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We report on the first electron nuclear double-resonance investigation of an interstitial deep-level
defect in silicon. For interstitial iron the superhyperfine interactions with six shells of neighbor nu-
clei comprising 42 silicon atoms could be resolved and determined. The localization of the two
paramagnetic 3d electrons (3d%) at the Fe? atom could be estimated to be between 80% and 95%.
The superhyperfine data are discussed with a simple model for the defect wave function. It is
shown that exchange polarization plays a major role in determining the superhyperfine interactions.

I. INTRODUCTION

Electron nuclear double-resonance (ENDOR) investiga-
tions of substitutional impurities in silicon were per-
formed more than 20 years ago on shallow donors.'
These experiments yielded valuable information on the su-
perhyperfine interactions of the unpaired donor electron
with many surrounding shells of silicon atoms. The data
were compared with the effective-mass theory of shallow
donor states.> For the chalcogenides S and Te, believed to
be on substitutional sites and which form so-called “deep
impurities,” ENDOR results were published as well.>* A
satisfactory theoretical explanation of the measured distri-
bution of the unpaired spin density of those deep levels
has not yet been achieved.>> From the analysis of the
ENDOR data it is not yet clear whether the chalcogenides
are substitutional or interstitial. This question can only be
settled if a satisfactory theory becomes available, since
this cannot be concluded from the ENDOR experiments
alone.>* '

For interstitial impurities in silicon, ENDOR investiga-
tions resolving the superhyperfine interactions with the
surrounding silicon nuclei have not yet been reported.
Transition elements of the 3d row prefer interstitial sites
in thermal equilibrium at high temperatures.® After suffi-
ciently rapid quenching the ESR spectra of interstitial Cr,
Mn, and Fe can be measured as first described by Ludwig
and Woodbury.” In this paper Fe in Si has been chosen
for the first ENDOR investigation of an interstitial im-
purity in silicon. From the ESR experiments it follows
that iron is quenched in as Fe} in a S=1 spin triplet
state.3~1° In a recent ESR study at high microwave
power the superhyperfine (shf) structure of the ESR spec-
trum could partly be resolved!! and the superhyperfine in-
teractions with several neighbor shells were deduced.
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However, comparison with the present ENDOR study
shows that in Si due to the low abundancy of the magnet-
ic isotope 2°Si of only 4.7 at. % it is not straightforward to
derive the shf interactions from the ESR spectrum. With
ENDOR the shf interactions with 6 shells of neighbor nu-
clei, obtaining a total of 42 si atoms, could be determined
with high precision. It was the aim of this investigation
to determine the unpaired spin density around the intersti-
tial Fe in order to provide an experimental basis for a
highly localized, well-defined deep-level defect for
theoretical calculations.

II. EXPERIMENTAL

Samples of dislocation-free floating-zone p silicon with
10"3 B/cm?® (Wacker Chemitronic) of dimensions typically
4x4%20 mm? were mechanically and chemically pol-
ished and iron plated onto the four side faces in vacuum.
The diffusion treatment was performed at 1250°C for 30
min in a vertical SiC tube furnace and the sample was
subsequently quenched in diffusion pump oil. Then a sur-
face layer of more than 100 ym was mechanically and
chemically removed. The samples were stored at 77 K
until the ENDOR measurements. The concentration of
interstitial Fe? thus achieved was 10'¢/cm3.12

The ENDOR measurements were performed in a com-
puter controlled homodyne X-band spectrometer using a
GaAs—field-effect transistor low-noise microwave pream-
plifier to improve the signal-to-noise ratio at the low-
modulation frequencies necessary for ENDOR." The.
ENDOR signals were obtained at T=20 K at a mi-
crowave power level of about 103 W by observing the
microwave absorption signal. The rf transmitter was
chopped at 800 Hz. The crystal orientation was varied in
steps of 2°, rotating it by about 120° in a (110) plane.
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III. EXPERIMENTAL RESULTS

A. ESR measurements

The electron-spin-resonance (ESR) spectra of interstitial
iron in silicon consists of strain-broadened Am,=+1 ESR
transitions for a S=1 spin system (3d%) at g=2.070.
However, using high microwave power (20 mW), a double
quantum transition between the m;=—1 and m;=+1
levels dominates the spectrum and is superimposed on the
strain-broadened single-quantum transitions.® Figure 1(a)
shows our measurements of the double-quantum X-band

ESR spectrum for §0]|[111] at 25 K. A superhyperfine
structure due to the interaction with 2°Si nuclei is partly
resolved.

B. ENDOR measurements

Figure 2(a) shows an ENDOR spectrum as measured at
20 K. The most prominent feature is that the line at 2.7
MHz, which is the Larmor frequency of the free >Si nu-
clei, is about two orders of magnitude higher than the
lines of 2°Si nuclei interacting with the unpaired electrons.
Their signal-to-noise ratio was only about 5:1. Further-
more, a strong background signal was observed, much
stronger than the lines of the interacting nuclei. In Fig.
2(b) this background was subtracted with a special algo-
rithm. Now the signal-to-noise ratio of the spectrum is
seen more clearly. This noise can be reduced drastically
by digital filtering'*~'® as shown in Fig. 2(c). Finally, the
resolution of superimposed peaks is improved by the ap-
plication of a deconvolution algonthm17 [Fig. 2(d)]. The
peak positions of the ENDOR lines in Fig. 2(d) were au-
tomatlcally determined with a special peak-search algo-
rithm.'”

These computer-aided mathematical procedures were
applied to all ENDOR spectra measured for different
crystal orientations. Figures 3(a) and 3(b) show the angu-
lar dependence of the ENDOR lines thus determined ex-
perimentally for rotation of the crystal in a (110) plane.
The dots are the experimental points, the size of which is
a measure of the relative height of the lines. The spectra
were analyzed with the usual spin Hamiltonian including
the hyperfine interaction

H=g,upS,;+ Z (IiAiS-'gni.u’nBOIi) > 1

1

where the symbols have their usual meaning.!®* The sum
runs over all 2°Si neighbor nuclei interacting with the un-
paired electron spins. The curves drawn in Figs. 3(a) and
3(b) are the calculated ENDOR angular dependencies us-
ing the spin Hamiltonian (1) after fitting the tensor pa-
rameters for each neighbor nucleus i.

The number of ENDOR lines for each neighbor 2°Si
nucleus (/= 7) is the same for S=+ and S'=1, namely,
2. Therefore, a confirmation of S=1 by ENDOR was at-
tempted by choosing a particular neighbor shell, where
the anisotropic interaction is large and prevails over the
isotropic one.

When evaluating the spin Hamiltonian according to Eq.
(1) with perturbation theory, in our case a second-order
term enters, which contains m,.!° Figures 4(a) and 4(b)
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FIG. 1. (a) Double quantum ESR spectrum of Fe{ at X-band,
T=25 K for By||[111]. (b) Simulation of the ESR spectrum of
Fig. 1(a) using all superhyperfine interactions determined by
ENDOR. (c) Simulation of the ESR spectrum of Fig. 1(a) using
the superhyperfine interactions determined by ENDOR
omitting those of the second-shell (100) neighbors.

show the comparison of the calculated angular depen-
dence of [111]- -type neighbors with strong anisotropic in-
teraction assuming S=+ and S=1. The fit for S=1,
Fig. 4(b), 1s clearly better, confirming S=1 for the spin
state of Fe in Si.
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FIG. 2. (a) Measured ENDOR spectrum at 7=20 K,

B(=327.73 mT, X-band, for B, approximately 20° off the [100]
direction in a (110) plane. (b) Measured ENDOR spectrum of
Fig. 2(a) after subtraction of the background. (c) Part of the
spectrum of Fig. 3(b) after digital filtering. (d) Resolution
enhancement of peaks in the spectrum of Fig. 2(c) by deconvolu-
tion.

In Table I the superhyperfine interaction parameters are
given in terms of the isotropic shf constant a and the an-
isotropic shf constants b and b’, where b’ describes the
deviation from axial symmetry. They are related to the
principal values of 4 by

Ape=a—b+b', Ay—a—b—b', Az=a+2b . 2)

The orientations of the shf tensors are also given.
The analysis of the ENDOR angular dependence shows
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FIG. 3. Angular dependence of the ENDOR lines for rotat-
ing the crystal in a (110) plane. The dots are the experimental
ENDOR line positions, the drawn curves are the calculated an-
gular dependences calculated with the spin Hamiltonian param-
eters determined from the analysis of the spectra.
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FIG. 4. (a) Angular dependence of the first-shell (111) neigh- .

bor nuclei and calculated angular dependence assuming S =%.

(b) Angular dependence of the first-shell (111) neighbor nuclei
and calculated angular dependence assuming S'=1.

that Fe’ must be either at the interstitial site with
tetrahedral symmetry or substitutional. This cannot be
distinguished from the analysis of the angular depen-
dence, since in both cases neighbor nuclei with the same
symmetry type surround the atom.>* We found interac-
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FIG. 5. Model of interstitial Fe® centers and five neighbor Si
shells, the superhyperfine interaction of which was determined.

tions with three different shells of neighbors with a [111]
symmetry. Their shf tensor are axially symmetric and
oriented along [111]. Each shell contains four nuclei.
Furthermore, we found interactions with one shell of
neighbors with [100] symmetry. There are six neighbors
in this shell, the z axis of the interaction tensor is the
[100] connection line to Fe®, which is a twofold rotation
axis (see Fig. 5). Finally, there are interactions with two
shells with [110] symmetry, which each contains 12 nu-
clei. The shf axis with largest interaction lies in a (110)
plane, which contains the Fe]. Their angle with respect to
a [111] direction is given in Table I (see also Fig. 5). No
ENDOR lines due to low-symmetry neighbors were
found.

It should be noted that the relative sign of a and b is
not always the same. From the angular dependence, how-
ever, only the relative signs of a and b can be determined.
In Table I, b was chosen to be positive (see Sec. IV).

1V. DISCUSSION

Before an attempt to interpret the measured shf data
was made [which turned out to be not a simple matter (see
below)], we wanted to make sure that all measured shf in-
teractions really belong to the same Fe! center. The possi-
bility had to be excluded that we had, without knowing it,
saturated another ESR spectrum lying under the Fe? spec-
trum and measured its ENDOR lines as well. Therefore,
we simulated the double quantum ESR spectrum of Fig.
1(a), which shows a partially resolved shf structure taking
all the shf interactions as determined from the ENDOR
spectra into account. A computer program was developed
for this. It calculated all possible magnetic configurations
of neighbor nuclei due to the low 2°Si abundance of 4.7
at. %. Figure 1(b) shows the simulated ESR spectrum,
which agrees very well indeed with the experimental one.
Figure 1(c) shows the simulated spectrum, if the interac-
tions with the six nuclei of (100) symmetry are taken out.
A noticeable difference indicates that the simulation
would show if this neighbor shell belonged to a different
center. The same is true for the other shells, supporting
the conclusion that all the measured shf data belong to Si
nuclei surrounding the interstitial iron atom. .



6296

GREULICH-WEBER, NIKLAS, WEBER, AND SPAETH 30

TABLE 1. Parameters and orientation of shf tensors of 2°Si neighbors in Si:Fe) (m MHz). The exper-

imental uncertainty is £0.01 MHz.

Type a b b’ Z g5
[111] 0.16 1.40 0 [111]
[111] —0.78 0.20 0 [111]
[111] —3.25 0.16 0 [111]
[100] 4.64 0.80 0.52 [100]
[110] 3.87 0.44 —0.07 (Zgs, [111]D=11°
[110] 0.38 0.09 0.002 (Z g, [111])=2.6°

From the analysis of the ENDOR spectrum alone an
assignment of the measured shf interactions to a particu-
lar shell of neighbors is not possible, only the symmetry
type can be determined. Therefore, a theoretical estimate
of the interactions must be made, if an assignment is at-
tempted. First, the shf parameters can be analyzed with
the traditional approach as described by Watkins and Cor-
bett.?’ It assumes that an unpaired electron localized
100% within a silicon 3s orbital causes an isotropic hyper-
fine interaction of ay=4150 MHz, and in a silicon 3p or-
bital an anisotropic interaction with b,;=101 MHz.
Comparison of these values with the results compiled in
Table I shows that the anisotropic shf interaction deter-
mines the fraction of the resonance electrons at the sur-
rounding atoms. Localization values near 1% per atom
can be calculated for the three shells with the strongest
shf interactions. Identifying these shells with the three
neighboring shells of Fe;, which consist of 22 atoms, a
delocalization near 209% of the resonance electron wave
functions can thus be estimated.

However, this approach is misleading in the case of
such a highly localized defect, since it neglects the
dipole-dipole interaction of the two 3d electrons with the
neighboring nuclei:!®

3 cos? 9

1
b=— 8 o_Mo8etBEntin f | 1/}Fe0 | dv . A3

Table II shows a comparison of the anisotropic interac-
tions b¢ calculated assuming point dipoles for the two Fe
3d electrons and the expenmental b values, which are or-
dered according to decreasing b? values (for shells 4a and
b, see below). The good agreement between the experi-
mental b and b allows an assignment of the experimental
a and b values to the shells 1-5 (see Fig. 5, where the
shells are indicated by numbers).

According to Ludwig and Woodbur 31 and more recent
calculations of the energy levels of Fe; (Refs. 21—24) the

unpaired electrons are in the two 3d orbitals with e, sym-
metry; that is, in 3 42 and 3dx_ 2, respectively. Integrat-
ing in Eq. (3) over those orbitals yields within 1% the
same b values as in the point-dipole approximation al-
ready for the nearest shells.?’

Table II shows clearly that the largest part of the exper-
imental b values can be accounted for by dipole-dipole in-
teraction. The remaining differences could be explained
by only 5% delocalization of the unpaired electrons. This
value might be an underestimation as it is difficult to cal-
culate reliably the dipole-dipole interaction with the
directly adjacent silicon atoms. Yet this discussion shows
that the paramagnetic 3d wave functions will be localized
between 80% and 95% at the impurity atom, in accor-
dance with the picture of Fe} as a hlghly localized defect.

Assuming a substitutional site for Fe, there is no agree-
ment between b, and b9, e.g., for the [100] neighbors
the discrepancy is by a factor of 8. This simple estimate
is in8 zllzgreement with all other evidence that Fe® is intersti-
tial.*>

Table II shows that the third-shell [110] neighbors have
the largest discrepancies between b, and b Also the
orientation Zgy; of their shf tensor (see Table I) is not
along the connecting line to the Fe? atom, which would be
the case for a predominantly point dipole-dipole interac-
tion. It deviates by 18° from this line, as indicated in Fig.
5. It is nearer to the [111] direction, connecting the third
shell with the neighboring second-shell Si atoms. This
points to the fact that at shell 3 the superhyperfine in-
teractions are due to a transfer effect via shell 2. It is,
however, surprising that a is nearly as large as in shell 2,
where the atoms are immediate neighbors to the Fe’ 3d
orbitals and that a is very small for the shell-1 neighbors.
It is not obvious why the transfer effect from shell-2
neighbors should be different to shell-3 and shell-1 neigh-
bors. The value of b seems to be reasonably well ex-
plained in shells 4a and 4b. However, the negative a
values of rather large magnitude point to the existence of

TABLE II. Comparison of the experimental shf data with the theoretical anisotropic shf constants

assuming point dipole interactions (MHz).

Shell Symmetry a b be Distance (A)

1 [111] 0.16 1.40 1.25 2.352

2 [100] 4.64 0.80 0.82 2715

3 [110] 3.87 0.44 0.18 4.503

4a [111] —325 0.16 0.16 4.703

4b [111] —~0.78 0.20 0.16 4.703
0.09 0.08 5918

5 [110] 0.38
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an exchange polarization (see below).
The isotropic shf constant of a nucleus at the site 7, is
given by '

a(rn) =% $Ho8oLBEHnP Tn) “

where p(r,) is the unpaired spin density at the nuclear site
r, due to the two 3d electrons. The experimentally deter-
mined highly-localized nature of the defect suggests try-
ing an interpretation of the hyperfine data using approxi-
mations which proved to be successful in ionic solids.

The direct contribution of the 3d electrons already at
the shell-1 and shell-2 neighbors is only very small and
cannot explain the measured values. An estimate of its
magnitude can be attempted by assuming that the Si sp>
hybrids occupy the regular Si lattice positions. Covalency
between them is neglected. The wave function of the de-
fect is then the Slater determinant.

1
¢'Fe?:—\7n__' ¢;zz¢:1(x2—y2)¢g¢} Ut | )

where 9; denote the sp® Siwave functions. (The inner
shells are neglected.) Provided all wave functions entering
the Slater determinant are mutually orthogonal, the spin
density at the site r, is given by

plry)= |¢d22(rn)|2+ |d’d(x2_y2)(rn)‘2 . (6)

The two 3d functions ¢, and ¢ d(x2_y?) T€ DOt orthogo-
nal to the lattice functions. They must be orthogonalized
to the lattice orbitals, which leads to admixtures of lattice
orbitals into the 3d functions.”® Considering first only
shell-1 and shell-2 neighbors and using the Schmidt
orthogonalization procedure,?® this leads to admixtures of
Y3, (Si?) and ¢, (Si'?)) (along [100]; see Fig. 6) orbitals
of shell-2 neighbors into ¢, ,. The admixture coefficients

are the overlap integrals between ¢, , and 13, (Si®)), and

J

af 1

a(ry) == | —= P2 | ¥3paSI?) ) (W35 (Si®) | h3s(SI™) ) + (W 12 | Y35(Si?)) (W35(Si?) | 35(Si™) )

2 3

This expression holds for both shell-1 and shell-3 neigh-
bors; that is, Si‘" and Si’® admixtures. Unfortunately, be-
cause of the phase of the ¢3pa(Si(2)) orbital, the two terms
in Eq. (7) nearly cancel each other for shell-3 neighbors
and add for shell-1 neighbors. )
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FIG. 6. Schematic representation of the orbitals contributing
to the transferred superhyperfine interaction of shells 1 and 3
via shell 2.

Y3po (Si'?), respectively. Because of symmetry no orbitals
of shell-1 and shell-2 neighbors are admixed into
Y d(x2—p2) all overlap integrals vanish. Using Egs. (6) and
(3) and the thus orthogonalized wave functions ¢, , and
Y dx2—y2p the theoretical values for a and b for shells 1

and 2 are obtained (Tables III and IV model 1). The
agreement is surprisingly good regarding the crude
theoretical model. If shell-2 neighbors were distorted out-
wards by ~3% the agreement would be almost perfect.
However, the higher shells are not explained in this simple
model.

Transferred hyperfine interactions were often observed
in ionic crystals. Their order of magnitude could be ex-
plained by applying the Lowdin orthogonalization
method.!*?”?® The leading term determining a is given by
the mutual overlap of the orbitals of neighboring
atoms.'®?’ In our simple model (see Fig. 6),

Similar arguments hold for the calculations of b. (See
Tables III and IV, model 2, where effects due to normali-
zation constants are neglected in view of the crude model).
The difference in the transfer effect in shells 1 and 3 ori-
ginates in the phase of the admixtured 1/13,,,,(Si(2)) orbital.

TABLE III. Comparison of the experimental isotropic shf constants with several theoretical approxi-

mations (MHz).

Shell

aexpt Qmodel 1 A model 2 Qmodel 3
1 0.16 0 1.7 0.005
2 4.64 5.4 54 54
3 3.87 0 0.005 1.7
4a —3.25 0 ~0 ~0
4b —0.78 0 ~0 ~0
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TABLE 1V. Comparison of the experimental anisotropic superhyperfine constants with several

theoretical approximations (MHz).

Shell bexpt b model 1 b model 2 b model 3
1 1.40 1.25 1.25 1.25
2 0.80 1.0 10 1.0

3 0.44 0.17 0.17 0.22
4a 0.16 0.16 0.16 " 016
4b 0.20 0.16 0.16 0.16

The observation is, however, in contrast to the calculation
with the Lowdin orthogonalization, which only includes
the Pauli principle.?® Formally, this can be remedied by
considering a slight covalency between the Fe 13, , orbital

and the 3,,(Si'*)) orbital according to

Yh 2 =N[V,— My, (Si?)] ,

N=(14+A%"""2.

Neglecting the small deviation of N from 1, one then ob-
tains for a(r,)

(8)

2

aNr,,»:%f A+71—<¢,,z;|¢3p0<5i<2’)><¢3p0(5i<2’>{wgs(Si‘">>>+<wd22|¢35<Si‘”>><¢3s(sﬂ2)>|¢3S<Si“”)> )

3

Choosing A=2| {1, | #3,,(Si'”)) | =0.126 just reversed
the interference effect for shells 1 and 3, and the observed
magnitude of the isotropic shf constants can then be ap-
proximately explained (see Table ITI, model 3). The aniso-
tropic interaction of shell-3 neighbors is also improved,
the z axis now is 19° off the [111] direction (see Fig. 6);
that is, it is turned by about 10° from the connection line
to the Fe® towards [111]. b is, however, too small (Table
IV, model 3). In order to explain the experimental orien-
tation and b value one would need four times as much ad-
mixture contributions along [111]; that is, 0.2 MHz along
the connection line of Si‘?’ —Si®.

Why a covalent admixture is connected with a phase
correlation is an open question. It apparently is needed to
get different transfer effects for shells 1 and 3 as observed.

One further important point must be discussed, which
is connected with the observation of negative spin density
at shells 4a and b. Negative spin densities at Al nuclei
were observed for several A1’+-0~ centers in ionic crys-
tals, where the AI>* ions were situated in a nodal plane of
the unpaired p orbital at the oxygen.?’=3! All overlap
contributions vanish since the overlap integrals with s
functions are zero. The negative spin density in such a
situation is explained as being due to exchange polariza-
tion.?—3* This effect is probably also observed directly
for shells 4a and 4b nuclei. The p admixture of shell-3
neighbors along [111] connecting it to shell 2 has a large
component “perpendicular” to shell-4a neighbors in the
sense that they are in the nodal plane of the unpaired p
orbitals (see Fig. 6). The exchange-polarization effect is
expected to be larger for shell-4a neighbors compared to
shell-4b neighbors, since they are nearer to the shell-3
neighbors in agreement with our results. This considera-
tion led to the assignment of shells 4a and 4b to the mea-

sured shf interactions.

Clearly, the exchange polarization will also be operating
between the p admixture of shell 2 and the core of shells 3
and 1, both with the same magnitude, since their perpen-
dicular 3,,( Si®) components are the same, giving a neg-
ative contribution to a for both neighbors. On the other
hand, the covalency between the Si neighbors neglected
thus far will enhance the transfer effects. From the ex-
perimental results it seems that for the shell-1 and shell-3
neighbors these covalency effects must be compensated by
the exchange polarization. It is probably because of this
that our crude model discussed above yields approximate-
ly the experimental shf data. Possibly, exchange polariza-
tion effects between the two Fe3d orbitals and shell-1
neighbors are also contributing to explain their small
value of a.

It was the aim of our estimate to point out that this
highly localized interstitial model defect shows an in-
teresting quantum-mechanical interference effect in spin-
density transfer and that exchange polarization seems to
play a very important role which, to our knowledge, has
not yet been realized in discussing hyperfine properties of
defects in silicon.

In conclusion, we have shown that the interstitial Fe®
atom, although highly localized, comprises a complex of
at least 42 Si neighbors when considering the effects of
spin transfer. It seems a clear model system for a deep
level and it is hoped that it will be possible to quantita-
tively explain its electronic structure in the future.
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