4)] and d has to
be chosen such that g+,e„=O. This nonlocal constraint
can be incorporated by a Hamiltonian minimization prin-
ciple. The Hamiltonian (3 4) can be rewritten in terms
of electric fields as

e
—Pe (d +1/4)

e
—Pe d

Z1

Z$
Pe d (3.8)

Since on the line (8=0) the fields Ie„] must be integers
the free energy is obtained by setting d = —,

' or ——,', and is
given by

pf = —in[A, ,„(—,')]= 2

2

e2
2 e—ln cosh + sinh

2 2
+Z 1

1/2

(3.9)

By contrast, on a circle the free energy is 'obtained from

Pf =min(/3e (d + 4 )

—lnIcosh(pe d)+[sinh2(pe d)+z&]' j)d .

(3.10)

The function to be minimized has the typical Landau
double-well dependence on d. Expanding about d =0
gglves

a~(d)
Bd

=0 - g(q„+d)=pe„=O. (3.6) f 2

e2
=min 4

—in(1+z~)+d 1—
2Z 1

Thus for any configuration of Iq„ I evaluating 4 (d) at its
minimum ensures that the condition g„,e„=O is satis-
fied. This Hamiltonian minimization in fact defines a
new Hamiltonian, and it can be shown that the free ener-

gy of the minimized Hamiltonian is obtained by minimiz-
ing the free energy of the original Hamiltonian as a func-
tion of d. Therefore, the free energy on a circle is given
by Pf =min[ —ink, „(d)]d, where k,„(d) is the largest
eigenvalue of the transfer matrix

(I
~

T(d)
~

n)=z „exp — [(I+d) +(n+d) ]2

(3.7)

In most cases in the thermodynamic limit (X—moo) the
boundary conditions are not important, and the minimum
occurs at d =0. However, only when restricted charge
configurations are considered boundary conditions be-
come important.

An example is provided by allowing only sequences of
alternating charges +1, which is equivalent to a series of
dipoles with the same orientation. The continuum version
of this problem has been studied by Schotte and Truong.
In this case the electric field can only take two possible
values, e.g. , e„=d——,', d+ —,

' (note the shift of d by —,
'

which is just a convenient change of variables). The cor-
responding transfer matrix is 20&2, and using (3.7, is
given by

d4 Pe'
(3—z', )+O(d')

Z1 d

(3.1 1)

There is a classical second-order phase transition for
Pe =2z~. The low-temperature phase is a gas of similarly
oriented dipoles that dissociate at the transition tempera-
ture. The phase boundary is identical to that obtained by
Schotte and Truong in the continuum limit, which is
rather surprising since the actual free energies are very
different. (These results do not apply to the sine-Gordon
chain where all configurations have to be considered. )

There is a close correspondence between the alternating
sequence of charges and the one-dimensional Ising model.
Comparison of the low-temperature expansions for the
nearest-neighbor Ising model with the alternating
Coulomb gas on a line indicates that the two partition
functions become proportional with the identification
2H =e and z~ ——e (K is the nearest-neighbor in-
teraction and H is the magnetic field in the Ising model).
Similarly the alternating Coulomb gas on a circle is relat-
ed to a one-dimensional Ising model subject to both
nearest-neighbor and infinite-range interactions, which
also has a classical phase transition.

In the next level of approximation the field is allowed
to take on three values, e„=d —1, d, d+1. This would
again correspond to examining a sequence of dipoles, but
the dipoles are not required to point in the same direction
anymore. The 3&3 transfer matrix from (3.7) is
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—Pe ~(2d + 1) —Pe 2(d + 1/2)Z1e

Pe—d P—e (d + 1/2)e

2—pe

z1e Pe 2( d+ 1/2) (3.12)
2

z2e -p' z1e Pe 2( d + 1/2) Pe 2( —2d + 1 )e

The largest eigenvalue A, ,„(d) is always maximized for
d =0, and hence in this case the free energies of the
Coulomb gases on the line. and the circle are identical and
given by

The free energies converge rapidly and in fact the free en-

ergy of the unrestricted one-component plasma on a lat-
tice cannot be distinguished from the

~ e„~ &2 approxi-
mation on the scale of Fig. 1.

1+e ~' (1+z, )= —ln' '+
2

pe 2 2
1 —e ~' (1+z2)

1/2 IV. THE CONTINUUM LIMIT

+2z2, e-P"

(3.13)

There is no longer a transition between the gas of dipoles
at low temperatures and the dissociated plasma at high
temperatures. For a one-component plasma z2 ——0, and
expressions (3.10) and (3.13) for the free energy are similar
except that z1 is replaced by 2z1. This result has a simple
physical interpretation. For the Coulomb gas on a fine
the energy of a sequence of dipoles is independent of their
orientations. For e„=0,1 each dipole has a unique orien-
tation and a fugacity of z „while for e„=—1,0, 1 both
orientations are possible with an effective fugacity of 2z1.
The convergence of the finite-field approximation for the
one-component plasma with p1 ——e is demonstrated in
Fig. 1. The free energies corresponding to (3.13) and the
next level of approximation with e„=O,+ 1, +2 (calculated
by numerically diagonalizing a 5&&5 matrix) are plotted.

A number of results are known for the continuum
Coulomb gas and sine-Gordon systems in one dimen-
sion. ' ' ' ' In this section it is demonstrated that
these results can be obtained easily be taking the appropri-
ate continuum limit of the equations in previous sections.
Consider an interval of length L, subdivided into a lattice
of X sites separated by a distance (a). The continuum
limit is obtained by letting a~0 and X~ co, while
l. =%a is fixed. The appropriate way to scale the param-
eters of the Coulomb gas is —13e ~—Pe a, Pf~Ppa, —
and z„~z„a. Since —Pe and Pf represent —energies
per bond (energy densities) it is clear that they should
scale with a, while the scaling form z„~z„a is necessary
to keep the density of charges finite as a ~0.

For a many-component plasma, a potential V(q) can be
constructed from

e ~'~'= ge '"'+'"~= 1+2a g z„cos(nq)
n n&0

= exp 2agz„cos(nq)
a~0

(4.1)

e

The transfer-matrix equation in Fourier space correspond-
ing to Eq. (2.7) with e=O is

exp Pe a exp 2agz„cos(nq) y (q) =e~'~y (q),
n

(4.2)

with y(q+2w)=y(q). As a~O, e' e can be replaced
by e'"+ ', and the pressure p is obtained from the larg-
est eigenvalue of

0.4 2d'
13e &+2+z„cos(nq) y(q)=Ppy(q) .

Gg
(4.3)

I

0.6
I I I

0 0.2 0.4 0.8
I3

FIG. 1. Free energies of the discrete one-component
Coulomb plasma with possible electric fields e„=O,+1 (solid
line) and e„=O,+1,+2 (dashed line). The free energy with e„
unrestricted is not distinguishable from the dashed line on this
scale.

For a one-component plasma only z1 is nonzero, and Eq.
(4.3) reduces to Mathieu's equation. The pressure is
then given by p= —(e /4)ao(4z&/13e ), the result ob-
tained by Lenard ' and Prager (ao is the lowest charac-
teristic value of the Mathieu equation ). Equation (4.3) is
the generalization of this result to a many-component
plasma.

Similarly the pressure of a gas of alternating charges is
obtained by taking the continuum limits of Eqs. (3.9) and
(3.10) as
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2 2z ]
1 — 1+

/3e

on a line, and

2 1/2

2

(4.4) Z, = g f +de„expC Pf

27T2

2
— enen —1

2e„

p=emin d+ ——d+2, 2

4 /3e
2

.d
(4.5)

+2rti (k„—e)e„. (5.1)

1—
/3e

2
2' 2z1

1 —
2 +2

/3e Pe

2 1/2

(4.6)

on a circle. These results are identical to those obtained
by Schotte and Truong who directly examined the con-
tinuum problem. Finally, the continuum analog of Eq.
(3.13), describing a two-component plasma with the elec-
tric field restricted to e (x)=0, +1, is given by

Setting the Gaussian integration over I e„ I gives

Z ~ Z g exp g(/ )
—

~
n —m /l(/

1

fk„ I n, m

where ~ is proportional to temperature and given by

(5.2)

The continuum sine-Gordon model' is obtained by re-
placing g„(u„—u„~—e) in Eq. (1.1) with

fdn(Bu/Bn —e), and regarding n as a continuous vari-
able. This is a good approximation to the discrete chain
when (Ref. 5) lo ——(P/28')' »1 and e«1. At finite
temperatures the free energy per unit length is obtained
from an eigenvalue equation as in Eq. (2.7), with

T(q) =e exp —ep(q) 1

2p Jq Qq

1
=exp —V(q)

2p Pq

Correction terms in the exponential operator, of the order
of eV' and V/@= 1/lo, are ignored. The free energy is
then obtained as the eigenvalue of the operator

1 d d—e —V(q) .
2p Pq dq

This eigenvalue is calculated by Burkov and Talapov' us-
ing a %'KB approximation. The free energy obtained in
this approximation fails to describe the discrete chain at
high temperature, where Eq. (3.2) is appropriate.

V. DEVIL' S-STAIRCASE STRUCTURES
AT ZERO TEMPERATURE

' 1/2
2

7 = 1+ 24I,' (5.3)

and the length scale l is related to lo ——(p/2W)'~ by

1/2
1 i.2 7T K2—=ln 1+ 2 +—1+

jQ 4I Q

(5.4)

Since r behaves like temperature Z~ can provide informa-
tion about low-temperature properties of the system. In
fact the variables k„will be identified with kinks in the
original chain. The constant of proportionality between
the chain [Eq. (2.3)] and kink [Eq. (5.2)] partition func-
tions is expN[ln(~/lo) —1/2l] which is independent of
temperature. Since Zz is invariant under k„~k„+j,
e~e+j, it is manifestly periodic in e. Also, Z» is even

in e and it is sufficient to consider the interval 0 & e & —,.
For @=0, the ground state of the kink Hamiltonian has

all k„equal to zero, while for e & 0, positive values of k„
are favored. Since there is roughly an energy (m —e) as-
sociated with creating a kink k„=m, close to zero tem-
perature and for e & 0 it is sufficient to consider
k„=t„=,0, 1. Larger kink values are not energetically
favorable in this system. The kinks I t„ I interact

. through a Hamiltonian

~» ——[1—2e coth(1/2l)]gt„

A. The discrete chain and the Villain potential
—g t„t e ~"

~
~ +Ne coth(1/2l) . (5.5)

The most interesting properties of the discrete chain
occur at zero temperature, where many ground states of
different periodicities are expected. The dual Harniltoni-
an, Eq. (2.5), is only useful at high temperatures; Howev-
er, by using the Poisson summation formula it can be con-
verted to a form appropriate to low temperatures. The
Poisson summation formula replaces g, by

n

~

~

~ ~

—2~ik„e„de„+I, e " ". It will then be possible to do the in-

tegration over Ie„I for a Villain potential, defined by its
Fourier components V(m) =m /8'. Equation (2.5) is
now transformed to

The mismatch e has to exceed a critical value
e, = [2coth(1/2l)] ' before any kinks, appear in the sys-
tem. Kinks separated by a distance x feel a repulsive in-
teraction e ~ I . In the limit lQ&&1, 1/l=n/lQ, and
the interaction between kinks agrees with that calculated
from the continuum sine-Gordon model. It is interesting
that in this model the kinks interact only through two-
body interactions. Ignoring the lattice and balancing the
energy gain for kink creation with their repulsion indi-
cates that for e & e, the separation of kinks is roughly
x = —l ln[coth(1/2l)(e —e, )].
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n n
x; —x;=Int p— or Int p—+1,'+' '

m m
(5.7)

where Int denotes the integer part. For example, for

q = —', , first-neighbor kinks are separated by 5x
&
——4 or 5,

second-neighbor kinks are separated by 6x2 ——9, etc. This
kink structure is indicated in Fig. 2(a). These correspond
to possible commensurate ground states of the chain.

(b) Each of the above states is stable for a range of
mismatch values e (q) (e (e+(q). This range is obtained

by requiring that the addition or removal of a single kink,
and the subsequent rearrangement of kinks, does pot
reduce the energy. This is similar to obtaining e, by cal-
culating when it is energetically favorable to add a kink to

0 0 0- 1 0 0 0 0

(a)

2q=—
9

(b)
1 2 3 nn n w w w n n rJ LJ LJ LJ LJ LP LJ LJ LJ LJ "L

Jy «Q~ b

ra r v rv rv rv rv rv r1 ra „rLJ LJ LJ LJ LJ LJ H LJ LJ L
1 2 3 fl

(c) QH

FIG. 2. (a) The kink structure for the ground state with

q = 9. (b) The zero-temperature Villain potential (solid line)

and the cosine potential (dashed line). (c) The Josephson-
junction ladder. The superconducting regions on the sites of the
ladder are coupled to their nearest neighbors.

In the sine-Gordon model the kinks are pinned to the
lattice by a Peierls potential. In contrast, in Eq. (5.5)
the kinks are constrained to lie on the sites of the lattice.
It is this pinning of kinks to lattice sites that results in a
devil' s-staircase structure for ground states. The Ir„ I in
(5.5) are binary variables, and in fact A x. is equivalent to
an Ising Hamiltonian with exponentially decaying antifer-
romagnetic interactions and subject to a magnetic field.
Bak and Bruinsma have recently demonstrated how the
ground states of such Hamiltonians with general long-
range antiferromagnetic interactions can be calculated.
Their results are valid as long as the interactions J(n) are
a convex function of the range n. For the Hamiltonian

~K~

J(n +1)+J(n —1) 2J—(n) =2e "i [cosh(1/I) —1])0,
(5.6)

and this condition is satisfied. Let q denote the density of
kinks [q=(l/N)g„t„]. Then the ground states of the

system have the following properties.
(a) For every rational q =m/n, there is an n-fold de-

generate ground state, such that the positions x; of the ith
kink are related by

\

n sinh(1/2l)
coth(1/2l) sinh(n /2l)

(5.8)

which depends on n but is independent of m.
(c) The kink density q exhibits a devil's staircase as a

function of the mismatch e, i.e., there are steps for every
rational value of q. Adding the stability intervals, Eq.
(5.8), for the rational values of q, indicates that the devil' s

staircase is complete; i.e., the rational values of q cover the
whole 0(e & —,

'
interval, and there is no room for irration-

al q values.
This last result is surprising, since incommensurate

states (corresponding to irrational q) are expected in the
sine-Gordon chain. This is due to the nature of the Vil-
lain potential. It is continuous at finite temperatures, but
becomes singular at zero temperature, where it is
equivalent to a series of parabolas as indicated in Fig. 2(b).
In fact, Aubry' has obtained the ground state of particles
moving in such a potential by solving the force equation
(1.2) explicitly. This work therefore demonstrates the
equivalence of the complete devil's staircases obtained in a
continuous system by Aubry, ' and in an Ising model by
Bak and Bruinsma. The absence of incommensurate
states results from the nondifferentiability of the potential
and the failure of the Kolmogorov-Arnold-Moser
theorem, as discussed by Aubry' and elsewhere. ' lt
would be interesting to know if there are generalizations
of Eq. (5.5) that allow incommensurate states.

Some of the transformations outlined in this paper can
also be carried out in higher dimensions. The dual two-
dimensional Coulomb gas has been considered by Nelson
and Halperin, ' while a two-dimensional analog of the
kink Hamiltonian in (5.2) is obtained by Schulz. For
e= —,, the kink Hamiltonian (5.5) becomes an Ising model
with antiferromagnetic interactions,

=+ocr e li J'—
l,J

This is the antiferromagnetic version of the Kac-Baker
model, where the free energy is obtained by undoing the
transformations leading to (5.5), and solving an integral
equation similar to (2.9).

The Villain potential actually changes shape with tem-
perature, and is continuous at finite temperatures. By
contrast the Aubry potential can be defined to have the
form in Fig. 2(b) at all temperatures, i.e.,

V(q) = WH[q —Int(q+ —, )]' . (5.9)

The free energy for this potential can be obtained at a11

temperatures as the eigenvalue of a simple differential
equation. The differential equation is calculated from Eq.
(2.7) with the details given in Appendix B. The free ener-

gy f3f is the eigenvalue o—f the equation (0 (e(—, )
r

1 d d 22 8~ d
Pfy(q) =K——e —8'vr q — q

2p dq dq p dq

2 8'
+ W'~eq+ (1—K ') — . y (q),

2 2p

(5.10)

the system. The range of stability of each commensurate
phase is

2
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with E =2/ir Wlr, and periodic boundary conditions

y( —,')=y( ——,') and dy/dq( —, )=dy!dq( ——,'). For @=0,
Eq. (5.10) is the Schrodinger equation for a particle in the
Aubry potential. I am unaware of any other context,
where Eq. (5.10) with @&0may have been studied.

B. Josephson-junction ladders

Yet another system with a behavior similar to the
discrete chain is a ladder of Josephson junctions in a mag-
netic field. This system was pointed out to me by T. C.
Halsey. Two-dimensional Josephson-junction arrays have
been constructed, and studied both experimenta11y
and theoretically. ' It should also be possible to con-
struct arrays in the form of ladders as indicated in Fig.
2(c). The superconducting regions, placed at the sites of
the ladder, are assumed to couple only to their nearest
neighbors. Let 8„(8„)denote the phase of the supercon-
ducting wave function on site n (n') of the upper (lower)
branch of the ladder. The Hamiltonian for the system is
then given by

constrains the bond variables such that

a„=y„'+P„+~ y—„—$„=2m'(mod2m) . (5.15)

The integration over site variables can be replaced by an
integration over bond variables provided that above con-
straint is satisfied. Therefore,

ie. (q—.'+P.+ i v. —

(5.16)

where

dgmdV'mdPm
Z. =r . rr

m

&& exp g I [J„cosy„+J„cosy'„+J«cosg„]

—PA L ——J„g[cos(8„+i—8„—A„+i „) ge " " =2rr5[(o.„—2m')(mod 2m. )]
e

(5.17)

+cos(8„+&

—8„—A„+~ „)]

+J«icos(8„—8„—A„„), (5.11)

is used to impose the constraint. Integrating the bond
variables resu1ts in

ZL = g exp —g[2V„(e„)+ V«{e„—e„+&
) 2mie—e„].

Ie„ I n

where the phase A „ is related to the line integral of the
vector potential A between sites m and n by

where

(5.18)

Ad l (5.12)

~n+1, n +~n, n'+ ~n', n'+1+ ~n'+1, n+1

AcII) A d 1 = Hab =2~@, (5.13)

where H is the magnetic field perpendicular to the ladder
surface, ab is the area of a plaquette, and @=Hah/40 is
the ratio of the flux penetrating the plaquette to the flux
unit &Po ——hc /2e.

The partition function is obtained by integrating over
the phases en,

d8„d8„
Zl

(2m )

Around each plaquette on the ladder, the sum of 3 „ is
related to the magnetic Aux penetrating the plaquette,

—V (e) - 2~ d g J„cos(8)—iceX,y x,y
2m'

{5.19)

Equation (5.18) is analogous to the electric field parti-
tion function, Eq. {2.5), and represents the dual of the
Josephson-junction ladder problem. Again finite-sized
transfer matrices can be used to calculate the free energy
of the system at high temperatures. Equation (3.2) yields

2 2J„Jy
Pf = —2 V„(0)—V„—(0)+ cos(2rre)

+ cos(4ne)+O(J ) . (5.20)

If the Villain approximation to the cosine potential is
used [ V «(e) =e /2J„«], it again becomes possible to use
the Poisson summation formula, and integrate out the
variables I e„]. The result is

+exp QI Jx[cos(8n+~ —8n —An+] n)
n Zl ——g exp —in(2m J«) ——

I

+cos(8„+i—8„—A„+i „)]

+J«cos(8„—8„—A„„)I . (5.14)

It is convenient to use bond variables
y„=on+1 —On —An+1 „, yn' =0„+1—0„—A„+1„, and
$„=8„—8„—A„„. Around each plaquette, Eq. (5.13)

&)(k &)e
—

~

tt —m
~
/1

+n, m

(5.21)

which is similar to the kink partition function, Eq. (5.2),
with
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and

1/2
Jy Jy' Jy—=ln 1+ + +2J J' J

' 1/2

1+2
Jy

(5.22)

(5.23)

mulation. The eigenfunction y of Eq. (2.7) can be written
as y(q)=e ~~~+&'~'. The function ll(q) scales as 1/T as
the temperature T goes to zero. Then

2

, e&=(q"+y')e&=y'e&

in the WKB approximation. Since

The discussion of ground states of the kink Hamiltonian
given in the previous section also applies to the ladder
problem. Thus as the magnetic field (and hence e) is in-
creased, the system will go through a sequence of phases
forming a complete devil's staircase. The kinks are now
related to the currents circulating a plaquette. It is possi-
ble to write a partition function similar to (5.21) in two di-
mensions. However, the "charges" [k„j in two dimen-
sions interact logarithmically rather than exponentially.
Despite this difference, some two-dimensional ground
states found for the square lattice are closely related to
the one-dimensional ground states of the kink Hamiltoni-
an.

If the cosine potential is used in place of the Villain po-
tential, there will be incommensurate ground states in ad-
dition to the commensurate ones found above. The con-
nection between the discrete chain (1.1) and the
Josephson-junction ladder becomes clear if the London
gauge is used. In this gauge A„„+~——3„„+&——0, and
A„„=2m.ne. Also in the ground state there is a symme-
try 0„=—0„,which reduces the Hamiltonian (5.11) to

—PA ~ ——g[2J~cos(0„+ &

—0„)+Juncos(20„—2~ne)] .

(5.24)

A change of coordinates 0„=vr(u„+ n e ), together with
the approximation

cos(0„+,—0„)=1——,(0„+i
—0„)

which is valid since successive. phases t9„are close, yields

—P~L, ——g[2J m. J„(u„+)—u—„e)+Juncos(2~—u„)] .

))g" cx —,2 1 ~ 1

T2 T'
as T—+0 this approximation improves. In general

n

and the transfer-matrix equation T(q)y (q) =e/y (q) gives

I 2
—eP'+ V=f .

2p

The solution to this quadratic equation is

[ 2 2+2 (y V)]l/2

(A 1)

(A2)

Periodicity of the function y, y (q + 1)=y (q), implies

f dqP'=0, or
1

pe= dq p e +2p —V (A3)

For the cosine potential V(q) = W/2 cos(2~q ), let

f= —pe /2 —IV/2+ W/k . Then

dq 1 —k cos ~q ' =, A4
lpk o ~Ip k

where E (k) is the complete elliptic function of the second
kind. This result is identical to that obtained by directly
considering the kink structure in the sine-Gordon prob-
lem. '" The solution g' in Eq. (A2) is valid for
e) e, =2/vrlo. For e&e„Eq. (A3) has no solution. The
function P' becomes discontinuous and f= W/2 pe /2. —
Equation (A3) is valid for any potential V(q), and the
critical value e, for formation of kinks is in general given
b 15

(5.25)
This is identical to the chain Hamiltonian with the identi-
fication p =2m. J~ and 8 =2J&. An experimentally
relevant quantity is the critical current, which is defined
in terms of the stability of current-carrying states at zero
temperature, but it is not calculated here.
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APPENDIX A: THE WKB METHOD

The results of Frank and van der Merwe on the contin-
uum model can be regained from the transfer-matrix for-

1/2

e, =f dq —[V,„—V(q)] (A5)
p

I

The WKB method in connection with this problem has
also been used by Burkov and Talapov. '

APPENDIX 8: THE AUBRY POTENTIAL
AT. FINITE TEMPERATURES

The Baker-Campbell-Hausdorff (BCH) formula can
be used to write the transfer operator

T(q) =exp —e e
1 8 8 p(q)

2p gq 8q

as a single exponential. For a general potential V(q) the
resultant exponential cannot be obtained in closed form.
However, for the Aubry potential, Eq. (5.9), composed of
quadratic pieces V(q) = W~ q, the BCH summation can
be carried out exactly. Let p =d/dq and consider the
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operators A = —,(p p—s), B = —,'q, and . C =[A,B]
=qp —peq+ —,'. The three operators form a complete set
with commutation rules

M(r, s, t)=M —,0,0 M(0, —2' W, O)
p

[A,B]=C, [A, C]=2A, [B,C]=—2B .

This completeness implies that

pe~l2T( ) e( lip)8 2m wB —erA +sB+tc (B2)

28' 28' 1 2 28'

4~4m' 1 . 4~8
8 1

' 82~'%+4~4 1+4~
P P P

with r, s, and t to be determined. Consider the linear
transformation caused by U(A, ) =e '""+' +' ' on the vec-
tor space V =xA +yB +zC:

x (~)A +y (~)B +z(~)C = U(&)(xoA +y B +z C) U (k)

(83)

Differentiating with respect to A, results in

(B6)
The coefficients r, s, and t are determined as follows.
The vector (r, s, t) has to be an eigenvector with eigenvalue
1, implying r = —(1 lvr W)t and s =2pt The. eigenvalues
of the left-hand side are 1, e, and e —~ with

1/2

A, =2(t' —sr)'~'= 1+

Equating the traces of the two sides gives

[rA +sB+tC, xA +yB+zC] =x'A +y'B+z'C . (B4)
1+e +e =3+8m +4m"

p p
(B7)

Equating the coefficients of A, B, and C results in a set of
linear equations with the solution

The solution k= —2/l implies t = —2/pl~ with I and ~
as defined in Eqs. (5.3) and (5.4). Therefore, r =(1/p)K,
s = 2' WK, t —= —( W~ Ip, )K, (K =2/~ Wlr), and

Xp —2t 0 2r Xp
e& ~ T(q)=exp K (p —pe) —Wtr q

e /2 1

2p

y =M(v, s, t) yo ——exp 2 0 2t —2s

z z —s r 0
p

yp

Zp

8 m'

(qp peq+ —,
'

) — (Bg)
p

The operator equation (B2) can now be written as a matrix
equation (A, = 1)

The equation T(q)y(q)=e ~Iy(q) now leads to the dif-
ferential e)uation in (5.10). Note that only the interval
——, (q (—, has to be considered when periodic boundary
conditions are imposed. In the limit lp ~~1, K=1 and
t =0.
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